Skip to main content

Comparison of Attenuation Coefficient Estimation in High Intensity Focused Ultrasound Therapy for Cancer Treatment by Levenberg Marquardt and Gauss-Newton Methods

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1194))

Abstract

Hyperthermia using High-Intensity Focused Ultrasound (HIFU) is an acoustic therapy used in clinical applications to destroy malignant tumors of bone, breast, brain, kidney, pancreas, prostate, rectum and testicle. This technique consists in increase the temperature in the tumor or the specific area, to achieve coagulative necrosis and immediate cell death. Although hyperthermia can cure cancer, it can also cause side effects and even damage healthy cells or tissues. Therefore, for having a successful treatment, it is important to monitor and observe what is the tissue behavior, as well as its changes, before, during and after the procedure. Mathematical models are tools that can be useful to simulate an adequate therapy by differentiating characteristics that will depend on each individual. An attenuation coefficient estimation for a forward model with a rectangular two-dimensional domain is presented, the estimation was made with simulated numerical data and simulated experimental data by Levenberg Marquardt and Gauss-Newton Methods. The results demonstrate that by identifying the attenuation coefficient of each patient. By estimating the attenuation coefficient parameter it is possible to predict the thermal responses of the tissue to be treated and, based on them, to plan an adequate cancer treatment by inducing heat by HIFU.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. WHO: Cancer. www.who.int. Accessed 01 Oct 2019

  2. Sengupta, S., Balla, V.K.: A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment. J. Adv. Res. 14, 97–111 (2018)

    Article  Google Scholar 

  3. Gas, P., Miaskowski, A.: Specifying the ferrofluid parameters important from the viewpoint of magnetic fluid hyperthermia. In: Selected Problems of Electrical Engineering and Electronics, pp. 1–6 (2015)

    Google Scholar 

  4. Kurgan, E., Gas, P.: Treatment of tumors located in the human thigh using RF hyperthermia. Prz. Elektrotechniczny. 87, 103–106 (2011)

    Google Scholar 

  5. Kurgan, E., Gas, P.: Analysis of electromagnetic heating in magnetic fluid deep hyperthermia. In: 7th International Conference Computational Problems of Electrical Engineering (CPEE), Sandomierz, Poland, pp. 1–4 (2016)

    Google Scholar 

  6. Gas, P.: Essential facts on the history of hyperthermia and their connections with electromedicine. Prz. Elektrotechniczny. 87, 37–40 (2011)

    Google Scholar 

  7. Bermeo Varon, L.A., Orlande, H.R.B., Eliçabe, G.E.: Estimation of state variables in the hyperthermia therapy of cancer with heating imposed by radiofrequency electromagnetic waves. Int. J. Therm. Sci. 98, 228–236 (2015)

    Article  Google Scholar 

  8. Bermeo Varon, L.A., Orlande, H.R.B., Eliçabe, G.E.: Combined parameter and state estimation in the radiofrequency hyperthermia treatment of cancer. Heat Transf. Part A Appl. 70, 581–594 (2016)

    Article  Google Scholar 

  9. Lamien, B., Varon, L.A.B., Orlande, H.R.B., Elicabe, G.E.: State estimation in bioheat transfer: a comparison of particle filter algorithms. Int. J. Numer. Methods Heat Fluid Flow 27, 615–638 (2017). https://doi.org/10.1108/HFF-03-2016-0118

    Article  Google Scholar 

  10. Lamien, B., Orlande, H.R.B., Eliçabe, G.E.: Inverse problem in the hyperthermia therapy of cancer with laser heating and plasmonic nanoparticles. Inverse Probl. Sci. Eng. 25(4), 608–631 (2016)

    Article  MathSciNet  Google Scholar 

  11. Grull, H., Langereis, S.: Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J. Control. Release. 161, 317–327 (2012)

    Article  Google Scholar 

  12. Ter Haar, G., Coussios, C.: High intensity focused ultrasound: physical principles and devices. Int. J. Hyperth. Off. J. Eur. Soc. Hyperthermic Oncol. North Am. Hyperth. Gr. 23, 89–104 (2007)

    Article  Google Scholar 

  13. Canney, M.S., Bailey, M.R., Crum, L.A., Khokhlova, V.A., Sapozhnikov, O.A.: Acoustic characterization of high intensity focused ultrasound fields: a combined measurement and modeling approach. J. Acoust. Soc. Am. 124, 2406–2420 (2008)

    Article  Google Scholar 

  14. Ellens, N.P.K., Hynynen, K.: High-intensity focused ultrasound for medical therapy. In: Gallego-Juárez, J.A., Graff, K.F. (eds.) Power Ultrasonics, pp. 661–693. Woodhead Publishing, Oxford (2015)

    Chapter  Google Scholar 

  15. Vaezy, S., et al.: Real-time visualization of high-intensity focused ultrasound treatment using ultrasound imaging. Ultrasound Med. Biol. (2001). https://doi.org/10.1016/S0301-5629(00)00279-9

    Article  Google Scholar 

  16. Zhou, Y.-F.: High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol. 2, 8–27 (2011)

    Article  Google Scholar 

  17. Al-Bataineh, O., Jenne, J., Huber, P.: Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat. Rev. 38, 346–353 (2012)

    Article  Google Scholar 

  18. Teja, J.L., Vera, A., Leija, L.: Acoustic field comparison of high intensity focused ultrasound by using experimental characterization and finite element simulation. In: Comsol Conference, p. 7 (2013). Ch.Comsol.Com

  19. de los Ríos, L., Varon, L.A.B., de Albuquerque Pereira, W.C.: Parametric simulated study of high intensity focused ultrasound (Hifu) for treatment of cancer. In: The Conference Proceedings of American Society of Thermal and Fluids Engineers, vol. 3, pp. 1131–1134 (2018). https://doi.org/10.1615/tfec2018.bio.021734

  20. Majchrzak, E., Paruch, M., Dziewoński, M., Freus, S., Freus, K.: Sensitivity analysis of temperature field and parameter identification in burned and healthy skin tissue. In: Muñoz-Rojas, P.A.A. (ed.) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. ASM, vol. 49, pp. 89–112. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-04265-7_5

    Chapter  Google Scholar 

  21. Guittet, C., Ossant, F., Remenieras, J.P., Pourcelot, L., Berson, M.: High-frequency estimation of the ultrasonic attenuation coefficient slope obtained in human skin: Simulation and in vivo results. Ultrasound Med. Biol. 25, 421–429 (1999)

    Article  Google Scholar 

  22. Deeba, F., et al.: Attenuation coefficient estimation of normal placentas. Ultrasound Med. Biol. 45, 1081–1093 (2019)

    Article  Google Scholar 

  23. Lerch, T.P., Cepel, R., Neal, S.P.: Attenuation coefficient estimation using experimental diffraction corrections with multiple interface reflections. Ultrasonics 44, 83–92 (2006)

    Article  Google Scholar 

  24. Rouyer, J., Cueva, T., Portal, A., Yamamoto, T., Lavarello, R.: Attenuation coefficient estimation of the healthy human thyroid in vivo. Phys. Procedia 70, 1139–1143 (2015)

    Article  Google Scholar 

  25. Madsen, K., Nielsen, H.., Tingleff, O.: Method for Non-Linear Least Squares Problems. Informatics and Mathematical Modelling Technical University of Denmark, Denmark (2004)

    Google Scholar 

  26. Gill, P.E., Murray, W.: Algorithms for the solution of the nonlinear least-squares problem. SIAM J. Numer. Anal. 15, 977–992 (1978)

    Article  MathSciNet  Google Scholar 

  27. Fu, Y.B., Chui, C.K., Teo, C.L., Kobayashi, E.: Elasticity imaging of biological soft tissue using a combined finite element and non-linear optimization method. Inverse Probl. Sci. Eng. 23, 179–196 (2015). https://doi.org/10.1080/17415977.2014.880904

    Article  MATH  Google Scholar 

  28. Tong, Q., Yuan, Z., Zheng, M., Liao, X., Zhu, W., Zhang, G.: A novel nonlinear parameter estimation method of soft tissues. Genomics, Proteomics Bioinforma. 15, 371–380 (2017). https://doi.org/10.1016/j.gpb.2017.09.003

    Article  Google Scholar 

  29. Pennes, H.H.: Analysis of tissue and arterial blood temperatures in the resting human forearm. J. Appl. Physiol. 1, 93–124 (1948)

    Article  Google Scholar 

  30. Comsol Multiphysiscs: Comsol Multiphysiscs Modelling Software. www.comsol.com. Accessed 08 Oct 2019

  31. Pereyra, S., Lombera, G.A., Frontini, G., Urquiza, S.A.: Sensitivity analysis and parameter estimation of heat transfer and material flow models in friction stir welding. Mater. Res. 17, 397–404 (2013). https://doi.org/10.1590/s1516-14392013005000184

    Article  Google Scholar 

  32. Cortela, G.A., Pereira, W.C.A., Negreira, C.A.: Ex vivo determined experimental correction factor for the ultrasonic source term in the bioheat equation. Ultrasonics 82, 72–78 (2018)

    Article  Google Scholar 

  33. de Los Ríos Cárdenas, L., Bermeo Varón, L.A., de Albuquerque Pereira, W.C.: Sensitivity study in high intensity focused ultrasound therapy for cancer. In: Henriques, J., Neves, N., de Carvalho, P. (eds.) MEDICON 2019. IFMBE Proceedings, vol. 76, pp. 1337–1342. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-31635-8_163

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the support provided by CNPq, CAPES, FAPERJ (Brazil) and DGI of Universidad Santiago de Cali, Colombia, project No. 819- 621118-120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo A. Bermeo Varón .

Editor information

Editors and Affiliations

Ethics declarations

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de los Ríos Cárdenas, L., Bermeo Varón, L.A., Pereira, W.C.d.A. (2020). Comparison of Attenuation Coefficient Estimation in High Intensity Focused Ultrasound Therapy for Cancer Treatment by Levenberg Marquardt and Gauss-Newton Methods. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-42520-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42520-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42519-7

  • Online ISBN: 978-3-030-42520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics