Skip to main content

Micronutrients that Affect Immunosenescence

  • Chapter
  • First Online:
Reviews on New Drug Targets in Age-Related Disorders

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1260))

Abstract

The immune system undergoes some adverse changes throughout aging, many of which have been implicated in the increased morbidity and mortality related to infection in the elderly. In addition to intrinsic alterations in the immune system with aging, the elderly are more likely to have poor nutritional status, which further affects the already impaired immune function. Micronutrient deficiencies are a recognized global public health problem, and poor nutritional status predisposes to certain infections. Immune function may be ameliorated by restoring deficient micronutrients to recommended levels, thereby increasing resistance to infection and supporting faster recovery when infected. This review looks at the effects of micronutrient supplementation on immune function during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magrone T, Jirillo E (2013) The interaction between gut microbiota and age-related changes in immune function and inflammation. Immun Aging 10:31

    Article  CAS  Google Scholar 

  2. Magrone T, Perez de Heredia F, Jirillo E, Morabito G, Marcos A, Serafini M (2013) Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can J Physiol Pharmacol 91(6):387–396

    Article  CAS  PubMed  Google Scholar 

  3. Ahmed T, Haboubi N (2010) Assessment and management of nutrition in older people and its importance to health. Clin Interv Aging 5:207–216

    PubMed  PubMed Central  Google Scholar 

  4. Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F et al (2007) Inflammaging and anti-inflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Aging Dev 128(1):92–105

    Article  CAS  PubMed  Google Scholar 

  5. Li W (2013) Phagocyte dysfunction, tissue aging and degeneration. Aging Res Rev 12(4):1005–1012

    Article  CAS  Google Scholar 

  6. Candore G, Caruso C, Jirillo E, Magrone T, Vasto S (2010) Low grade inflammation as a common pathogenetic denominator in age related diseases: novel drug targets for anti-aging strategies and successful aging achievement. Curr Pharm Des 16(6):584–596

    Article  CAS  PubMed  Google Scholar 

  7. Fulop T, Witkowski JM, Pawelec G, Alan C, Larbi A (2014) On the immunological theory of aging. Interdiscip Top Gerontol 39:163–176

    Article  PubMed  Google Scholar 

  8. Chandra R (2002) Nutrition and the immune system from birth to old age. Eur J Clin Nutr 56(Suppl 3):S73–S76

    Article  CAS  PubMed  Google Scholar 

  9. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K (2013) Causes, consequences, and reversal of immune system aging. J Clin Investig 123(3):958–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ventura MT, Casciaro M, Gangemi S, Buquicchio R (2017) Immunosenescence in aging: between immune cells depletion and cytokines up-regulation. Clin Mol Allergy 15:21. https://doi.org/10.1186/s12948-017-0077-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brodin P, Davis MM (2017) Human immune system variation. Nat Rev Immunol 17(1):21–29

    Article  CAS  PubMed  Google Scholar 

  12. Pawelec G (2017) Does the human immune system ever really become “senescent”? F1000Rese 6:1323. pii: F1000 Faculty Rev-1323. https://doi.org/10.12688/f1000research.11297.1

  13. Castelo-Branco C, Soveral I (2014) The immune system and aging: a review. Gynecol Endocrinol 30(1):16–22

    Article  CAS  PubMed  Google Scholar 

  14. Jafarzadeh A, Sadeghi M, Karam GA, Vazirinejad R (2010) Salivary IgA and IgE levels in healthy subjects: relation to age and gender. Braz Oral Res 24(1):21–27

    Article  PubMed  Google Scholar 

  15. Maggini S, Maldonado P, Cardim P, Fernandez Newball C, Sota Latino E (2017) Vitamins C., D and zinc: synergistic roles in immune function and infections. Vitam Miner 6:167. https://doi.org/10.4172/2376-1318.1000167

    Article  CAS  Google Scholar 

  16. Fulop T, Larbi A, Dupuis G, Le Page A, Frost E, Cohen A et al (2017) Immunosenescence and inflamm-aging as two sides of the same coin: friends or foes? Front Immunol 8:1960. https://doi.org/10.3389/fimmu.2017.01960

  17. Haryanto B, Suksmasari T, Wintergerst E, Maggini S (2015) Multivitamin supplementation supports immune function and ameliorates conditions triggered by reduced air quality. Vitam Miner 4:1–15. https://doi.org/10.4172/2376-1318.1000128

    Article  CAS  Google Scholar 

  18. Napoli I, Neumann H (2010) Protective effects of microglia in multiple sclerosis. Exp Neurol 225(1):24–28

    Article  PubMed  Google Scholar 

  19. Tortorella C, Piazzolla G, Spaccavento F, Jirillo E, Antonaci S (1999) Age-related effects of oxidative metabolism and cyclic AMP signaling on neutrophil apoptosis. Mech Aging Dev 110(3):195–205

    Article  CAS  PubMed  Google Scholar 

  20. Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S (2007) Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol 178(11):6912–6922

    Article  CAS  PubMed  Google Scholar 

  21. Aprahamian T, Takemura Y, Goukassian D, Walsh K (2008) Aging is associated with diminished apoptotic cell clearance in vivo. Clin Exp Immunol 152(3):448–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hazeldine J, Lord JM (2013) The impact of aging on natural killer cell function and potential consequences for health in older adults. Aging Res Rev 12(4):1069–1078

    Article  CAS  Google Scholar 

  23. Fessler J, Ficjan A, Duftner C, Dejaco C (2013) The impact of aging on regulatory T-cells. Front Immunol 60(2):130–137

    Google Scholar 

  24. Schmitt V, Rink L, Uciechowski P (2013) The Th17/Treg balance is disturbed during aging. Exp Gerontol 48(12):1379–1386

    Article  CAS  PubMed  Google Scholar 

  25. Kogut I, Scholz JL, Cancro MP, Cambier JC (2012) B cell maintenance and function in aging. Semin Immunol 24(5):342–349

    Article  CAS  PubMed  Google Scholar 

  26. Ademokun A, Wu YC, Dunn-Walters D (2010) The aging B cell population: composition and function. Biogerontology 11(2):125–137

    Article  PubMed  Google Scholar 

  27. Rubtsov AV, Rubtsova K, Fischer A, Meehan RT, Gillis JZ, Kappler JW et al (2011) Toll-like receptor 7 (TLR7)-driven accumulation of a novel CD11c+ B-cell population is important for the development of autoimmunity. Blood 118(5):1305–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kant AK (2000) Consumption of energy-dense, nutrient-poor foods by adult Americans: nutritional and health implications. The third National Health and Nutrition Examination Survey, 1988–1994. Am J Clin Nutr 72(4):929–936

    Article  CAS  PubMed  Google Scholar 

  29. Institute of Medicine (2011) Dietary reference intakes for calcium and vitamin D; Institute of Medicine (US) committee to review dietary reference intakes for vitamin D and calcium; Ross AC, Taylor CL, Yaktine AL, Del Valle HB (eds). The National Academies Press, Washington, DC. ISBN-10: 0309163943

    Google Scholar 

  30. Montgomery SC, Streit SM, Beebe ML, Maxwell PJ 4th (2014) Micronutrient needs of the elderly. Nutr Clin Pract 29(4):435–444

    Article  CAS  PubMed  Google Scholar 

  31. Drenowski A, Shultz J (2001) Impact of aging on eating behaviors, food choices, nutrition, and health status. J Nutr Health Aging 5(2):75–79

    Google Scholar 

  32. High K (2001) Nutritional strategies to boost immunity and prevent infection in elderly individuals. Clin Infect Dis 33(11):1892–1900

    Article  CAS  PubMed  Google Scholar 

  33. Wiacek M, Zubrzycki IZ, Bojke O, Kim HJ (2013) Menopause and age-driven changes in blood level of fat- and water-soluble vitamins. Climacteric 16(6):689–699

    Article  CAS  PubMed  Google Scholar 

  34. Karaouzene N, Merzouk H, Aribi M, Merzouk SA, Berrouiguet AY, Tessier C et al (2011) Effects of the association of aging and obesity on lipids, lipoproteins and oxidative stress biomarkers: a comparison of older with young men. Nutr Metab Cardiovasc Dis 21(10):792–799

    Article  CAS  PubMed  Google Scholar 

  35. World Health Organization, Food and Agricultural Organization of the United Nations. (2006) Part 2. Evaluating the public health significance of micronutrient malnutrition. In Guidelines on food fortification with micronutrients. World Health Organization, Geneva. ISBN-10: 9241594012

    Google Scholar 

  36. Micronutrient Information Center. Immunity in depth. http://lpi.oregonstate.edu/mic/health-disease/immunity. Accessed 17 Apr 2018

  37. Savino W, Dardenne M (2010) Nutritional imbalances and infections affect the thymus: consequences on T-cell-mediated immune responses. Proc Nutr Soc 69(4):636–643

    Article  CAS  PubMed  Google Scholar 

  38. Calder P, Prescott S, Caplan M (2007) Scientific review: the role of nutrients in immune function of infants and young children; emerging evidence for long-chain polyunsaturated fatty acids. Mead Johnson & Company, Glenview. https://eprints.soton.ac.uk/152657/

    Google Scholar 

  39. Prentice S (2017) They are what you eat: can nutritional factors during gestation and early infancy modulate the neonatal immune response? Front Immunol 8:1641. https://doi.org/10.3389/fimmu.2017.01641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hemilä H (2017) Vitamin C and infections. Nutrients 9(4). pii: E339. https://doi.org/10.3390/nu9040339

  41. Hemilä H, Chalker E (2013) Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev (1):CD000980. https://doi.org/10.1002/14651858.CD000980.pub4

  42. Aranow C (2011) Vitamin D and the immune system. J Investig Med 59(6):881–886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mangin M, Sinha R, Fincher K (2014) Inflammation and vitamin D: the infection connection. Inflamm Res 63(10):803–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Albers R, Bourdet-Sicard R, Braun D, Calder PC, Herz U, Lambert C et al (2013) Monitoring immune modulation by nutrition in the general population: identifying and substantiating effects on human health. Br J Nutr 110(Suppl 2):S1–S30

    Google Scholar 

  45. Hamer DH, Sempértegui F, Estrella B, Tucker KL, Rodríguez A, Egas J (2009) Micronutrient deficiencies are associated with impaired immune response and higher burden of respiratory infections in elderly Ecuadorians. J Nutr 139(1):113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Penn ND, Purkins L, Kelleher J, Heatley RV, Mascie-Taylor BH, Belfield PW (1991) The effect of dietary supplementation with vitamins A, C, and E on cell-mediated immune function in elderly long-stay patients: a randomized controlled trial. Age Aging 20(3):169–174

    Article  CAS  Google Scholar 

  47. Chandra R (1992) Effect of vitamin and trace-element supplementation on immune responses and infection in elderly subjects. Lancet 340(8828):1124–1127

    Article  CAS  PubMed  Google Scholar 

  48. Schmoranzer F, Fuchs N, Markolin G, Carlin E, Sakr L, Sommeregger U (2009) Influence of a complex micronutrient supplement on the immune status of elderly individuals. Int J Vitam Nutr Res 79(5–6):308–318

    Article  CAS  PubMed  Google Scholar 

  49. Elmadfa I, Meyer A, Nowak V, Hasenegger V, Putz P, Verstraeten R et al (2009) European nutrition and health report. Ann Nutr Metab 55(Suppl 2):1–40

    PubMed  Google Scholar 

  50. Carr A, Maggini S (2017) Vitamin C and immune function. Nutrients 9(11). pii: E1211. https://doi.org/10.3390/nu9111211

  51. De la Fuente M, Hernanz A, Guayerbas N, Victor VM, Arnalich F (2008) Vitamin E ingestion improves several immune functions in elderly men and women. Free Radic Res 42(3):272–280

    Article  PubMed  CAS  Google Scholar 

  52. Meydani SN, Meydani M, Blumberg JB, Leka LS, Siber G, Loszewski R et al (1997) Vitamin E supplementation and in vivo immune response in healthy elderly subjects. A randomized controlled trial. JAMA 277(17):1380–1386

    Article  CAS  PubMed  Google Scholar 

  53. Gebremichael A, Levy EM, Corwin LM (1984) Adherent cell requirement for the effect of vitamin E on in vitro antibody synthesis. J Nutr 114(7):1297–1305

    Article  CAS  PubMed  Google Scholar 

  54. Kowdley KV, Mason JB, Meydani SN, Cornwall S, Grand RJ (1992) Vitamin E deficiency and impaired cellular immunity related to intestinal fat malabsorption. Gastroenterology 102(6):2139–2142

    Article  CAS  PubMed  Google Scholar 

  55. Meydani SN, Meydani M, Verdon CP, Shapiro AA, Blumberg JB, Hayes KC (1986) Vitamin E supplementation suppresses prostaglandin E1(2) synthesis and enhances the immune response of aged mice. Mech Aging Dev 34(2):191–201

    Article  CAS  PubMed  Google Scholar 

  56. Sakai S, Moriguchi S (1997) Long-term feeding of high vitamin E diet improves the decreased mitogen response of rat splenic lymphocytes with aging. J Nutr Sci Vitaminol (Tokyo) 43(1):113–122

    Article  CAS  Google Scholar 

  57. Bou Ghanem EN, Clark S, Du X, Wu D, Camilli A, Leong JM et al (2015) The alpha-tocopherol form of vitamin E reverses age-associated susceptibility to streptococcus pneumoniae lung infection by modulating pulmonary neutrophil recruitment. J Immunol 194(3):1090–1099

    Article  CAS  PubMed  Google Scholar 

  58. Hayek MG, Taylor SF, Bender BS, Han SN, Meydani M, Smith DE et al (1997) Vitamin E supplementation decreases lung virus titers in mice infected with influenza. J Infect Dis 176(1):273–276

    Article  CAS  PubMed  Google Scholar 

  59. Meydani SN, Barklund MP, Liu S, Meydani M, Miller RA, Cannon JG et al (1990) Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects. Am J Clin Nutr 52(3):557–563

    Article  CAS  PubMed  Google Scholar 

  60. Meydani SN, Han SN, Wu D (2005) Vitamin E and immune response in the aged: molecular mechanisms and clinical implications. Immunol Rev 205:269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wu D, Meydani SN (2008) Age-associated changes in immune and inflammatory responses: impact of vitamin E intervention. J Leukoc Biol 84(4):900–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Han SN, Wu D, Ha WK, Beharka A, Smith DE, Bender BS et al (2000) Vitamin E supplementation increases T helper 1 cytokine production in old mice infected with influenza virus. Immunology 100(4):487–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mocchegiani E, Costarelli L, Giacconi R, Malavolta M, Basso A, Piacenza F et al (2014) Vitamin E-gene interactions in aging and inflammatory age-related diseases: implications for treatment. A systematic review. Aging Res Rev 14:81–10

    Article  CAS  Google Scholar 

  64. Mosekilde L (2005) Vitamin D and the elderly. Clin Endocrinol (Oxf) 62(3):265–281

    Article  CAS  Google Scholar 

  65. Xu H, Soruri A, Gieseler RK, Peters JH (1993) 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. Scand J Immunol 38(6):535–540

    Article  CAS  PubMed  Google Scholar 

  66. Abe E, Miyaura C, Tanaka H, Shiina Y, Kuribayashi T, Suda S et al (1983) 1 alpha,25- dihydroxyvitamin D3 promotes fusion of mouse alveolar macrophages both by a direct mechanism and by a spleen cell-mediated indirect mechanism. Proc Natl Acad Sci U S A 80(18):5583–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR et al (2006) Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science 311(5768):1770–1773

    Article  CAS  PubMed  Google Scholar 

  68. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J et al (2004) Cutting edge: 1,25- dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol 173(5):2909–2912

    Article  CAS  PubMed  Google Scholar 

  69. Rigby WF, Stacy T, Fanger MW (1984) Inhibition of T lymphocyte mitogenesis by 1,25- dihydroxyvitamin D3 (calcitriol). J Clin Invest 74(4):1451–1455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lemire JM, Archer DC, Beck L, Spiegelberg HL (1995) Immunosuppressive actions of 1,25- dihydroxyvitamin D3: preferential inhibition of Th1 functions. J Nutr 125(6 Suppl):1704S–1708S

    CAS  PubMed  Google Scholar 

  71. Daniel C, Sartory NA, Zahn N, Radeke HH, Stein JM (2008) Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther 324(1):23–33

    Article  CAS  PubMed  Google Scholar 

  72. Penna G, Adorini L (2000) 1 Alpha,25-dihydroxyvitamin D3 inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol 164(5):2405–2411

    Article  CAS  PubMed  Google Scholar 

  73. van der Wielen RP, Lowik MR, van den Berg H, de Groot LC, Haller J, Moreiras O et al (1995) Serum vitamin D concentrations among elderly people in Europe. Lancet 346(8969):207–210

    Article  PubMed  Google Scholar 

  74. Oliveri B, Plantalech L, Bagur A, Wittich AC, Rovai G, Pusiol E et al (2004) High prevalence of vitamin D insufficiency in healthy elderly people living at home in Argentina. Eur J Clin Nutr 58(2):337–342

    Article  CAS  PubMed  Google Scholar 

  75. Portela ML, Monico A, Barahona A, Dupraz H, Sol Gonzales-Chaves MM, Zeni SN (2010) Comparative 25-OH-vitamin D level in institutionalized women older than 65 years from two cities in Spain and Argentina having a similar solar radiation index. Nutrition 26(3):283–289

    Article  CAS  PubMed  Google Scholar 

  76. Holick MF (2007) Vitamin D deficiency. N Engl J Med 357(3):266–281

    Article  CAS  PubMed  Google Scholar 

  77. Bikle DD (2008) Vitamin D and the immune system: role in protection against bacterial infection. Curr Opin Nephrol Hypertens 17(4):348–352

    Article  CAS  PubMed  Google Scholar 

  78. Hwang YG, Hsu HC, Lim FC, Wu Q, Yang P, Fisher G et al (2013) Increased vitamin D is associated with decline of naive, but accumulation of effector, CD8 T cells during early aging. Adv Aging Res 2(2):72–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sadarangani SP, Ovsyannikova IG, Goergen K, Grill DE, Poland GA (2016) Vitamin D, leptin and impact on immune response to seasonal influenza A/H1N1 vaccine in older persons. Hum Vaccin Immunother 12(3):691–698

    Article  PubMed  Google Scholar 

  80. Hewison M (2010) Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am 39:365–379, table of contents

    Google Scholar 

  81. Greiller CL, Martineau AR (2015) Modulation of the immune response to respiratory viruses by vitamin D. Nutrients 7:4240–4270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Medzhitov R (2001) Toll-like receptors and innate immunity. Nat Rev Immunol 1(2):135–145

    Article  CAS  PubMed  Google Scholar 

  83. Boonstra A, Barrat FJ, Crain C, Heath VL, Savelkoul HF, O’Garra A (2001) 1alpha,25-Dihydroxyvitamin d3 has a direct effect on naive CD4(+) T cells to enhance the development of Th2 cells. J Immunol 167(9):4974–4980

    Article  CAS  PubMed  Google Scholar 

  84. Gorman S, Kuritzky LA, Judge MA, Dixon KM, McGlade JP, Mason RS et al (2007) Topically applied 1,25-dihydroxyvitamin D3 enhances the suppressive activity of CD4+CD25+ cells in the draining lymph nodes. J Immunol 179(9):6273–6283

    Article  CAS  PubMed  Google Scholar 

  85. Hamzaoui A, Berraies A, Hamdi B, Kaabachi W, Ammar J, Hamzaoui K (2014) Vitamin D reduces the differentiation and expansion of Th17 cells in young asthmatic children. Immunobiology 219(11):873–879

    Article  CAS  PubMed  Google Scholar 

  86. Penna G, Roncari A, Amuchastegui S, Daniel KC, Berti E, Colonna M et al (2005) Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood 106(10):3490–3497

    Article  CAS  PubMed  Google Scholar 

  87. Brockman-Schneider RA, Pickles RJ, Gern JE (2014) Effects of vitamin D on airway epithelial cell morphology and rhinovirus replication. PLoS One 9:e86755. https://doi.org/10.1371/journal.pone.0086755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Zittermann A, Pilz S, Hoffmann H, Marz W (2016) Vitamin D and airway infections: a European perspective. Eur J Med Res 21:14. https://doi.org/10.1186/s40001-016-0208-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zittermann A, Ernst JB, Gummert JF, Borgermann J (2014) Vitamin D supplementation, body weight and human serum 25-hydroxyvitamin D response: a systematic review. Eur J Nutr 53(2):367–374

    Article  CAS  PubMed  Google Scholar 

  90. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73(1):79–118

    Article  CAS  PubMed  Google Scholar 

  91. Ibs KH, Rink L (2003) Zinc-altered immune function. J Nutr 133(5 Suppl 1):1452S–1456S

    Article  CAS  PubMed  Google Scholar 

  92. Rink L, Gabriel P (2001) Extracellular and immunological actions of zinc. Biometals 14(3–4):367–383

    Article  CAS  PubMed  Google Scholar 

  93. Fraker PJ, King LE (2004) Reprogramming of the immune system during zinc deficiency. Annu Rev Nutr 24:277–298

    Article  CAS  PubMed  Google Scholar 

  94. Shankar AH, Prasad AS (1998) Zinc and immune function: the biological basis of altered resistance to infection. Am J Clin Nutr 68(2 Suppl):447S–4463S

    Article  CAS  PubMed  Google Scholar 

  95. Mitchell WA, Meng I, Nicholson SA, Aspinall R (2006) Thymic output, aging and zinc. Biogerontology 7(5–6):461–470

    Article  CAS  PubMed  Google Scholar 

  96. Mocchegiani E, Giacconi R, Cipriano C, Malavolta M (2009) NK and NKT cells in aging and longevity: role of zinc and metallothioneins. J Clin Immunol 29:416–425

    Article  CAS  PubMed  Google Scholar 

  97. Sandstead HH, Henriksen LK, Greger JL, Prasad AS, Good RA (1982) Zinc nutriture in the elderly in relation to taste acuity, immune response, and wound healing. Am J Clin Nutr 36(5 Suppl):1046–1059

    Article  CAS  PubMed  Google Scholar 

  98. Prasad AS, Fitzgerald JT, Hess JW, Kaplan J, Pelen F, Dardenne M (1993) Zinc deficiency in elderly patients. Nutrition 9(3):218–224

    CAS  PubMed  Google Scholar 

  99. Briefel RR, Bialostosky K, Kennedy-Stephenson J, McDowell MA, Ervin RB, Wright JD (2000) Zinc intake of the U.S. population: findings from the third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 130(5S Suppl):1367S–1373S

    Article  CAS  PubMed  Google Scholar 

  100. Lindeman RD, Clark ML, Colmore JP (1971) Influence of age and sex on plasma and red-cell zinc concentrations. J Gerontol 26(3):358–363

    Article  CAS  PubMed  Google Scholar 

  101. Mocchegiani E, Giacconi R, Muzzioli M, Cipriano C (2000) Zinc, infections and immunosenescence. Mech Aging Dev 121(1–3):21–35

    CAS  PubMed  Google Scholar 

  102. Duchateau J, Delepesse G, Vrijens R, Collet H (1981) Beneficial effects of oral zinc supplementation on the immune response of old people. Am J Med 70(5):1001–1004

    Article  CAS  PubMed  Google Scholar 

  103. Cossack ZT (1989) T-lymphocyte dysfunction in the elderly associated with zinc deficiency and subnormal nucleoside phosphorylase activity: effect of zinc supplementation. Eur J Cancer Clin Oncol 25(6):973–976

    Article  CAS  PubMed  Google Scholar 

  104. Bogden JD, Oleske JM, Lavenhar MA, Munves EM, Kemp FW, Bruening KS et al (1990) Effects of one year of supplementation with zinc and other micronutrients on cellular immunity in the elderly. J Am Coll Nutr 9(3):214–225

    Article  CAS  PubMed  Google Scholar 

  105. Kahmann L, Uciechowski P, Warmuth S, Malavolta M, Mocchegiani E, Rink L (2006) Effect of improved zinc status on T helper cell activation and TH1/TH2 ratio in healthy elderly individuals. Biogerontology 7(5–6):429–435

    Article  CAS  PubMed  Google Scholar 

  106. Fortes C, Forastiere F, Agabiti N, Fano V, Pacifici R, Virgili F et al (1998) The effect of zinc and vitamin A supplementation on immune response in an older population. J Am Geriatr Soc 46(1):19–26

    Article  CAS  PubMed  Google Scholar 

  107. Barnett JB, Dao MC, Hamer DH, Kandel R, Brandeis G, Wu D et al (2016) Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr 103(3):942–951

    Article  CAS  PubMed  Google Scholar 

  108. Prasad A (2007) Zinc: mechanisms of host defense. J Nutr 137(5):1345–1349

    Article  CAS  PubMed  Google Scholar 

  109. Meydani SN, Barnett JB, Dallal GE, Fine BC, Jacques PF, Leka LS et al (2007) Serum zinc and pneumonia in nursing home elderly. Am J Clin Nutr 86(4):1167–1173

    Article  CAS  PubMed  Google Scholar 

  110. Mocchegiani E, Romeo J, Malavolta M, Costarelli L, Giacconi R, Diaz LE et al (2013) Zinc: dietary intake and impact of supplementation on immune function in elderly. Age (Dordr) 35(3):839–860

    Article  CAS  Google Scholar 

  111. Hartmann HJ, Felix K, Nagel W, Weser U (1993) Intestinal administration of copper and its transient release into venous rat blood serum concomitantly with metallothionein. Biometals 6(2):115–118

    Article  CAS  PubMed  Google Scholar 

  112. Harvey LJ, Ashton K, Hooper L, Casgrain A, Fairweather-Tait SJ (2009) Methods of assessment of copper status in humans: a systematic review. Am J Clin Nutr 89(6):2009S–2024S

    Article  CAS  PubMed  Google Scholar 

  113. Wapnir RA (1998) Copper absorption and bioavailability. Am J Clin Nutr 67(5 Suppl):1054S–1060S

    Article  CAS  PubMed  Google Scholar 

  114. Osaki S, Johnson DA (1969) Mobilization of liver iron by ferroxidase (ceruloplasmin). J Biol Chem 244:5757–5758

    CAS  PubMed  Google Scholar 

  115. Koller LD, Mulhern SA, Frankel NC, Steven MG, Williams JR (1987) Immune dysfunction in rats fed a diet deficient in copper. Am J Clin Nutr 45(5):997–1006

    Article  CAS  PubMed  Google Scholar 

  116. Bonham M, O’Connor JM, Hannigan BM, Strain JJ (2002) The immune system as a physiological indicator of marginal copper status? Br J Nutr 87(5):393–403

    Article  CAS  PubMed  Google Scholar 

  117. Brewer GJ (2009) The risks of copper toxicity contributing to cognitive decline in the aging population and to Alzheimer’s disease. J Am Coll Nutr 28(3):238–242

    Article  PubMed  Google Scholar 

  118. Mocchegiani E, Costarelli L, Giacconi R, Piacenza F, Basso A, Malavolta M (2012) Micronutrient (Zn, Cu, Fe)-gene interactions in aging and inflammatory age-related diseases: implications for treatments. Aging Res Rev 11(2):297–319

    Article  CAS  Google Scholar 

  119. Wang J, Pantopoulos K (2011) Regulation of cellular iron metabolism. Biochem J 434(3):365–381

    Article  CAS  PubMed  Google Scholar 

  120. Guyatt GH, Patterson C, Ali M, Singer J, Levine M, Turpie I et al (1990) Diagnosis of irondeficiency anemia in the elderly. Am J Med 88(3):205–209

    Article  CAS  PubMed  Google Scholar 

  121. Ekiz C, Agaoglu L, Karakas Z, Gurel N, Yalcin I (2005) The effect of iron deficiency anemia on the function of the immune system. Hematol J 5(7):579–583

    Article  CAS  PubMed  Google Scholar 

  122. Welch KD, Reilly CA, Aust SD (2002) The role of cysteine residues in the oxidation of ferritin. Free Radic Biol Med 33(3):399–408

    Article  CAS  PubMed  Google Scholar 

  123. Huang Z, Rose AH, Hoffmann PR (2012) The role of selenium in inflammation and immunity: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 16(7):705–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wood SM, Beckham C, Yosioka A, Darban H, Watson RR (2000) beta-Carotene and selenium supplementation enhances immune response in aged humans. Integr Med 2(2):85–92

    Article  CAS  PubMed  Google Scholar 

  125. Ershler WB, Keller ET (2000) Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–270

    Article  CAS  PubMed  Google Scholar 

  126. Wardwell L, Chapman-Novakofski K, Herrel S, Woods J (2008) Nutrient intake and immune function of elderly subjects. J Am Diet Assoc 108(12):2005–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Vafa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abiri, B., Vafa, M. (2020). Micronutrients that Affect Immunosenescence. In: Guest, P. (eds) Reviews on New Drug Targets in Age-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1260. Springer, Cham. https://doi.org/10.1007/978-3-030-42667-5_2

Download citation

Publish with us

Policies and ethics