Skip to main content

Human Activity Recognition Using an Accelerometer Magnitude Value

  • Conference paper
  • First Online:
Book cover Applied Technologies (ICAT 2019)

Abstract

Human activity recognition (HAR) is important for many applications to help healthcare and support systems due to fast increase of senior population worldwide. This paper describes a human activity recognition framework based on feature selection techniques from a waist single accelerometer. The objective is to identify the most important features to recognize static and dynamic human activities based on module acceleration, since a public database. A set of time and frequency features are getting from the module, so to analyze the impact of the features on the performance of the recognition system, a ReliefF algorithm is applied. Finally, a multiclass classification model is implemented thought Support Vector Machine (SVM). Experimental results indicate that the accuracy of the propose model is over of 85%, this percentage is like other works in which use each axes accelerometer. The advantage of this work is the use of the module value that allow identify the activity independently of the sensor position, also it reduces the computer resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abhayasinghe, N., Murray, I.: Human activity recognition using thigh angle derived from single thigh mounted IMU data. In: 2014 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp. 111–115. IEEE (2014)

    Google Scholar 

  2. Chen, L., Hoey, J., Nugent, C., Cook, D., Yu, Z.: Sensor-based activity recognition. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42, 790–808 (2012)

    Article  Google Scholar 

  3. Cook, D.J., Das, S.K.: Pervasive computing at scale: transforming the state of the art. Pervasive Mob. Comput. 8, 22–35 (2012)

    Article  Google Scholar 

  4. Campbell, A., Choudhury, T.: From smart to cognitive phones. IEEE Pervasive Comput. 11(3), 7–11 (2012)

    Article  Google Scholar 

  5. Kallur, D.C.: Human localization and activity recognition using distributed motion sensors. Ph.D. thesis, Oklahoma State University (2014)

    Google Scholar 

  6. Motion capture systems - optitrack. https://www.naturalpoint.com/optitrack/

  7. Bao, L., Intille, S.S.: Activity recognition from user-annotated acceleration data. In: Ferscha, A., Mattern, F. (eds.) Pervasive 2004. LNCS, vol. 3001, pp. 1–17. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24646-6_1

    Chapter  Google Scholar 

  8. Yatani, K., Truong, K.N.: Bodyscope: a wearable acoustic sensor for activity recognition. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 341–350. ACM (2012)

    Google Scholar 

  9. Yu, C.-R., Wu, C.-L., Lu, C.-H., Fu, L.-C.: Human localization via multi-cameras and floor sensors in smart home. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics (SMC), vol. 5, pp. 3822–3827, October 2006

    Google Scholar 

  10. Cheok, A.D., Li, Y.: Ubiquitous interaction with positioning and navigation using a novel light sensor-based information transmission system. Pers. Ubiquitous Comput. 12(6), 445–458 (2008)

    Article  Google Scholar 

  11. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. In: Proceedings of the Fourth International Workshop on Knowledge Discovery from Sensor Data (at KDD 2010), Washington DC. WISDM Activity Prediction (2010). http://www.cis.fordham.edu/wisdm/dataset.php

  12. Reyes-Ortiz, J.L., Anguita, D., Ghio, A., Oneto, L., Parra, X.: UCI Machine Learning Repository. https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+from+Continuous+Ambient+Sensor+Data

  13. Kaggle. https://www.kaggle.com/malekzadeh/motionsense-dataset

  14. ExtraSensor. http://extrasensory.ucsd.edu/

  15. Hong, Y.J., Kim, I.J., Ahn, S.C., Kim, H.G.: Mobile health monitoring system based on activity recognition using accelerometer. Simul. Model. Pract. Theory 18(4), 446–455 (2010)

    Article  Google Scholar 

  16. Jimenez, A.R., Seco, F., Prieto, C., Guevara, J.: A comparison of pedestrian dead-reckoning algorithms using a low-cost MEMS IMU. In: Proceedings of the IEEE International Symposium on Intelligent Signal Processing (WISP), pp. 37–42, August 2009

    Google Scholar 

  17. Chernbumroong, S., Atkins, A.S., Yu, H.: Activity classification using a single wrist-worn accelerometer. In: 2011 5th International Conference on Software, Knowledge Information, Industrial Management and Applications (SKIMA), pp. 1–6. IEEE (2011)

    Google Scholar 

  18. Guo, G., Li, S.Z.: Content-based audio classification and retrieval by support vector machines. IEEE Trans. Neural Netw. 14(1), 209–215 (2003)

    Article  Google Scholar 

  19. Gandhi, R.: Support Vector Machine — Introduction to Machine Learning Algorithms, Towards Data Science (2018). https://towardsdatascience.com/support-vector-machine-introduction-to-machine-learning-algorithms-934a444fca47. Acceded 12 Oct 2019

  20. Anderson, I., et al.: Shakra: tracking and sharing daily activity levels with un-augmented mobile phones. Mob. Netw. Appl. 12(2–3), 185–199 (2007)

    Article  Google Scholar 

  21. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine. In: Bravo, J., Hervás, R., Rodríguez, M. (eds.) IWAAL 2012. LNCS, vol. 7657, pp. 216–223. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35395-6_30

    Chapter  Google Scholar 

  22. Bulbul, E., Cetin, A., Alper, I.: Human activity recognition using smarphones. In: 2nd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey (2018)

    Google Scholar 

  23. Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes, J.: A public domain dataset for human activity recognition using smarphones. In: ESANN 2013 Proceedings on European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, Bruges (2013)

    Google Scholar 

  24. Uddin, M.T., Billah, M.M., Hossain, M.F.: Random forests based recognition of human activities on smarphones. In: 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh. IEEE (2016)

    Google Scholar 

  25. Ronao, C., Cho, S.: Human activity recognition with smartphone sensors using deep learning neural networks. Expert Syst. Appl. 59, 235–244 (2016)

    Article  Google Scholar 

  26. Najafi, B., Aminian, K., Paraschiv-Ionescu, A., Loew, F., Bula, C.J., Robert, P.: Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans. Biomed. Eng. 50(6), 711–723 (2003)

    Article  Google Scholar 

  27. Hemmati, S.: Detecting postural transitions: a robust wavelet-based approach. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2016)

    Google Scholar 

  28. Ganea, R., Paraschiv-lonescu, A., Aminian, K.: Detection and classification of postural transitions in real-world conditions. IEEE Trans. Neural Syst. Rehabil. Eng. 20(5), 688–696 (2012)

    Article  Google Scholar 

  29. Doulah, A., Shen, X., Sazonov, E.: Early detection of the initiation of sit-to-stand posture transitions using orthosis-mounted sensors. Sensors 17(12), 2712 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jhon Ivan Pilataxi Piltaxi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pilataxi Piltaxi, J.I., Trujillo Guerrero, M.F., Benavides Laguapillo, V.C., Rosales Acosta, J.A. (2020). Human Activity Recognition Using an Accelerometer Magnitude Value. In: Botto-Tobar, M., Zambrano Vizuete, M., Torres-Carrión, P., Montes León, S., Pizarro Vásquez, G., Durakovic, B. (eds) Applied Technologies. ICAT 2019. Communications in Computer and Information Science, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-42520-3_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42520-3_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42519-7

  • Online ISBN: 978-3-030-42520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics