Skip to main content

Linear Age-Structured Population Models as a Base of Age-Structured Epidemic Models

  • Chapter
  • First Online:
  • 948 Accesses

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 52))

Abstract

Age-structured epidemic models are based on age-structured population models. Typically the linear age-structured population model, called the Lotka-McKendrick model, is used as a baseline population model in epidemic systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R.M. Anderson, R.M. May, Population biology of infectious disease: part I. Nature 280, 361–367 (1979)

    Article  Google Scholar 

  2. R. Anderson, R. May, Age-related changes in the rate of disease transmission: implication for the design of vaccination programmes. Camb. J. Hyg. 94, 365–436 (1985)

    Article  Google Scholar 

  3. N. Bacaër, A Short History of Mathematica Population Dynamics (2011). https://doi.org/10.1007/978-0-85729-115-8

    Book  Google Scholar 

  4. S. Busenberg, M. Iannelli, H. Thieme, Global behavior of an age-structured epidemic model. SIAM J. Math. Anal. 22, 1065–1080 (1991)

    Article  MathSciNet  Google Scholar 

  5. S. Busenberg, M. Iannelli, H. Thieme, Dynamics of an age structured epidemic model, in Dynamical systems (Tianjin, 1990/1991). Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 4 (World Scientific Publishing, River Edge, NJ, 1993), pp. 1–19

    Google Scholar 

  6. C. Castillo-Chavez, H.W. Hethcote, V. Andreasen, S.A. Levin, W.M. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity. J. Math. Biol. 27, 233–258 (1989)

    Article  MathSciNet  Google Scholar 

  7. Y. Cha, M. Iannelli, F.A. Milner, Are multiple endemic equilibria possible? in Advances in Mathematical Population Dynamics—Molecules, Cells and Man (Houston, TX, 1995). Series in Mathematical Biology and Medicine, vol. 6 (World Scientific Publishing, River Edge, NJ, 1997), pp. 779–788

    Google Scholar 

  8. Y. Cha, M. Iannelli, F.A. Milner, Existence and uniqueness of endemic states for the age-structured S-I-R epidemic model. Math. Biosci. 150, 177–190 (1998)

    Article  MathSciNet  Google Scholar 

  9. M.S. Cohen, Preventing sexual transmission of HIV. Clin. Infect. Dis. 45, S287–S292 (2007)

    Article  Google Scholar 

  10. J.M. Cushing, An Introduction to Structured Population Dynamics. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 71 (Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998)

    Google Scholar 

  11. W. Feller, On the integral equation of renewal theory. Ann. Math. Stat. 12, 243–267 (1941)

    Article  MathSciNet  Google Scholar 

  12. A. Franceschetti, A. Pugliese, D. Breda, Multiple endemic states in age-structured sir epidemic models. Math. Biosci. Eng. 9, 577–599 (2012)

    Article  MathSciNet  Google Scholar 

  13. D. Greenhalgh, Analytical threshold and stability results on age-structured epidemic models with vaccination. Theor. Popul. Biol. 33, 266–290 (1988)

    Article  MathSciNet  Google Scholar 

  14. M.E. Gurtin, R.C. MacCamy, Non-linear age-dependent population dynamics. Arch. Ration. Mech. Anal. 54, 281–300 (1974)

    Article  MathSciNet  Google Scholar 

  15. M.E. Gurtin, R.C. MacCamy, Some simple models for nonlinear age-dependent population dynamics. Math. Biosci. 43, 199–211 (1979)

    Article  MathSciNet  Google Scholar 

  16. M.E. Gurtin, R.C. MacCamy, Product solutions and asymptotic behavior for age-dependent, dispersing populations. Math. Biosci. 62, 157–167 (1982)

    Article  MathSciNet  Google Scholar 

  17. M. Gyllenberg, Mathematical aspects of physiologically structured populations: the contributions of J. A. J. Metz. J. Biol. Dyn. 1, 3–44 (2007)

    Article  MathSciNet  Google Scholar 

  18. M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics (Giardini, Pisa, 1995)

    Google Scholar 

  19. M. Iannelli, M. Martcheva, Homogeneous dynamical systems and the age-structured SIR model with proportionate mixing incidence, in Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics (Levico Terme, 2000). Progress in Nonlinear Differential Equations, vol. 55 (Birkhäuser, Basel, 2003), pp. 227–251

    Chapter  Google Scholar 

  20. M. Iannelli, F. Milner, The Basic Approach to Age-Structured Population Dynamics (Springer, New York, 2017)

    Book  Google Scholar 

  21. H. Inaba, Threshold and stability results for an age-structured epidemic model. J. Math. Biol. 28, 411–434 (1990)

    Article  MathSciNet  Google Scholar 

  22. H. Inaba, Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model. J. Math. Biol. 54, 101–146 (2007)

    Article  MathSciNet  Google Scholar 

  23. H. Inaba, Age-Structured Population Dynamics in Demography and Epidemiology (Springer, Singapore, 2017)

    Book  Google Scholar 

  24. W. Kermack, A. McKendrick, A contribution to mathematical theory of epidemics-iii–further studies of the problem of endemicity. Proc. R. Soc. Lond. A 141, 94–122 (1933)

    Article  Google Scholar 

  25. A. Lotka, On an integral equation in population analysis. Ann. Math. Stat. 10, 144–161 (1939)

    Article  Google Scholar 

  26. R.M. May, R.M. Anderson, Population biology of infectious diseases: part II. Nature 280, 455–461 (1979)

    Article  Google Scholar 

  27. A. McKendrick, Applications of mathematics to medical problems. Proc. Edinb. Math. Soc. 44, 98–130 (1926)

    Article  Google Scholar 

  28. J.A.J. Metz, O. Diekmann, Age dependence, in The Dynamics of Physiologically Structured Populations. Lecture Notes in Biomathematics, vol. 68 (Springer, Berlin, 1986), pp. 136–184

    Chapter  Google Scholar 

  29. J.A.J. Metz, O. Diekmann, A gentle introduction to structured population models: three worked examples, in The Dynamics of Physiologically Structured Populations (Amsterdam, 1983). Lecture Notes in Biomathematics, vol. 68 (Springer, Berlin, 1986), pp. 3–45

    Chapter  Google Scholar 

  30. F. Sharpe, A.J. Lotka, A problem in age distributions. Phil. Mag. 21, 435–438 (1911)

    Article  Google Scholar 

  31. G.F. Webb, A semigroup proof of the Sharpe-Lotka theorem, in Infinite-Dimensional Systems (Retzhof, 1983). Lecture Notes in Mathematics, vol. 1076 (Springer, Berlin, 1984), pp. 254–268

    Google Scholar 

  32. G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics. Monographs and Textbooks in Pure and Applied Mathematics, vol. 89 (Marcel Dekker, New York, 1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, XZ., Yang, J., Martcheva, M. (2020). Linear Age-Structured Population Models as a Base of Age-Structured Epidemic Models. In: Age Structured Epidemic Modeling. Interdisciplinary Applied Mathematics, vol 52. Springer, Cham. https://doi.org/10.1007/978-3-030-42496-1_1

Download citation

Publish with us

Policies and ethics