Skip to main content

Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net

  • Conference paper
  • First Online:
Applied Technologies (ICAT 2019)

Abstract

A first step in the process of automating weed removal in precision agriculture is the semantic segmentation of crops, weeds and soil. Deep learning techniques based on convolutional neural networks are successfully applied today and one of the most popular network architectures in semantic segmentation problems is U-Net. In this article, the variants in the U-Net architecture were evaluated based on the aggregation of residual and recurring blocks to improve their performance. For training and testing, a set of data available on the Internet was used, consisting of 60 multispectral images with unbalanced pixels, so techniques were applied to increase and balance the data. Experimental results show a slight increase in quality metrics compared to the classic U-Net architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 25 March 2020

    In the originally published version of the paper on p. 39 the authorship information was incorrect. The names and sequence of the authors have been corrected as “Pablo Torres-Carrión, Ruth Reátegui, Priscila Valdiviezo, Byron Bustamante and Silvia Vaca”.

    In the originally published version of the paper on p. 473, the author’s full name was incorrect. The author’s name has been changed to “Ramon Alcarria”.

References

  1. Sa, I., et al.: WeedNet: dense semantic weed classification using multispectral images and MAV for smart farming. IEEE Robot. Autom. Lett. 3(1), 588–595 (2017). https://doi.org/10.1109/LRA.2017.2774979

    Article  Google Scholar 

  2. Milioto, A., Lottes, P., Stachniss, C.: Real-time semantic segmentation of crop and weed for precision agriculture robots leveraging background knowledge in CNNs. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 2229–2235. IEEE (2018). https://doi.org/10.1109/icra.2018.8460962

  3. Haug, S., Ostermann, J.: A crop/weed field image dataset for the evaluation of computer vision based precision agriculture tasks. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8928, pp. 105–116. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16220-1_8

    Chapter  Google Scholar 

  4. Molina-Villa, M.A., Solaque-Guzmán, L.E.: Machine vision system for weed detection using image filtering in vegetables crops. Revista Facultad de Ingeniería Universidad de Antioquia 80, 124–130 (2016). https://doi.org/10.17533/udea.redin.n80a13

    Article  Google Scholar 

  5. Søgaard, H.T.: Weed classification by active shape models. Biosyst. Eng. 91(3), 271–281 (2005). https://doi.org/10.1016/j.biosystemseng.2005.04.011

    Article  Google Scholar 

  6. Ahmad, I., Siddiqi, M.H., Fatima, I., Lee, S., Lee, Y.K.: Weed classification based on Haar wavelet transform via k-nearest neighbor (k-NN) for real-time automatic sprayer control system. In: Proceedings of the 5th International Conference on Ubiquitous Information Management and Communication, p. 17. ACM (2011). https://doi.org/10.1145/1968613.1968634

  7. Voorhoeve, L.: Machine Learning for Crop and Weed Classification (2018)

    Google Scholar 

  8. Lottes, P., Stachniss, C.: Semi-supervised online visual crop and weed classification in precision farming exploiting plant arrangement. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5155–5161. IEEE (2017). https://doi.org/10.1109/iros.2017.8206403

  9. Kamilaris, A., Prenafeta-Boldú, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018). https://doi.org/10.1016/j.compag.2018.02.016

    Article  Google Scholar 

  10. Cereda, S.: A comparison of different neural networks for agricultural image segmentation (2017)

    Google Scholar 

  11. Potena, C., Nardi, D., Pretto, A.: Fast and accurate crop and weed identification with summarized train sets for precision agriculture. In: Chen, W., Hosoda, K., Menegatti, E., Shimizu, M., Wang, H. (eds.) IAS 2016. AISC, vol. 531, pp. 105–121. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-48036-7_9

    Chapter  Google Scholar 

  12. Bah, M.D., Hafiane, A., Canals, R.: Deep learning with unsupervised data labeling for weeds detection on UAV images (2018). arXiv preprint arXiv:1805.12395

  13. Kantipudi, K., Lai, C., Min, C.-H., Chiang, R.C.: Weed detection among crops by convolutional neural networks with sliding windows. In: 14th International Conference on Precision Agriculture, Quebec (2018)

    Google Scholar 

  14. Lottes, P., Behley, J., Milioto, A., Stachniss, C.: Fully convolutional networks with sequential information for robust crop and weed detection in precision farming. IEEE Robot. Autom. Lett. 3(4), 2870–2877 (2018). https://doi.org/10.1109/LRA.2018.2846289

    Article  Google Scholar 

  15. Dyrmann, M., Karstoft, H., Midtiby, H.S.: Plant species classification using deep convolutional neural network. Biosyst. Eng. 151, 72–80 (2016). https://doi.org/10.1016/j.biosystemseng.2016.08.024

    Article  Google Scholar 

  16. Dyrmann, M., Mortensen, A.K., Midtiby, H.S., Jørgensen, R.N.: Pixel-wise classification of weeds and crops in images by using a fully convolutional neural network. In: Proceedings of the International Conference on Agricultural Engineering, Aarhus, Denmark, pp. 26–29 (2016)

    Google Scholar 

  17. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  18. Akeret, J., Chang, C., Lucchi, A., Refregier, A.: Radio frequency interference mitigation using deep convolutional neural networks. Astron. Comput. 18, 35–39 (2017)

    Article  Google Scholar 

  19. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)

    Article  Google Scholar 

  20. Sa, I., et al.: Weedmap: a large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming. Remote Sens. 10(9), 1423 (2018)

    Article  Google Scholar 

  21. Di Cicco, M., Potena, C., Grisetti, G., Pretto, A.: Automatic model based dataset generation for fast and accurate crop and weeds detection. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5188–5195. IEEE (2017)

    Google Scholar 

  22. Alom, M.Z., Hasan, M., Yakopcic, C., Taha, T.M., Asari, V.K.: Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation (2018). arXiv preprint arXiv:1802.06955

Download references

Acknowledgments

This research was supported by National Agriculture Innovation Program (PNIA) of Peru and the Institute of Scientific Research (IDIC) of the University of Lima.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miguel Ángel Chicchón Apaza or Héctor Manuel Bedón Monzón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chicchón Apaza, M.Á., Monzón, H.M.B., Alcarria, R. (2020). Semantic Segmentation of Weeds and Crops in Multispectral Images by Using a Convolutional Neural Networks Based on U-Net. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-42520-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42520-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42519-7

  • Online ISBN: 978-3-030-42520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics