Skip to main content

Wireless Communication for the Industrial IoT

  • Chapter
  • First Online:
Book cover Industrial IoT

Abstract

The emergence of the Internet-of-Things (IoT), which will enable billions of devices to seamlessly connect with each other and to the Internet, aims to enhance the quality of daily life in diverse fields. Today, even though an abundance of IoT applications already exists, the growth of IoT is expected to accelerate in the foreseeable future. IoT applications are mainly divided into two categories: (1) consumer IoT and (2) industrial IoT (IIoT). The IIoT consists of interconnected sensors, machinery, and other “things” that are used in various fields of industrial applications. Throughout this chapter, the main focus is on wireless communication for IIoT applications and therefore the major challenges in designing a suitable wireless communication solution for IIoT applications are initially discussed. A comprehensive overview of the state-of-the-art wireless communication standards, which are suitable for IIoT applications, is presented and representative comparisons on some of the most common industrial wireless communication technologies including 5G, the next generation of the wireless technologies, are provided. Next, we focus on one of the most significant technologies for 5G systems, namely the ultra-reliable low-latency communication (URLLC), which is highly relevant for mission-critical IIoT applications. We list the challenges of URLLC and study the theoretical limits on the transmission of short packets. In these information theoretic works, latency is mostly computed as the total transmission time of a single packet. However, decoding a encoded packet is a computationally demanding operation and when we analyse complexity-constrained receivers, such as low complexity IIoT receivers, the time duration that is needed for decoding should also be taken into account in latency analysis. Finally, by including the decoding duration, we present the trade-offs in low-latency communication for receivers with computational complexity constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The symbols, x i, that constitute the sequence x j, which is suitable for transmission through a given channel, are said to belong to the input alphabet of the channel.

  2. 2.

    CER results for convolutional codes, LDPC codes, and polar codes are taken from [38].

References

  1. Afaqui, M.S., Garcia-Villegas, E., Lopez-Aguilera, E.: IEEE 802.11ax: challenges and requirements for future high efficiency WiFi. IEEE Wireless Commun. 24(3), 130–137 (2017)

    Google Scholar 

  2. Akpakwu, G.A., Silva, B.J., Hancke, G.P., Abu-Mahfouz, A.M.: A survey on 5G networks for the internet of things: communication technologies and challenges. IEEE Access 6, 3619–3647 (2018)

    Article  Google Scholar 

  3. Alohali, B.A., Vassilakis, B.A., Moscholios, I.D., Logothetis, M.D.: A secure scheme for group communication of wireless IoT devices. In: 11th International Symposium on Communication Systems. Networks & Digital Signal Processing, Budapest (2018) pp. 1–6

    Google Scholar 

  4. Anand, A., De Veciana G., Shakkottai, S.: Joint scheduling of URLLC and eMBB traffic in 5G wireless networks. In: IEEE INFOCOM - IEEE Conference on Computer Communications, Honolulu (2018), pp. 1970–1978

    Google Scholar 

  5. Apsel, A.: A simple guide to low-power wireless technologies: balancing the tradeoffs for the internet of things and medical applications. IEEE Solid-State Circuits Mag. 10(4), 16–23 (2018)

    Article  Google Scholar 

  6. Arikan, E.: Channel polarization: a method for constructing capacity-achieving codes for symmetric binary-input memoryless channels. IEEE Trans. Inf. Theory 55, 3051–73 (2009)

    Article  MathSciNet  Google Scholar 

  7. Bennis, M., Debbah, M., Poor, H.V.: Ultrareliable and low-latency wireless communication: tail, risk, and scale. Proc. IEEE 106(10), 1834–1853 (2018)

    Article  Google Scholar 

  8. Bose, R.C., Ray-Chaudhuri, D.K.: On a class of error correcting binary group codes. Inf. Control 3(3), 279–290 (1960)

    Article  MathSciNet  Google Scholar 

  9. Celebi, H.B., Pitarokoilis, A., Skoglund, M.: Training-assisted channel estimation for low-complexity squared-envelope receivers. In: IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata (2018)

    Google Scholar 

  10. Celebi, H.B., Pitarokoilis, A., Skoglund, M.: Low-latency communication with computational complexity constraints. In: International Symposium on Wireless Communication Systems (2019)

