Skip to main content

A Comparison of Bayesian Spatial Models for Cancer Incidence at a Small Area Level: Theory and Performance

  • Chapter
  • First Online:
Case Studies in Applied Bayesian Data Science

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2259))

Abstract

The increase in Bayesian models available for disease mapping at a small area level can pose challenges to the researcher: which one to use? Models may assume a smooth spatial surface (termed global smoothing), or allow for discontinuities between areas (termed local spatial smoothing). A range of global and local Bayesian spatial models suitable for disease mapping over small areas are examined, including the foundational and still most popular (global) Besag, York and MolliƩ (BYM) model through to more recent proposals such as the (local) Leroux scale mixture model. Models are applied to simulated data designed to represent the diagnosed cases of (1) a rare and (2) a common cancer using small-area geographical units in Australia. Key comparative criteria considered are convergence, plausibility of estimates, model goodness-of-fit and computational time. These simulations highlighted the dramatic impact of model choice on posterior estimates. The BYM, Leroux and some local smoothing models performed well in the sparse simulated dataset, while centroid-based smoothing models such as geostatistical or P-spline models were less effective, suggesting they are unlikely to succeed unless areas are of similar shape and size. Comparing results from several different models is recommended, especially when analysing very sparse data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Adin, M.A. Martinez-Beneito, P. Botella-Rocamora, T. Goicoa, M.D. Ugarte, Smoothing and high risk areas detection in space-time disease mapping: a comparison of P-splines, autoregressive, and moving average models. Stoch. Environ. Res. Risk Assess. 31(2), 403ā€“415 (2017). https://doi.org/10.1007/s00477-016-1269-8

    ArticleĀ  Google ScholarĀ 

  2. C. Anderson, L. Ryan, A Comparison of spatio-temporal disease mapping approaches including an application to ischaemic heart disease in New South Wales, Australia. Int. J. Environ. Res. Public Health 14(2), 146 (2017). https://doi.org/10.3390/ijerph14020146

    ArticleĀ  Google ScholarĀ 

  3. Australian Bureau of Statistics [ABS], Census of Population and Housing: Socio-Economic Indexes for Areas (SEIFA), Australia, ā€˜Statistical Area Level 2, Indexes, SEIFA 2011ā€™, data cube: Excel spreadsheet, cat. no. 2033.0.55.001. (2013). www.abs.gov.au/AUSSTATS/abs.nsf/DetailsPage/2033.0.55.0012011

  4. Australian Bureau of Statistics [ABS], Australian Statistical Geography Standard (ASGS): Volume 1 - Main structure and greater capital city statistical areas, July 2011, cat. no. 1270.0.55.001 (2013). www.abs.gov.au/AUSSTATS/abs.nsf/DetailsPage/1270.0.55.001Jul%202011

  5. S. Banerjee, B.P. Carlin, A.E. Gelfand, Hierarchical Modeling and Analysis for Spatial Data. Monographs on Statistics and Applied Probability, 2nd edn., vol. 135 (CRC Press/Chapman & Hall, Boca Raton, 2014)

    Google ScholarĀ 

  6. J. Besag, Spatial interaction and the statistical analysis of lattice systems. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 36(2), 192ā€“236 (1974)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  7. J. Besag, C. Kooperberg, On conditional and intrinsic autoregressions. Biometrika 82(4), 733ā€“746 (1995). https://doi.org/10.1093/biomet/82.4.733

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  8. J. Besag, J. York, A. MolliĆ©, Bayesian image restoration with application in spatial statistics. Ann. Inst. Stat. Math. 43(1), 1ā€“20 (1991). https://doi.org/10.1007/BF00116466

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  9. N. Best, S. Cockings, J. Bennett, P. Wakefield, Ecological regression analysis of environmental benzene exposure and childhood leukaemia: sensitivity to data inaccuracies, geographical scale and ecological bias. J. R. Stat. Soc. Ser. A (Stat. Soc.) 164 (1), 155ā€“174 (2001). https://doi.org/10.1111/1467-985x.00194

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. N. Best, S. Richardson, A. Thomson, A comparison of Bayesian spatial models for disease mapping. Stat. Methods Med. Res. 14(1), 35ā€“59 (2005). https://doi.org/10.1191/0962280205sm388oa

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  11. A.C.A. Clements, N.J.S. Lwambo, L. Blair, U. Nyandindi, G. Kaatano, S. Kinungā€™hi, J.P. Webster, A. Fenwick, S. Brooker, Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania. Trop. Med. Int. Health 11 (4), 490ā€“503 (2006). https://doi.org/10.1111/j.1365-3156.2006.01594.x

    ArticleĀ  Google ScholarĀ 

  12. P. Congdon, Representing spatial dependence and spatial discontinuity in ecological epidemiology: a scale mixture approach. Stoch. Environ. Res. Risk Assess. 31(2), 291ā€“304 (2017). https://doi.org/10.1007/s00477-016-1292-9

    ArticleĀ  Google ScholarĀ 

  13. S.M. Cramb, K.L. Mengersen, P.D. Baade, Identification of area-level influences on regions of high cancer incidence in Queensland, Australia: a classification tree approach. BMC Cancer 11, 311 (2011). https://doi.org/10.1186/1471-2407-11-311

    Google ScholarĀ 

  14. D.G.T. Denison, C.C. Holmes, Bayesian partitioning for estimating disease risk. Biometrics, 57(1), 143ā€“149 (2001). https://doi.org/10.1111/j.0006-341x.2001.00143.x

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. L.E. Eberly, B.P. Carlin, Identifiability and convergence issues for Markov chain Monte Carlo fitting of spatial models. Stat. Med. 19(17), 2279ā€“2294 (2000). https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2279::aid-sim569>3.0.co;2-r

    ArticleĀ  Google ScholarĀ 

  16. J. Geweke, Evaluating the accuracy of sampling-based approaches to the calculation of posterior moments, in Bayesian Statistics, vol. 4, ed. by J.M. Bernardo, J. Berger, A.P. Dawid, A.F.M. Smith (Oxford University Press, Oxford, 1992), pp. 169ā€“193

    Google ScholarĀ 

  17. T. Goicoa, M.D. Ugarte, J. Etxeberria, A.F. Militino, Comparing CAR and P-spline models in spatial disease mapping. Environ. Ecol. Stat. 19(4), 573ā€“599 (2012). https://doi.org/10.1007/s10651-012-0201-8

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  18. P.J. Green, S. Richardson, Hidden Markov models and disease mapping. J. Am. Stat. Assoc. 97(460), 1055ā€“1070 (2002). https://doi.org/10.1198/016214502388618870

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  19. C. Kandhasamy, K. Ghosh, Relative risk for HIV in Indiaā€“an estimate using conditional auto-regressive models with Bayesian approach. Spatial Spatio-temporal Epidemiol. 20, 13ā€“21 (2017). https://doi.org/10.1016/j.sste.2017.01.001

    ArticleĀ  Google ScholarĀ 

  20. S.Y. Kang, S.M. Cramb, N.M. White, S.J. Ball, K.L. Mengersen, Making the most of spatial information in health: a tutorial in Bayesian disease mapping for areal data. Geospat. Health 11(2), 428 (2016). https://doi.org/10.4081/gh.2016.428

  21. L. Knorr-Held, G. RaƟer, Bayesian detection of clusters and discontinuities in disease maps. Biometrics 56(1), 13ā€“21 (2000). https://doi.org/10.1111/j.0006-341x.2000.00013.x

    ArticleĀ  Google ScholarĀ 

  22. S. Lang, A. Brezger, Bayesian P-Splines. J. Comput. Graph. Stat. 13(1), 183ā€“212 (2004). https://doi.org/10.1198/1061860043010

    ArticleĀ  Google ScholarĀ 

  23. A.B. Lawson, A. Clark, Spatial mixture relative risk models applied to disease mapping. Stat. Med. 21(3), 359ā€“370 (2002). https://doi.org/10.1002/sim.1022

    ArticleĀ  Google ScholarĀ 

  24. D. Lee, A comparison of conditional autoregressive models used in Bayesian disease mapping. Spatial Spatio-temporal Epidemiol. 2(2), 79ā€“89 (2011). https://doi.org/10.1016/j.sste.2011.03.001

    ArticleĀ  Google ScholarĀ 

  25. D. Lee, CARBayes Version 4.7: An R package for Spatial Areal Unit Modelling with Conditional Autoregressive Priors (University of Glasgow, Glasgow, 2017). https://CRAN.R-project.org/package=CARBayes

  26. D. Lee, R. Mitchell, Boundary detection in disease mapping studies. Biostatistics 13 (3), 415ā€“426 (2012). https://doi.org/10.1093/biostatistics/kxr036

    ArticleĀ  Google ScholarĀ 

  27. D. Lee, R. Mitchell, Locally adaptive spatial smoothing using conditional auto-regressive models. J. R. Stat. Soc. Ser. C (Appl. Stat.) 62(4), 593ā€“608 (2013). https://doi.org/10.1111/rssc.12009

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  28. D. Lee, C. Sarran, Controlling for unmeasured confounding and spatial misalignment in long-term air pollution and health studies. Environmetrics 26(7), 447ā€“487 (2015). https://doi.org/10.1002/env.2348

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  29. B.G. Leroux, X. Lei, N. Breslow, Estimation of disease rates in small areas: a new mixed model for spatial dependence. Stat. Models Epidemiol. Environ. Clin. Trials 116, 179ā€“191 (2000). https://doi.org/10.1007/978-1-4612-1284-3_4

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  30. H. Lu, C. Reilly, S. Banerjee, B. Carlin, Bayesian areal wombling via adjacency modelling. Environ. Ecol. Stat. 14(4), 433ā€“452 (2007). https://doi.org/10.1007/s10651-007-0029-9

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  31. D.J. Lunn, A. Thomas, N. Best, D. Spiegelhalter, WinBUGSā€“a Bayesian modelling framework: concepts, structure, and extensibility. Stat. Comput. 10(4), 325ā€“337 (2000). https://doi.org/10.1023/a:1008929526011

    ArticleĀ  Google ScholarĀ 

  32. Y.C. MacNab, Spline smoothing in Bayesian disease mapping. Environmetrics 18(7), 727ā€“744 (2007). https://doi.org/10.1002/env.876

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  33. T.G. Martins, D. Simpson, F. Lindgren, H. Rue, Bayesian computing with INLA: new features. Comput. Stat. Data Anal. 67, 68ā€“83 (2013). https://doi.org/10.1016/j.csda.2013.04.014

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  34. O. Mersmann, microbenchmark: accurate timing functions. R package version 1.4-6 (2018). http://CRAN.R-project.org/package=microbenchmark

  35. P.A.P. Moran, Notes on continuous stochastic phenomena. Biometrika 37(1/2), 17ā€“23 (1950). https://doi.org/10.2307/2332142

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  36. F.S. Nathoo, P. Ghosh, Skew-elliptical spatial random effect modeling for areal data with application to mapping health utilization rates. Stat. Med. 32(2), 290ā€“306 (2013). https://doi.org/10.1002/sim.5504

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  37. A. Perperoglou, P.H.C. Eilers, Penalized regression with individual deviance effects. Comput. Stat. 25(2), 341ā€“361 (2010). https://doi.org/10.1007/s00180-009-0180-x

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  38. M. Plummer, JAGS version 4.3.0 user manual (2017). https://CRAN.R-project.org/package=CARBayes

  39. R Core Team, R: A language and environment for statistical computing. R Foundation for Statistical Computing (2018). http://www.R-project.org/

  40. S. Richardson, Statistical methods for geographical correlation studies, in Geographical and Environmental Epidemiology, ed. by P. Elliot, J. Cuzick, D. English, R. Stern (Oxford University Press, Oxford, 1996), pp. 181ā€“204

    ChapterĀ  Google ScholarĀ 

  41. A. Riebler, S.H. SĆørbye, D. Simpson, H. Rue, An intuitive Bayesian spatial model for disease mapping that accounts for scaling. Stat. Methods Med. Res. 25(4), 1145ā€“1165 (2016). https://doi.org/10.1177/0962280216660421

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  42. D. Ruppert, M.P. Wand, R.J. Carroll, Semiparametric Regression (Cambridge University Press, Cambridge, 2003)

    BookĀ  Google ScholarĀ 

  43. D.J. Spiegelhalter, N.G. Best, B.P. Carlin, V. der Linde, Bayesian measures of model complexity and fit (with discussion). J. R. Stat. Soc. Ser. B (Stat. Methodol.) 64 (4):583ā€“640 (2002). https://doi.org/10.1111/1467-9868.00353

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  44. S. Sturtz, U. Ligges, A. Gelman, R2WinBUGS: a package for running WinBUGS from R. J. Stat. Softw. 12(3), 1ā€“16 (2005). https://doi.org/10.18637/jss.v012.i03

    ArticleĀ  Google ScholarĀ 

  45. Y.-S. Su, M. Yajima, R2jags: using R to run ā€˜JAGSā€™. R package version 0.5-7 (2015). https://CRAN.R-project.org/package=R2jags

  46. A. Vehtari, A. Gelman, J. Gabry, Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat. Comput. 27(5), 1413ā€“1432 (2017). https://doi.org/10.1007/s11222-016-9709-3

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  47. L.A. Waller, B.P. Carlin, Disease mapping, in Handbook of Spatial Statistics, ed. by A.E. Gelfand, P.J. Diggle, P. Guttorp, M. Fuentes (CRC Press, Boca Raton, 2010)

    Google ScholarĀ 

  48. S. Watanabe, Asymptotic equivalence of Bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach. Learn. Res. 11, 3571ā€“3594 (2010)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Cramb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cramb, S., Duncan, E., Baade, P., Mengersen, K.L. (2020). A Comparison of Bayesian Spatial Models for Cancer Incidence at a Small Area Level: Theory and Performance. In: Mengersen, K., Pudlo, P., Robert, C. (eds) Case Studies in Applied Bayesian Data Science. Lecture Notes in Mathematics, vol 2259. Springer, Cham. https://doi.org/10.1007/978-3-030-42553-1_10

Download citation

Publish with us

Policies and ethics