Skip to main content

Interactions of Foodborne Pathogens with the Food Matrix

  • Chapter
  • First Online:
Food Safety Engineering

Part of the book series: Food Engineering Series ((FSES))

  • 2358 Accesses

Abstract

Foods provide the energy dense nutrients such as proteins, carbohydrates, and fats that are essential for human, animal, and microbial health. On occasion, microorganisms may cause diseases in humans, resulting in efforts by food processors to reduce the growth or eliminate pathogens in the food. However, much of our understanding of the behavior of foodborne pathogens, especially growth, stress response, and physiology has been defined using controlled environments, frequently in the absence of a solid food. These laboratory studies do not often take into consideration the intricate and dynamic relationships between pathogens and the food matrix that serves as its vehicle. This interaction can greatly impact the physiological state of the microorganisms and the respective ability to cause disease. Food processors understand that the intrinsic and extrinsic properties of foods can be manipulated to prevent or control the growth of microorganisms, but the foods’ characteristics only describe half of the story between the pathogens and matrix. Understanding the microbial ecology and responses within a dynamic food microenvironment is key to solving food safety problems and preventing foodborne illnesses. This chapter sheds light on the interactions of the foodborne pathogens with the food matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Álvarez-Ordoñez A, Fernandez A, Bernardo A, Lopez M (2009) A comparative study of thermal and acid inactivation kinetics in fruit juices of Salmonella enterica Serovar Typhimurium and Salmonella enterica Serovar Senftenberg grown at acidic conditions. Foodborne Pathog Dis 6(9):1147–1155

    PubMed  Google Scholar 

  • Andersson A, Rönner U, Granum PE (1995) What problems does the food industry have with the spore-forming pathogens Bacillus cereus and Clostridium perfringens? Int J Food Microbiol 28:145–155

    CAS  PubMed  Google Scholar 

  • Angulo FJ, Hendricks KA, Barth SS, Johnson EA (1998) A large outbreak of botulism: the hazardous baked potato. J Infect Dis 178:172–177

    CAS  PubMed  Google Scholar 

  • Aruscavage D, Miller SA, Ivey MLL, Lee K, LeJeune JT (2008) Survival and dissemination of Escherichia coli O157:H7 on physically and biologically damaged lettuce plants. J Food Prot 71(12):2384–2388

    PubMed  Google Scholar 

  • Asakura H, Makino S-I, Takagi T, Kuri A, Kurazono T, Watarai M, Shirahata T (2002) Passage in mice causes a change in the ability of Salmonella enterica serovar Oranienburg to survive NaCl osmotic stress: resuscitation from the viable but non-culturable state. FEMS Microbiol Lett 2002:87–93

    Google Scholar 

  • Aurass P, Prager R, Flieger A (2011) EHEC/EAEC O104:H4 strain linked with the 2011 German outbreak of haemolytic uremic syndrome enters into the viable but non-culturable state in response to various stresses and resuscitates upon stress relief. Environ Microbiol 13:3139–3148

    PubMed  Google Scholar 

  • Aureli P, Constantini A, Zolea S (1990) Antimicrobial activity of some plant essential oils against Listeria monocytogenes. J Food Prot 55(5):344–348

    Google Scholar 

  • Austin JW, Sanders G, Kay WW, Collinson SK (1998) Thin aggregative fimbriae enhance Salmonella enteritidis biofilm formation. FEMS Microbiol Lett 162:295–301

    CAS  PubMed  Google Scholar 

  • Aviles B, Klotz C, Eifert J, Williams R, Ponder M (2013) Biofilms promote survival and virulence of Salmonella enterica sv. Tennessee during prolonged dry storage and after passage through an in vitro digestion system. Int J Food Microbiol 162(3):252–259

    PubMed  Google Scholar 

  • Baker CA, Rubinelli PM, Park SH, Carbonero F, Ricke SC (2016) Shiga toxin-producing Escherichia coli in food: incidence, ecology and detection strategies. Food Control 59:407–419

    CAS  Google Scholar 

  • Barron JC, Forsythe SJ (2007) Dry stress and survival time of Enterobacter sakazaii and other Enterobacteriaceae in dehydrated powdered infant formula. J Food Prot 70(9):2111–2117

    PubMed  Google Scholar 

  • Beaubrun JJ-G, Flamer M-L, Addy N, Ewing L, Gopinath G, Jarvis K, Grim C, Hanes DE (2016) Evaluation of corn oil as an additive in the pre-enrichment step to increase recovery of Salmonella enterica from oregano. Food Microbiol 57:195–203

    Google Scholar 

  • Beaubrun JJ-G, Addy N, Keltner Z, Farris S, Ewing L, Gopinath G, Hanes DE (2018) Evaluation of the impact of varied carvacrol concentrations on Salmonella recovery in oregano and how corn oil can minimize the effect of carvacrol during preenrichment. J Food Prot 81(6):977–985

    PubMed  Google Scholar 

  • Begley M, Hill C (2015) Stress adaptation in foodborne pathogens. Annu Rev Food Sci Technol 6(1):191–210

    CAS  PubMed  Google Scholar 

  • Bergholz TM, Vanaja SK, Whittam TS (2009) Gene expression induced in Escherichia coli O157:H7 upon exposure to model apple juice. Appl Environ Microbiol 75(11):3542–3553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berry ED, Foegeding PM (1997) Cold temperature adaptation and growth of microorganisms. J Food Prot 60(12):1583–1594

    PubMed  Google Scholar 

  • Bhunia K, Sablani SS, Tang J, Rasco B (2016) Non-invasive measurement of oxygen diffusion in model foods. Food Res Int 89:161–168

    CAS  PubMed  Google Scholar 

  • Bohnsack U, Hoepke HU (1990) The shelf life of pieces of fresh meat as a function of degree of comminution. Fleischwirtschaft 70:786–788

    Google Scholar 

  • Bolton FJ, Coates D (1983) A study of the oxygen and carbon dioxide requirements of thermophilic campylobacters. J Clin Pathol 36:829–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer RR, Sumner SS, Williams RC, Pierson MD, Popham DL, Kniel KE (2007) Influence of curli expression by Escherichia coli O157:H7 on the cell's overall hydrophobicity, charge and ability to attach to lettuce. J Food Prot 70(6):1339–1345

    PubMed  Google Scholar 

  • Briandet R, Leriche V, Carpentier B, Bellon-Fontaine M-N (1999) Effects of the growth procedure on the surface hydrophobicity of Listeria monocytogenes cells and their adhesion to stainless steel. J Food Prot 62(9):994–998

    CAS  PubMed  Google Scholar 

  • Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naïtali M, Briandet R (2015) Biofilm-associated persistence of foodborne pathogens. Food Microbiol 45:167–178

    CAS  PubMed  Google Scholar 

  • Bumann D, Schothorst J (2017) Intracellular Salmonella metabolism. Cell Microbiol 19(10):e12766–e12711

    Google Scholar 

  • Burgain J, Scher J, Francius G, Borges F, Corgneau M, Revol-Junelles AM, Cailliez-Grimal C, Gaiani C (2014) Lactic acid bacteria in dairy food: surface characterization and interactions with food matrix components. Adv Colloid Interf Sci 213:21–35

    CAS  Google Scholar 

  • Burgess SA, Lindsay D, Flint SH (2010) Thermophilic bacilli and their importance in dairy processing. Int J Food Microbiol 144(2):215–225. https://doi.org/10.1016/j.ijfoodmicro.2010.09.027

    Article  CAS  PubMed  Google Scholar 

  • Burgess CM, Gianotti A, Gruzdev N, Holah J, Knøchel S, Lehner A, Margas E, Esser SS, Saldinger S, Tresse O (2016) The response of foodborne pathogens to osmotic and desiccation stresses in the food chain. Int J Food Microbiol 221:37–53

    PubMed  Google Scholar 

  • Burmølle M, Webb JS, Rao D, Hansen LH, Sørensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72(6):3916–3923

    PubMed  PubMed Central  Google Scholar 

  • Capozzi V, Fiocco D, Amodio ML, Gallone A, Spano G (2009) Bacterial stressors in minimally processed food. Int J Mol Sci 10(7):3076–3105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chaix E, Guillaume C, Gontard N, Guillard V (2016) Performance of a non-invasive methodology for assessing oxygen diffusion in liquid and solid food products. J Food Eng 171:87–94

    CAS  Google Scholar 

  • Channaiah LH, Holmgren ES, Michael M, Sevart NJ, Milke D, Schwan CL, Krug M, Wilder A, Phebus RK, Thippareddi H, Milliken G (2016) Validation of baking to control Salmonella serovars in hamburger bun manufacturing, and evaluation of Enterococcus faecium ATCC 8459 and Saccharomyces cerevisiae as nonpathogenic surrogate indicators. J Food Prot 79(4):544–552

    CAS  PubMed  Google Scholar 

  • Channaiah LH, Michael M, Acuff JC, Phebus RK, Thippareddi H, Olewnik M, Milliken G (2017) Validation of the baking process as a kill-step for controlling Salmonella in muffins. Int J Food Microbiol 250:1–6

    PubMed  Google Scholar 

  • Chirife J, del Pilar Buera M (1994) Water activity, glass transition and microbial stability in concentrated/semimoist food systems. J Food Sci 59(5):921–927

    CAS  Google Scholar 

  • Chirife J, del Pilar Buera M, Labuza TP (1996) Water activity, water glass dynamics, and the control of microbiological growth in foods. Crit Rev Food Sci Nutr 36(5):465–513. https://doi.org/10.1080/10408399609527736

    Article  CAS  PubMed  Google Scholar 

  • Chitrakar B, Zhang M, Adhikari B (2018) Dehydrated foods: are they microbiologically safe? Crit Rev Food Sci Nutr 59(17):1–44

    Google Scholar 

  • Collins J, Robinson C, Danhof H, Knetsch CW, van Leeuwen HC, Lawley TD et al (2018) Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nat Publ Group 553(7688):291–294. https://doi.org/10.1038/nature25178

    Article  CAS  Google Scholar 

  • Cooley MB, Chao D, Mandrell RE (2006) Escherichia coli O157:H7 survival and growth on lettuce is altered by the presence of epiphytic bacteria. J Food Prot 69(10):2329–2335

    PubMed  Google Scholar 

  • Cronan JE Jr (2002) Phospholipid modifications in bacteria. Curr Opin Microbiol 5:202–205

    CAS  PubMed  Google Scholar 

  • de Mendoza D, Cronan JE Jr (2002) Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem Sci 8(2):49–52

    Google Scholar 

  • den Besten HMW, Mataragas M, Moezelaar R, Abee T, Zwietering MH (2006) Quantification of the effects of salt stress and physiological state on thermotolerance of Bacillus cereus ATCC 10987 and ATCC 14579. Appl Environ Microbiol 72(9):5884–5894

    Google Scholar 

  • Deng K, Talukdar PK, Sarker MR, Paredes-Sabja D, Torres JA (2017) Survival of Clostridium difficile spores at low water activity. Food Microbiol 65:274–278

    PubMed  Google Scholar 

  • Dhananjayan R, Han IY, Acton JC, Dawson PL (2006) Growth depth effects of bacteria in ground Turkey meat patties subjected to high carbon dioxide or high oxygen atmospheres. Poult Sci 85:1821–1828

    CAS  PubMed  Google Scholar 

  • Dharmarha V, Pulido N, Boyer RR, Pruden A, Strawn LK, Ponder MA (2018) Effect of post-harvest interventions on surficial carrot bacterial community dynamics, pathogen survival, and antibiotic resistance. Int J Food Microbiol 291:25–34

    PubMed  Google Scholar 

  • di Ciccio P, Vergara A, Festino AR, Paludi D, Zanardi E, Ghidini S, Ianieri A (2015) Biofilm formation by Staphylococcus aureus on food contact surfaces: relationship with temperature and cell surface hydrophobicity. Food Control 50:930–936

    Google Scholar 

  • Dinu L-D, Bach S (2011) Induction of viable but nonculturable Escherichia coli O157:H7 in the phyllosphere of lettuce: a food safety risk factor. Appl Environ Microbiol 77(23):8295–8302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Divya KH, Varadaraj MC (2011) Prevalence of very low numbers of potential pathogenic isolates of Yersinia enterocolitica and Yersinia intermedia in traditional fast foods of India. Indian J Microbiol 51(4):461–468

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey GP, Ben-Yehuda S (2011) Intercellular nanotubes mediate bacterial communication. Cell 144(4):590–600

    CAS  PubMed  Google Scholar 

  • Elhariry HM (2011) Attachment strength and biofilm forming ability of Bacillus cereus on green-leafy vegetables: cabbage and lettuce. Food Microbiol 28(7):1266–1274

    PubMed  Google Scholar 

  • Ercolani D (2013) High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl Environ Microbiol 79(10):3148–3155

    Google Scholar 

  • Eriksson de Rezende CL, Mallinson ET, Gupte A, Joseph SW (2001) Salmonella spp. are affected by different levels of water activity in closed microcosms. J Ind Microbiol Biotechnol 26:222–225

    CAS  PubMed  Google Scholar 

  • Fagerlund A, Møretrø T, Heir E, Briandet R, Langsrud S (2017) Cleaning and disinfection of biofilms composed of Listeria monocytogenes and background microbiota from meat processing surfaces. Appl Environ Microbiol 83(17):1–21

    Google Scholar 

  • Finn S, Condell O, McClure P, Amézquita A, Fanning S (2013) Mechanisms of survival., responses, and sources of Salmonella in low-moisture environments. Front Microbiol 4(331):1–15

    Google Scholar 

  • Frank JF (2001) Microbial attachment to food and food contact surfaces. Adv Food Nutr Res 42:1–52

    Google Scholar 

  • Fransisca L, Zhou B, Park H, Feng H (2011) The effect of calcinated calcium and chlorine treatments on Escherichia coli O157:H7 87-23 population reduction in radish sprouts. J Food Sci 76(6):M404–M412

    CAS  PubMed  Google Scholar 

  • Fu Y, Deering AJ, Bhunia AK, Yao Y (2017) Pathogen biofilm formation on cantaloupe surface and its impact on the antibacterial effect of lauroyl arginate ethyl. Food Microbiol 64:139–144

    CAS  PubMed  Google Scholar 

  • García AH (2011) Anhydrobiosis in bacteria: from physiology to applications. J Biosci 36(5):939–950

    PubMed  Google Scholar 

  • Gilliland SE, Speck ML (1972) Interactions of food starter cultures and foodborne pathogens: lactic streptococci versus staphylococci and salmonellae. J Milk Food Technol 35(5):1–4

    Google Scholar 

  • Glass KA, Golden MC, Wanless BJ, Bedale W, Czuprynski C (2015) Growth of Listeria monocytogenes within a caramel-coated apple microenvironment. mBio 6(5):e01232–e01215

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goulter RM, Gentle IR, Dykes GA (2009) Issues in determining factors influencing bacterial attachment: a review using the attachment of Escherichia coli to abiotic surfaces as an example. Lett Appl Microbiol 49(1):1–7

    CAS  PubMed  Google Scholar 

  • Gradl DR, Sun L, Larkin EL, Chirtel SJ, Keller SE (2015) Survival of Salmonella during drying of fresh ginger root (Zingiber officinale) and storage of ground ginger. J Food Prot 78(11):1954–1959

    PubMed  Google Scholar 

  • Gruzdev N, Pinto R, Saldinger SS (2012) Persistence of Salmonella enterica during dehydration and subsequent cold storage. Food Microbiol 32(2):415–422

    CAS  PubMed  Google Scholar 

  • Gunasekera TS, Sørensen A, Attfield PV, Sørensen SJ, Veal DA (2002) Inducible gene expression by nonculturable bacteria in milk after pasteurization. Appl Environ Microbiol 68(4):1988–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gündüz GT, Gönül ŞA, Karapınar M (2010) Efficacy of oregano oil in the inactivation of Salmonella typhimurium on lettuce. Food Control 21(4):513–517

    Google Scholar 

  • Gupta S, Ravishankar S (2005) A comparison of the antimicrobial activity of garlic, ginger, carrot, and turmeric pastes against Escherichia coli O157:H7 in laboratory buffer and ground beef. Foodborne Pathog Dis 2(4):330–340

    CAS  PubMed  Google Scholar 

  • Hamilton S, Bongaerts RJ, Mulholland F, Cochrane B, Porter J, Lucchini S, Lappin-Scott HM, Hinton JCD (2009) The transcriptional programme of Salmonella enterica serovar Typhimurium reveals a key role for tryptophan metabolism in biofilms. BMC Genomics 10(1):599–521

    PubMed  PubMed Central  Google Scholar 

  • Hofreuter D (2014) Defining the metabolic requirements for the growth and colonization capacity of Campylobacter jejuni. Front Cell Infect Microbiol 4(137):1–19

    Google Scholar 

  • Hudson JA, Olsen L, Cook R (2011) Minimum growth temperatures of foodbourne pathogens and recommended chiller temperatures. Ministry for Primary Industries, Wellington, pp 1–35

    Google Scholar 

  • Huhtanen CN, Naghski J, Custer CS, Russell RW (1976) Growth and toxin production by Clostridium botulinum in moldy tomato juice. Appl Environ Microbiol 32(5):711–715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen T, Budde BB, Koch AG (2003) Application of Leuconostoc carnosum for biopreservation of cooked meat products. J Appl Microbiol 95:242–249

    CAS  PubMed  Google Scholar 

  • Jakobsen M, Murrell WG (1977) The effect of water activity and aw-controlling solute on sporulation of Bacillus cereus T. J Appl Bacteriol 43(2):239–245

    CAS  PubMed  Google Scholar 

  • Jay, J. M. (2009). Natural microbial ecosystems. In L-A. Jaykus, H. H. Wang and L. S. Schlesinger, eds., Foodborne microbes: shaping the host ecoysystem. Boca Raton: CRC Press, pp. 41–61

    Google Scholar 

  • Jeanson S, Floury J, Gagnaire V, Lortal S, Thierry A (2015) Bacterial colonies in solid media and foods: a review on their growth and interactions with the micro-environment. Front Microbiol 6(183):71–20

    Google Scholar 

  • Kang H, Loui C, Clavijo RI, Riley LW, Lu S (2006) Survival characteristics of Salmonella enterica serovar Enteritidis in chicken egg albumen. Epidemiol Infect 134:967–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karabín M, Hudcová T, Jelínek L, Dostálek P (2016) Biologically active compounds from hops and prospects for their use. Compr Rev Food Sci Food Saf 15(3):542–567

    Google Scholar 

  • Karsha PV, Lakshmi OB (2010) Antibacterial activity of black pepper (Piper nigrum Linn.) with special reference to its mode of action on bacteria. Indian J Nat Prod Resour 1(2):213–215

    Google Scholar 

  • Keller SE, VanDoren JM, Grasso EM, Halik LA (2013) Growth and survival of Salmonella in ground black pepper (Piper nigrum). Food Microbiol 34(1):182–188

    PubMed  Google Scholar 

  • Keller SE, Stam CN, Gradl DR, Chen Z, Larkin EL, Pickens SR, Chirtel SJ (2015) Survival of Salmonella on chamomile, peppermint, and green tea during storage and subsequent survival or growth following tea brewing. J Food Prot 78(4):661–667

    PubMed  Google Scholar 

  • Koster KL (1991) Glass formation and desiccation tolerance in seeds. Plant Physiol 96:302–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar M, Berwal JS (1998) Sensitivity of food pathogens to garlic (Allium sativum). J Appl Microbiol 84:213–215

    CAS  PubMed  Google Scholar 

  • Li H, Fu X, Bima Y, Koontz J, Megalis C, Yang F, Fleischman G, Tortorello ML (2014) Effect of the local microenvironment on survival and thermal inactivation of Salmonella in low- and intermediate-moisture multi-ingredient foods. J Food Prot 77(1):67–74

    PubMed  Google Scholar 

  • Li J, Paredes-Sabja D, Sarker MR, McClane BA (2016) Clostridium perfringens sporulation and sporulation-associated toxin production. Microbiol Spectr 4(3):1–27

    CAS  Google Scholar 

  • Lillard HS (1984) Bacterial cell characteristics and conditions influencing their adhesion to poultry skin. J Food Prot 48(9):803–807

    Google Scholar 

  • Lim J-A, Lee DH, Heu S (2014) The interaction of human enteric pathogens with plants. Plant Pathol J 30(2):109–116

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Miller P, Basu U, McMullen LM (2014) Sodium chloride-induced filamentation and alternative gene expression of fts, murZ, and gnd in Listeria monocytogenes 08-5923 on vacuum-packaged ham. FEMS Microbiol Lett 360(2):152–156

    CAS  PubMed  Google Scholar 

  • Liu Y, Youssef MK, Yang X (2016) Effects of dry chilling on the microflora on beef carcasses at a Canadian beef packing plant. J Food Prot 79(4):538–543

    CAS  PubMed  Google Scholar 

  • Logan NA (2011) Bacillus and relatives in foodborne illness. J Appl Microbiol 112(3):417–429

    PubMed  Google Scholar 

  • Makino S-I, Kii T, Asakura H, Shirahata T, Ikeda T, Takeshi K, Itoh K (2000) Does enterohemorrhagic Escherichia coli O157:H7 enter the viable but noncultruable state in salted salmon roe? Appl Environ Microbiol 66(12):5536–5539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maserati A, Fink RC, Lourenco A, Julius ML, Diez-Gonzalez F (2017) General response of Salmonella enterica serovar Typhimurium to desiccation: a new role for the virulence factors sopD and sseD in survival. PLoS One 12(11):1–23

    Google Scholar 

  • McMeechan A, Roberts M, Cogan TA, Jorgensen F, Stevenson A, Lewis C, Rowley G, Humphrey TJ (2007) Role of the alternative sigma factors E and S in survival of Salmonella enterica serovar Typhimurium during starvation, refrigeration and osmotic shock. Microbiology 153(1):263–269

    CAS  PubMed  Google Scholar 

  • McMeekin TA, Brown J, Krist K, Miles D, Neumeyer K, Nichols DS, Olley J, Presser K, Ratkowsky DA, Ross T, Salter M, Soontranon S (1997) Quantitative microbiology: a basis for food safety. Emerg Infect Dis 3(4):541–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menz G, Aldred P, Vriesekoop F (2011) Growth and survival of foodborne pathogens in beer. J Food Prot 74(10):1670–1675

    CAS  PubMed  Google Scholar 

  • Montville TJ, Matthews KR, Kniel KE (2012) Food microbiology: an introduction, 3rd edn. ASM Press, Washington, DC, pp 46–63

    Google Scholar 

  • Morishige Y, Koike A, Tamura-Ueyama A, Amano F (2017) Induction of viable but nonculturable Salmonella in exponentially grown cells by exposure to a low-humidity environment and their resuscitation by catalase. J Food Prot 80(2):288–294

    CAS  PubMed  Google Scholar 

  • Newkirk JJ, Wu J, Acuff JC, Caver CB, Mallikarjunan K, Wiersema BD, Williams RC, Ponder MA (2018) Inactivation of Salmonella enterica and surrogate Enterococcus faecium on whole black peppercorns and cumin seeds using vacuum steam pasteurization. Front Sustain Food Syst 2:252–212

    Google Scholar 

  • Nicolò MS, Gioffrè A, Carnazza S, Platania G, Di Silvestro I, Guglielmino SPP (2011) Viable but non-culturable state of foodborne pathogens in grapefruit juice: a study of laboratory. Foodborne Pathog Dis 8(1):11–17

    PubMed  Google Scholar 

  • Nortjé GL, Naudé RT (1980) Microbiology of beef carcass surfaces. J Food Prot 44(5):355–358

    Google Scholar 

  • Oliver JD (2010) Recent findings on the viable but non-culturable state in pathogenic bacteria. FEMS Microbiol Rev 34(4):415–425

    CAS  PubMed  Google Scholar 

  • Papageorgiou DK, Marth EH (1988) Fate of Listeria monocytogenes during the manufacture and ripening of blue cheese. J Food Prot 52(7):459–465

    Google Scholar 

  • Patel J, Sharma M (2010) Differences in attachment of Salmonella enterica serovars to cabbage and lettuce leaves. Int J Food Microbiol 139(1–2):41–47

    PubMed  Google Scholar 

  • Poimenidou SV, Chatzithoma D-N, Nychas G-J, Skandamis PN (2016) Adaptive response of Listeria monocytogenes to heat, salinity and low pH, after habituation on cherry tomatoes and lettuce leaves. PLoS One 11(10):1–16

    Google Scholar 

  • Prigent-Combaret C, Prensier G, Thi TTL, Vidal O, Lejeune P, Dorei C (2000) Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2(4):450–464

    CAS  PubMed  Google Scholar 

  • Quigley L, O’Sullivan O, Beresford TP, Ross R, Fitzgerald G, Cotter P (2012) A comparison of methods used to extract bacterial DNA from raw milk and raw milk cheese. J Appl Microbiol 113:96–105

    CAS  PubMed  Google Scholar 

  • Raponi F, Moscetti R, Monarca D, Colantoni A, Massantini R (2017) Monitoring and optimization of the process of drying fruits and vegetables using computer vision: a review. Sustainability 9(2009):1–27

    Google Scholar 

  • Ryu J-H, Beuchat LR (2005) Biofilm formation and sporulation by Bacillus cereus on a stainless steel surface and subsequent resistance of vegetative cells and spores to chlorine, chlorine dioxide, and a peroxyacetic acid–based sanitizer. J Food Prot 68(12):2614–2622

    CAS  PubMed  Google Scholar 

  • Sapers GM, Miller RL, Jantschke M, Mattrazzo AM (2000) Factors limiting the efficacy of hydrogen peroxide washes for decontamination of apples containing Escherichia coli. J Food Sci 65(3):529–532

    CAS  Google Scholar 

  • Scatassa ML, Gaglio R, Cardamone C, Macaluso G, Arcuri L, Todaro M, Mancuso I (2017) Anti-Listeria activity of lactic acid bacteria in two traditional Sicilian cheeses. Ital J Food Saf 6(1):1–5

    CAS  Google Scholar 

  • Schaffner DW, Brown LG, Ripley D, Reimann D, Koktavy N, Blade H, Nicholas D (2016) Quantitative data analysis to determine best food cooling practices in U.S. restaurants. J Food Prot 78(4):778–783

    Google Scholar 

  • Schembri MA, Kjærgaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48(1):253–267

    CAS  PubMed  Google Scholar 

  • Selgas D, Marín ML, Pin C, Casas C (1993) Attachment of bacteria to meat surfaces: a review. Meat Sci 34:265–273

    CAS  PubMed  Google Scholar 

  • Shah J, Desai PT, Chen D, Stevens JR, Weimer BC (2013) Preadaptation to cold stress in Salmonella enterica Serovar Typhimurium increases survival during subsequent acid stress exposure. Appl Environ Microbiol 79(23):7281–7289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Adler BB, Harrison MD, Beuchat LR (2005) Thermal tolerance of acid-adapted and unadapted Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes in cantaloupe juice and watermelon juice. Lett Appl Microbiol 41(6):448–453

    CAS  PubMed  Google Scholar 

  • Shen H-W, Yu R-C, Chou C-C (2007) Acid adaptation affects the viability of Salmonella typhimurium during the lactic fermentation of skim milk and product storage. Int J Food Microbiol 114(3):380–385

    CAS  PubMed  Google Scholar 

  • Shen C, Geornaras I, Belk KE, Smith GC, Sofos JN (2011) Thermal inactivation of acid, cold, heat, starvation, and desiccation stress–adapted Escherichia coli O157:H7 in moisture-enhanced non-intact beef. J Food Prot 74(4):531–538

    PubMed  Google Scholar 

  • Simko I, Zhou Y, Brandl MT (2015) Downy mildew disease promotes the colonization of romaine lettuce by Escherichia coli O157:H7 and Salmonella enterica. BMC Microbiol 15(19):1–9

    Google Scholar 

  • Singh N, Singh RK, Bhunia AK, Stroshine RL (2002) Efficacy of chlorine dioxide, ozone, and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. LWT Food Sci Technol 35(8):720–729

    CAS  Google Scholar 

  • Skandamis PN, Jeanson S (2015) Colonial vs. planktonic type of growth: mathematical modeling of microbial dynamics on surfaces and in liquid, semi-liquid and solid foods. Front Microbiol 6(148):382–389

    Google Scholar 

  • Slade L, Levine H, Reid DS (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30(2–3):115–360

    CAS  PubMed  Google Scholar 

  • Sleater RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence. FEMS Microbiol Rev 26:49–71

    Google Scholar 

  • Smiddy M, Sleator RD, Patterson MF, Hill C, Kelly AL (2004) Role for compatible solutes glycine betaine and L-carnitine in listerial barotolerance. Appl Environ Microbiol 70(12):7555–7557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soni A, Oey I, Silcock P, Bremer P (2016) Bacillus spores in the food industry: a review on resistance and response to novel inactivation technologies. Compr Rev Food Sci Food Saf 15(6):1139–1148

    Google Scholar 

  • Sperber WH (1983) Influence of water activity. J Food Prot 46(2):142–150

    CAS  PubMed  Google Scholar 

  • Srey S, Jahid IK, Ha S-D (2013) Biofilm formation in food industries: a food safety concern. Food Control 31(2):572–585

    Google Scholar 

  • Stackhouse RR, Faith NG, Kaspar CW, Czuprynski CJ, Wong ACL (2012) Survival and virulence of Salmonella enterica serovar Enteritidis filaments induced by reduced water activity. Appl Environ Microbiol 78(7):2213–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stratakos AC, Sima F, Ward P, Linton M, Kelly C, Pinkerton L et al (2018) The in vitro effect of carvacrol, a food additive, on the pathogenicity of O157 and non-O157 Shiga-toxin producing Escherichia coli. Food Control 84:290–296

    CAS  Google Scholar 

  • Tan MSF, White AP, Rahman S, Dykes GA (2016a) Role of fimbriae, flagella and cellulose on the attachment of Salmonella Typhimurium ATCC 14028 to plant cell wall models. PLoS One 11(6):e0158311–e0158313

    PubMed  PubMed Central  Google Scholar 

  • Tan MS-F, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA (2016b) Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. BMC Microbiol 16(212):1–12

    CAS  Google Scholar 

  • Taormina PJ, Dorsa WJ (2004) Growth potential of Clostridium perfringens during cooling of cooked meats. J Food Prot 67(7):1537–1547

    PubMed  Google Scholar 

  • Thomas C, Hill D, Mabey M (2002) Culturability, injury and morphological dynamics of thermophilic Campylobacter spp. within a laboratory-based aquatic model system. J Appl Microbiol 92:433–442

    CAS  PubMed  Google Scholar 

  • Ukuku DO, Fett WF (2002) Relationship of cell surface charge and hydrophobicity to strength of attachment of bacteria to cantaloupe rind. J Food Prot 65(7):1093–1099

    PubMed  Google Scholar 

  • Ultee A, Slump RA, Steging G, Smid EJ (2000) Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J Food Prot 63(5):620–624

    CAS  PubMed  Google Scholar 

  • Umeda NS, de Filippis I, Forsythe SJ, Brandão MLL (2017) Phenotypic characterization of Cronobacter spp. strains isolated from foods and clinical specimens in Brazil. Food Res Int 102:61–67. https://doi.org/10.1016/j.foodres.2017.09.083

    Article  PubMed  Google Scholar 

  • United States Food and Drug Administration (2018) Guidance for commercial processors of acidified and low-acid canned foods. [online] Available at: https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/AcidifiedLACF/default.htm

  • Vermeulen A, Ragaert P, Rajkovic A, Samapundo S, Lopez-Galvez F, Devlieghere F (2013) New research on modified atmosphere packaging and pathogen behavior. In: Sofos J (ed) Advances in microbial food safety. Woodhead, Philadelphia, pp 340–354

    Google Scholar 

  • Waterman SR, Small PLC (1998) Acid-sensitive enteric pathogens are protected from killing under extremely acidic conditions of pH 2.5 when they are inoculated onto certain solid food sources. Appl Environ Microbiol 64(10):3882–3886

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wells JM, Butterfield JE (1997) Salmonella contamination associated with bacterial soft rot of fresh fruits and vegetables in the marketplace. Plant Dis 81:867–872

    CAS  PubMed  Google Scholar 

  • Wemmenhove E, Wells-Bennik MHJ, Stara A, van Hooijdonk ACM, Zwietering MH (2016) How NaCl and water content determine water activity during ripening of Gouda cheese, and the predicted effect on inhibition of Listeria monocytogenes. J Dairy Sci 99(7):5192–5201

    CAS  PubMed  Google Scholar 

  • Wright KM, Crozier L, Marshall J, Merget B, Holmes A, Holden NJ (2017) Differences in internalization and growth of Escherichia coli O157:H7 within the apoplast of edible plants, spinach and lettuce, compared with the model species Nicotiana benthamiana. Microb Biotechnol 10(3):555–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G, Hu L, Pouillot R, Tatavarthy A, Doren JMV, Kleinmeier D, Ziobro GC, Melka D, Wang H, Brown EW, Strain E, Bunning VK, Musser SM, Hammack TS (2017) Prevalence of Salmonella in 11 spices offered for sale from retail establishments and in imported shipments offered for entry to the United States. J Food Prot 80(11):1791–1805

    CAS  Google Scholar 

  • Zhao X, Zhong J, Wei C, Lin C-W, Ding T (2017) Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol 8(703813):656–616

    Google Scholar 

  • Zhou Y, Leong BJ, Brännström K, Almqvist F, Chapman MR (2012) Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biomed Chem 287(42):35092–35103

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Ponder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Acuff, J., Ponder, M. (2020). Interactions of Foodborne Pathogens with the Food Matrix. In: Demirci, A., Feng, H., Krishnamurthy, K. (eds) Food Safety Engineering. Food Engineering Series. Springer, Cham. https://doi.org/10.1007/978-3-030-42660-6_5

Download citation

Publish with us

Policies and ethics