    Google Scholar 

  11. Chakrapani, A.: Efficient resource scheduling for eMTC/NB-IoT communications in LTE Rel. 13. In: IEEE Conference on Standards for Communications and Networking (CSCN), Helsinki (2017)

    Google Scholar 

  12. Chang, K.: Interoperable nan standards: a path to cost-effective smart grid solutions. IEEE Wireless Commun. 20(3), 4–5 (2013)

    Article  Google Scholar 

  13. Chen, B., Wan, J., Shu, L., Li, P., Mukherjee, M., Yin, B.: Smart factory of industry 4.0: key technologies, application case, and challenges. IEEE Access 6, 6505–6519 (2018)

    Article  Google Scholar 

  14. Costa-Requena, J., Poutanen, A., Vural, S., Kamel, G., Clark, C, Roy, S.K.: SDN-based UPF for mobile backhaul network slicing. In: European Conference on Networks and Communications (EuCNC), Ljubljana, Slovenia (2018), pp. 48–53

    Google Scholar 

  15. Destounis, A., Paschos, G.S., Arnau, J., Kountouris, M.: Scheduling URLLC users with reliable latency guarantees. In: 16th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), Shanghai (2018), pp. 1–8

    Google Scholar 

  16. Domazetovic, B., Kocan, E., Mihovska, A.: Performance evaluation of IEEE 802.11ah systems. In: 2016 24th Telecommunications Forum (TELFOR), Belgrade (2016) pp. 1–4

    Google Scholar 

  17. Elias, P.: Coding for Noisy Channels. IRE Conv. Rec., Part 4 (1955), pp. 37–47

    Google Scholar 

  18. ETSI: Electromagnetic compatibility and Radio spectrum Matters; System Reference Document; Short Range Devices; Part 2: Technical characteristics for SRD equipment for wireless industrial applications using technologies different from Ultra-Wide Band (2011)

    Google Scholar 

  19. Fossorier, M.P.C., Lin, S.: Soft-decision decoding of linear block codes based on ordered statistics. IEEE Trans. Inf. Theory 41(5), 1379–1396 (1995)

    Article  Google Scholar 

  20. Gallager, R.: Low-density parity-check codes. IRE Trans. Inf. Theory 8(1), 21–28 (1962)

    Article  MathSciNet  Google Scholar 

  21. Gaudio, L., Ninacs, T., Jerkovits, T., Liva, G.: On the performance of short tail-biting convolutional codes for ultra-reliable communications. In: 11th International ITG Conference on Systems, Communications and Coding, Hamburg (2017)

    Google Scholar 

  22. GSMA Intelligence: The Mobile Economy, GSMA Intelligence Report (2019). Available at https://www.gsma.com/mobileeconomy/

  23. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  24. Hassan, S.M., Ibrahim, R., Bingi, K., Chung, T.D., Saad, N.: Application of wireless technology for control: a wireless HART perspective. Proc. Comput. Sci. 105, 240–247 (2017)

    Article  Google Scholar 

  25. Hocquenghem, A.: Codes correcteurs d’erreurs. Chiffres 2, 147–156 (1959)

    MathSciNet  MATH  Google Scholar 

  26. Hui, J.W., Culler, D.E.: Extending IP to low-power, wireless personal area networks. IEEE Internet Comput. 12(4), 37–45 (2008)

    Article  Google Scholar 

  27. IEEE 802.11ax: The sixth generation of Wi-Fi. Cisco Public Technical White Paper (2018)

    Google Scholar 

  28. IEEE Standard for Information technology-Telecommunications and information exchange between systems Local and metropolitan area networks—Specific requirements - Part 11: Wireless LAN Medium Access Control and Physical Layer Specifications: in IEEE Std 802.11-2016, 14 Dec (2016)

    Google Scholar 

  29. IMT Vision-Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond, document Recommendation ITU-R M.2083-0 (2015). Available at https://www.itu.int/dmspubrec/itur/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf

  30. Jewel, M.K.H., Zakariyya, R.S., Famoriji, O.J., Ali, M.S., Lin, F.: A low complexity channel estimation technique for NB-IoT downlink system. In: IEEE MTT-S International Wireless Symposium (IWS), Guangzhou (2019)

    Google Scholar 

  31. Kadambar, S., Reddy Chavva, A.K.: Low complexity ML synchronization for 3GPP NB-Io. In: International Conference on Signal Processing and Communications (SPCOM), Bangalore (2018)

    Google Scholar 

  32. Karimi, A., Pedersen, K.I., Mahmood, N.H., Steiner, J., Mogensen, P.: 5G centralized multi-cell scheduling for URLLC: algorithms and system-level performance. IEEE Access 6, 72253–72262 (2018)

    Article  Google Scholar 

  33. Lekomtcev, D., Marsalek, R.: Comparison of 802.11af and 802.22 standards-physical layer and cognitive functionality. Elektrorevue 3(2), 12–18 (2012)

    Google Scholar 

  34. Leonardi, L., Patti, G., Lo Bello, L.: Multi-hop real-time communications over bluetooth low energy industrial wireless mesh networks. IEEE Access 6, 26505–26519 (2018)

    Article  Google Scholar 

  35. Li, Z., Uusitalo, M.A., Shariatmadari, H., Singh, B.: 5G URLLC: design challenges and system concepts. In: 2018 15th International Symposium on Wireless Communication Systems (ISWCS), Lisbon (2018), pp. 1–6

    Google Scholar 

  36. Lippuner, S., Weber, B., Salomon, M., Korb, M., Huang, Q.: EC-GSM-IoT network synchronization with support for large frequency offsets. In: IEEE Wireless Communications and Networking Conference (WCNC), Barcelona (2018)

    Google Scholar 

  37. Liu, Y., Kashef, M., Lee, K.B., Benmohamed, L., Candell, R.: Wireless network design for emerging IIoT applications: reference framework and use cases. Proc. IEEE 107(6), 1166–1192 (2019)

    Article  Google Scholar 

  38. Liva, G., Steiner, F.: pretty-good-codes.org: Online library of good channel codes. http://pretty-good-codes.org/

  39. Liva, G., Gaudio, L., Ninacs, T.: Code design for short blocks: a survey. In: Proceedings of the EuCNC, Athens (2016)

    Google Scholar 

  40. Ma, L.: 5G Technologies, Standards and Commercialization. InterDgitial, Wilmington (2018)

    Google Scholar 

  41. MacKay, D.J.C., Neal, R.M.: Near Shannon limit performance of low density parity check codes. Electron. Lett. 32(18), 1645–1646 (1996)

    Article  Google Scholar 

  42. Mulligan, G., Bormann, C.: IPv6 over low power WPAN WG: IETF 73 (2008)

    Google Scholar 

  43. Page, J., Dricot, J.: Software-defined networking for low-latency 5G core network. In: International Conference on Military Communications and Information Systems (ICMCIS), Brussels (2016), pp. 1–7

    Google Scholar 

  44. Parvez, I., Rahmati, A., Guvenc, I., Sarwat A.I., Dai, H.: A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Commun. Surveys Tutorials 20(4), 3098–3130 (2018)

    Article  Google Scholar 

  45. Patti, G., Leonardi, L., Lo Bello, L.: A bluetooth low energy real-time protocol for industrial wireless mesh networks. In: IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence (2016), pp. 4627–4632

    Google Scholar 

  46. Petersen, S., Carlsen, S.: WirelessHART Versus ISA100.11a: the format war hits the factory floor. IEEE Ind. Electron. Mag. 5(4), 23–34 (2011)

    Google Scholar 

  47. Polyanskiy, Y., Poor, H.V., Verdu, S.: Channel coding rate in the finite blocklength regime. IEEE Trans. Inf. Theory 56(5), 2307–2359 (2010)

    Article  MathSciNet  Google Scholar 

  48. Powell, M.: Bluetooth market update. Bluetooth SIG, Inc. (2018). www.bluetooth.com/wp-content/uploads/2019/03/Bluetooth$_$Market$_$Update$_$2018.pdf

  49. Rappaport, T.S.: Wireless Communications: Principles and Practice, 1st edn. IEEE Press, Piscataway (2016)

    MATH  Google Scholar 

  50. Raza, M., Aslam, N., Le-Minh, H., Hussain, S., Cao, Y., Khan, N.M.: A critical analysis of research potential, challenges, and future directives in industrial wireless sensor networks. IEEE Commun. Surveys Tutorials 20(1), 39–95 (2018)

    Article  Google Scholar 

  51. Reed, S.R., Chen, X.: Error-Control Coding for Data Networks. Springer, Berlin (1999)

    Book  Google Scholar 

  52. Ristiano, A.: ISA 100 Wireless: Architecture for Industrial Internet of Things. ETSI IEC 62734 (2014)

    Google Scholar 

  53. Sasaki, K., Makido, S., Nakao, A.: Vehicle control system for cooperative driving coordinated multi-layered edge servers. In: IEEE 7th International Conference on Cloud Networking (CloudNet), Tokyo (2018)

    Google Scholar 

  54. Schiessl, S., Al-Zubaidy, H., Skoglund M., Gross, J.: Delay performance of wireless communications with imperfect CSI and finite-length coding. IEEE Trans. Commun. 66(12), 6527–6541 (2018)

    Article  Google Scholar 

  55. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379-423 (1948)

    Article  MathSciNet  Google Scholar 

  56. Shirvanimoghaddam, M., et al.: Short block-length codes for ultra-reliable low latency communications. IEEE Commun. Mag. 57(2), 130–137 (2019)

    Article  Google Scholar 

  57. Siep, T.M., Gifford, I.C., Braley, R.C., Heile, R.F.: Paving the way for personal area network standards: an overview of the IEEE P802.15 working group for wireless personal area networks. IEEE Personal Commun. 7(1), 37–43 (2000)

    Google Scholar 

  58. Sisinni, E., Saifullah, A., Han, S., Jennehag, U., Gidlund, M.: Industrial internet of things: challenges, opportunities, and directions. IEEE Trans. Ind. Inf. 14(11), 4724–4734 (2018)

    Article  Google Scholar 

  59. Sun, S., Fei, Z., Cao, C., Wang, X., Jia, D.: Low complexity polar decoder for 5G Embb control channel. IEEE Access 7, 50710–50717 (2019)

    Article  Google Scholar 

  60. Sutton, G.J., et al.: Enabling technologies for ultra-reliable and low latency communications: from PHY and MAC layer perspectives. IEEE Commun. Surveys Tutorials 21(3), 2488–2524 (2019)

    Article  Google Scholar 

  61. Van Wonterghem, J., Alloum, A., Boutros, J.J., Moeneclaey, M.: Performance comparison of short-length error-correcting codes. In: 2016 Symposium on Communications and Vehicular Technologies (SCVT), Mons (2016), pp. 1–6

    Google Scholar 

  62. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theory 13(2), 260–269 (1967)

    Article  Google Scholar 

  63. Voigtlander, F., Ramadan, A., Eichinger, J., Lenz, C., Pensky, D., Knoll, A.: 5G for robotics: ultra-low latency control of distributed robotic systems. In: International Symposium on Computer Science and Intelligent Controls (ISCSIC), Budapest (2017)

    Google Scholar 

  64. Yang, Y., et al.: Narrowband wireless access for low-power massive internet of things: a bandwidth perspective. IEEE Wireless Commun. 24(3), 138–145 (2017)

    Article  Google Scholar 

  65. Zhang, L., Liang, Y., Xiao, M.: Spectrum sharing for internet of things: a survey. IEEE Wireless Commun. 26(3), 132–139 (2019)

    Article  Google Scholar 

  66. Zheng, K., Hu, F., Wang, W., Xiang, W., Dohler, M.: Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Commun. Mag. 50(7), 184–192 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the Swedish Foundation for Strategic Research (SSF) under grant agreement RIT15-0091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Basri Celebi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Celebi, H.B., Pitarokoilis, A., Skoglund, M. (2020). Wireless Communication for the Industrial IoT. In: Butun, I. (eds) Industrial IoT . Springer, Cham. https://doi.org/10.1007/978-3-030-42500-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42500-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42499-2

  • Online ISBN: 978-3-030-42500-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics