Skip to main content

Introduction: Wastewater Generation

  • Chapter
  • First Online:
Upcycling Legume Water: from wastewater to food ingredients

Abstract

Legumes contain abundant amounts of protein, dietary fibre, oligosaccharides, minerals, vitamins and phytochemicals. However, antinutrients are present and crystalline starch is poorly digestible. Soaking, boiling, steaming and canning are common processes used to reduce antinutrients and deliver organoleptic quality. Nonetheless, legume processing produces large volumes of wastewater and causes significant nutrient loss. Soaking was shown to mainly impact oligosaccharides, resulting in 50–75% loss. Protein, dietary fibre, vitamins and phytochemicals were lost as well. Boiling caused drastic losses of oligosaccharides (60–85%), as well as fibre, vitamins and phytochemicals. Steaming reduced protein content of various pulses by 1–5%. Canning mainly impacted the vitamin content (losses of 46–65%), in addition to dietary fibre and oligosaccharides. Some of these changes might be the result of thermal degradation, while others might indicate leaching in the processing water. Therefore, this chapter discuss the generation of wastewater during legume processing and its nutritional potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Hady, E. A., & Habiba, R. A. (2003). Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. LWT – Food Science and Technology, 36, 285–293.

    Article  CAS  Google Scholar 

  • Afify, A. E. M. M., El-Beltagi, H. S., El-Salam, S. M. A., & Omran, A. A. (2011). Bioavailability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. Plos one, 6(10).

    Google Scholar 

  • Augustin, M., Kuzina, V., Andersen, B., & Bak, S. (2011). Molecular activities, biosynthesis and evolution of triterpenoid saponins. Phytochemistry, 72(6), 435–457.

    Article  CAS  Google Scholar 

  • Barakat, H., Reim, V., & Rohn, S. (2015). Stability of saponins from chickpea, soy and faba beans in vegetarian, broccoli-based bars subjected to different cooking techniques. Food Research International, 76, 142–149.

    Article  CAS  Google Scholar 

  • Brouns, F., Kettitz, B., & Arrigoni, E. (2002). Resistant starch and “the butyrate revolution”. Trends in Food Science & Technology, 13(8), 251–261.

    Article  CAS  Google Scholar 

  • Costa, G., Queiroz-Monici, K., Reis, S., & Oliveira, A. (2006). Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common pea, chickpea and lentil legumes. Food Chemistry, 94(3), 327–330.

    Article  CAS  Google Scholar 

  • Duhan, A., Khetarpaul, N., & Bishnoi, S. (2001). Saponin content and trypsin inhibitor activity in processed and cooked pigeon pea cultivars. International Journal of Food Sciences and Nutrition, 52, 53–59.

    Article  CAS  Google Scholar 

  • El-Haby, E. A., & Habiba, R. A. (2003). Effect of soaking and extrusion conditions on antinutrients and protein digestibility of legume seeds. Swiss Society of Food Science and Technology, 36, 285–293.

    Google Scholar 

  • Gilani, S., Cockell, A., & Sepehr, E. (2005). Effects of antinutritional factors on protein digestibility and amino acid availability in foods. Journal of AOAC International, 88, 967–987.

    Article  CAS  Google Scholar 

  • Han, I. H., & Baik, B. K. (2006). Oligosaccharide content and composition of legumes and their reduction by soaking, cooking, ultrasound, and high hydrostatic pressure. Cereal Chemistry, 83(4), 428–433.

    Article  CAS  Google Scholar 

  • Han, I. H., Swanson, B. G., & Baik, B. K. (2007). Protein digestibility of selected legumes treated with ultrasound and high hydrostatic pressure during soaking. Cereal Chemistry, 84(5), 518–521.

    Article  CAS  Google Scholar 

  • Huma, N., Anjum, F. M., Sehar, S., Khan, M. I., & Hussain, S. (2008). Effect of soaking and cooking nutritional quality and safety of legumes. Nutrition and Food Science, 38(6), 570–577.

    Article  Google Scholar 

  • Khattab, R. Y., & Arntfeld, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT – Food Science and Technology, 42, 1113–1118.

    Article  CAS  Google Scholar 

  • Khokhar, S., & Apenten, R. K. O. (2003). Antinutritional factors in food legumes and effects of processing. The Role of Food, Agriculture, Forestry and Fisheries in Human Nutrition, 4, 82–116.

    Google Scholar 

  • Leskova, E., Kubikova, J., Kovacikova, E., Kosicka, M., Porubska, J., & Holcikova, K. (2006). Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. Journal of Food Composition and Analysis, 19, 252–276.

    Article  CAS  Google Scholar 

  • Luo, Y., & Xie, W. (2014). Effect of soaking and sprouting on iron and zinc availability in green and white faba bean (Vicia faba L.). Journal of Food Science and Technology, 51, 3970–3976.

    Article  CAS  Google Scholar 

  • Nisha, P., Singhal, R. S., & Pandit, A. B. (2005). A study on degradation kinetics of riboflavin in green gram whole (Vigna radiata L.). Food chemistry, 89(4), 577–582.

    Google Scholar 

  • Nleya, T., Arganosa, G., Vandenberg, A., & Tyler, R. (2011). Genotype and environment effect on canning quality of kabuli chickpea. Canadian Journal of Plant Science, 82, 267–272.

    Article  Google Scholar 

  • Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, L., & Delikanli, B. (2014). Phenolics in human health. International Journal of Chemical Engineering and Applications, 5(5), 393–396.

    Article  CAS  Google Scholar 

  • Parmar, N., Singh, N., Kaur, A., Virdi, A., & Thakur, S. (2016). Effect of canning on color, protein and phenolic profile of grains from kidney bean, field pea and chickpea. Food Research International, 89(1), 526–532.

    Article  CAS  Google Scholar 

  • Pedrosa, M., Cuadrado, C., Burbano, C., Muzquiz, M., Cabellos, B., Olmedilla-Alonso, B., & Asensio-Vegas, C. (2015). Effects of industrial canning on the proximate composition, bioactive compounds contents and nutritional profile of two Spanish common dry beans (Phaseolus vulgaris L.). Food Chemistry, 166(1), 68–75.

    Article  CAS  Google Scholar 

  • Prodanov, M., Sierra, I., & Vidal-Valverde, C. (2004). Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chemistry, 84, 271–277.

    Article  CAS  Google Scholar 

  • Rani, S., Jood, S., & Sehgal, S. (1996). Cultivar differences and effect of pigeon pea seeds boiling on trypsin inhibitor activity and in vitro digestibility of protein and starch. Nahrung, 40(3), 145–146.

    Article  CAS  Google Scholar 

  • Rehinan, Z., Rashid, M., & Shah, W. H. (2004). Insoluble dietary fibre components of food legumes as affected by soaking and cooking processes. Food Chemistry, 85, 245–249.

    Article  CAS  Google Scholar 

  • Rehman, Z., & Shah, W. H. (2005). Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food Chemistry, 91, 327–331.

    Article  CAS  Google Scholar 

  • Satya, S., Kaushik, G., & Naik, S. N. (2010). Processing of food legumes: A boon to human nutrition. Mediterranean Journal of Nutrition and Metabolism, 3(3), 183–195.

    Article  Google Scholar 

  • Seena, S., & Sridhar, K. R. (2005). Physicochemical, functional and cooking properties of under explored legumes, Canavalia of the southwest coast of India. Food Research International, 38, 803–814.

    Article  CAS  Google Scholar 

  • Shi, J., Xue, J., Ma, Y., Li, D., Kakuda, Y., & Lan, Y. (2009). Kinetic study of saponins B stability in navy beans under different processing conditions. Journal of Food Engineering, 93(1), 59–65.

    Article  CAS  Google Scholar 

  • Słupski, J. (2012). Effect of freezing and canning on the thiamine and riboflavin content in immature seeds of five cultivars of common bean (Phaseolus vulgaris L.). International Journal of Refrigeration 35(4):890–896.

    Google Scholar 

  • Subuola, F., Widodo, Y., & Kehinde, T. (2012). Processing and utilization of legumes in the tropics. In Trends in vital food and control engineering (pp. 71–84). InTech: Rijeka, Croatia.

    Google Scholar 

  • Uebersax, M. (2006). Dry edible beans: Indigenous staple and healthy cuisine. Forum on Public Policy: A Journal of the Oxford Round Table, pp. 1-27.

    Google Scholar 

  • Xu, B., & Chang, S. K. C. (2008). Effect of soaking, boiling and steaming on total phenolic content and antioxidant activities of cool season food legumes. Food Chemistry, 110(1), 1–13.

    Article  CAS  Google Scholar 

  • Xu, B., & Chang, S. K. C. (2009). Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing. Journal of Agriculture and Food Chemistry, 57, 10718–10731.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The completion of this book chapter was made possible thanks to the funding allocated to the taught Master course “FOOD 698 – Research Essay” by Lincoln University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Serventi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, S., Serventi, L. (2020). Introduction: Wastewater Generation. In: Upcycling Legume Water: from wastewater to food ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-42468-8_2

Download citation

Publish with us

Policies and ethics