Skip to main content

Edible Packaging from Legume By-Products

  • Chapter
  • First Online:
Upcycling Legume Water: from wastewater to food ingredients

Abstract

The world plastic industry produces over 322 million tons of waste per year. Thus, bioplastic and edible packaging are highly researched due to their reduced environmental impact. Legumes have been used in packaging in the form of soy fibre and protein. Soy fibre is extracted by sieves, columns or freeze-drying sieving, then processed physically by compression molding or enzymatically by microbial transglutaminase. Soy proteins are extracted by centrifugation or filtration/ultrafiltration. Protein manufacturing can be achieved by addition of several ingredients: plasticizers, surfactants, biodegradable polymers and oils. Alternatively, proteins can be modified via chemical cross-linking (salts), radiation modification (UV), enzyme cross-linking or surface modification. Legume wastewater contains interesting levels of carbohydrates, with as much as 2.5 g/100 g of insoluble fibre. In addition, proteins account for up to 1.6 g/100 g. Therefore, a new technology that upcycles fibre and protein from legume wastewater into edible packaging is encouraged. The challenge is achieving acceptable structure and thermal stability while keeping the costs low. Processing legume fibre and proteins can provide the desired technological quality. In addition, upcycling by-products such as wastewater can reduce manufacturing costs. This could be the start of a new era for bioplastics and sustainable food packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atarés, L., De Jesús, C., Talens, P., & Chiralt, A. (2010). Characterization of SPI-based edible films incorporated with cinnamon or ginger essential oils. Journal of Food Engineering, 99(3), 384–391.

    Google Scholar 

  • Bougueraa, F. Z., El Mouhri, S., & Ettaqi, S. (2018). Experimental analysis of biocomposite Raphia fiber/Chitosan influence of weaving process on mechanical properties. Procedia Manufacturing, 22, 180–185.

    Article  Google Scholar 

  • Boy, R., Bourham, M., & Kotek, R. (2018). Blend films of cellulose and soy protein isolate prepared from gamma irradiated solutions. European Journal of Engineering and Applied Sciences, 1(2), 78–83.

    Google Scholar 

  • Boye, J., Zare, F., & Pletch, A. (2010). Pulse proteins: Processing, characterization, functional properties and applications in food and feed. Food Research International, 43(2), 414–431.

    Article  CAS  Google Scholar 

  • Brummer, Y., Kaviani, M., & Tosh, S. M. (2015). Structural and functional characteristics of dietary fibre in beans, lentils, peas and chickpeas. Food Research International, 67, 117–125.

    Article  CAS  Google Scholar 

  • Cho, S. Y., & Rhee, C. (2004). Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT-Food Science and Technology, 37(8), 833–839.

    Google Scholar 

  • Cifriadi, A., Panji, T., Wibowo, N. A., & Syamsu, K. (2017). Bioplastic production from cellulose of oil palm empty fruit bunch. In IOP Conference Series: Earth and environmental science (65, 1, p. 012011). IOP Publishing, Bogor, Indonesia.

    Google Scholar 

  • Dalgetty, D. D., & Baik, B. K. (2003). Isolation and characterization of cotyledon fibers from peas, lentils, and chickpeas. Cereal Chemistry, 80(3), 310–315.

    Article  CAS  Google Scholar 

  • Deshpande, A. P., Bhaskar Rao, M., & Lakshmana Rao, C. (2000). Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science, 76(1), 83–92.

    Article  CAS  Google Scholar 

  • European Bioplastics. (2016). URL: http://www.european-bioplastics.org/.

  • Fabra, M. J., Talens, P., & Chiralt, A. (2010). Influence of calcium on tensile, optical and water vapour permeability properties of sodium caseinate edible films. Journal of Food Engineering, 96(3), 356–364.

    Google Scholar 

  • Faruk, O., Bledzki, A. K., Fink, H. P., & Sain, M. (2012). Biocomposites reinforced with natural fibers: 2000–2010. Progress in Polymer Science, 37(11), 1552–1596.

    Article  CAS  Google Scholar 

  • Gaspar, A. L. C., & de Góes-Favoni, S. P. (2015). Action of microbial transglutaminase (MTGase) in the modification of food proteins: A review. Food Chemistry, 171, 315–322.

    Article  CAS  PubMed  Google Scholar 

  • Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The circular economy–A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768.

    Article  Google Scholar 

  • Giosafatto, C. V. L., Al-Asmar, A., D’Angelo, A., Roviello, V., Esposito, M., & Mariniello, L. (2018). Preparation and characterization of bioplastics from grass pea flour cast in the presence of microbial transglutaminase. Coatings, 8(12), 435.

    Article  CAS  Google Scholar 

  • Gurunathan, T., Mohanty, S., & Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1–25.

    Article  CAS  Google Scholar 

  • Han, J., Shin, S. H., Park, K. M., & Kim, K. M. (2015). Characterization of physical, mechanical, and antioxidant properties of soy protein-based bioplastic films containing carboxymethylcellulose and catechin. Food Science and Biotechnology, 24(3), 939–945.

    Google Scholar 

  • Hasheminya, S. M., Mokarram, R. R., Ghanbarzadeh, B., Hamishekar, H., Kafil, H. S., & Dehghannya, J. (2019). Development and characterization of biocomposite films made from kefiran, carboxymethyl cellulose and Satureja Khuzestanica essential oil. Food Chemistry, 289, 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Huang, S., Liu, Y., Zhang, W., Dale, K. J., Liu, S., Zhu, J., & Serventi, L. (2018). Composition of legume soaking water and emulsifying properties in gluten-free bread. Food Science and Technology International, 24(3), 232–241.

    Article  CAS  PubMed  Google Scholar 

  • Jawaid, M. H. P. S., & Khalil, H. A. (2011). Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydrate Polymers, 86(1), 1–18.

    Article  CAS  Google Scholar 

  • Jerez, A., Partal, P., Martínez, I., Gallegos, C., & Guerrero, A. (2007). Protein-based bioplastics: Effect of thermo-mechanical processing. Rheologica Acta, 46(5), 711–720.

    Article  CAS  Google Scholar 

  • Kim, H. S., Lee, S. H., Byun, Y., & Park, H. D. (2015). 6-Gingerol reduces Pseudomonas aeruginosa biofilm formation and virulence via quorum sensing inhibition. Scientific Reports, 5, 8656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korhonen, J., Honkasalo, A., & Seppälä, J. (2018). Circular economy: The concept and its limitations. Ecological Economics, 143, 37–46.

    Article  Google Scholar 

  • Kutoš, T., Golob, T., Kač, M., & Plestenjak, A. (2003). Dietary fibre content of dry and processed beans. Food Chemistry, 80(2), 231–235.

    Article  Google Scholar 

  • Li, X., & Pelton, R. (2005). Enhancing wet cellulose adhesion with proteins. Industrial & engineering chemistry research, 44(19), 7398–7404.

    Google Scholar 

  • Martens, L. G., Nilsen, M. M., & Provan, F. (2017). Pea hull fibre: Novel and sustainable fibre with important health and functional properties. EC Nutrition, 10, 139–148.

    Google Scholar 

  • Megías, C., Cortés-Giraldo, I., Alaiz, M., Vioque, J., & Girón-Calle, J. (2016). Isoflavones in chickpea (Cicer arietinum) protein concentrates. Journal of Functional Foods, 21, 186–192.

    Article  CAS  Google Scholar 

  • Mohammad Zadeh, E., O’Keefe, S. F., Kim, Y. T., & Cho, J. H. (2018). Evaluation of enzymatically modified soy protein isolate film forming solution and film at different manufacturing conditions. Journal of Food Science, 83(4), 946–955.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, T., & Kao, N. (2011). PLA based biopolymer reinforced with natural fibre: A review. Journal of Polymers and the Environment, 19(3), 714.

    Article  CAS  Google Scholar 

  • Nandane, A. S., & Jain, R. K. (2018). Optimization of formulation and process parameters for soy protein-based edible film using response surface methodology. Journal of Packaging Technology and Research, 2(3), 203–210.

    Article  Google Scholar 

  • Nurul Fazita, M. R., Jayaraman, K., Bhattacharyya, D., Mohamad Haafiz, M. K., Saurabh, C. K., Hussin, M. H., & HPS, A. K. (2016). Green composites made of bamboo fabric and poly (lactic) acid for packaging applications—A review. Materials, 9(6), 435.

    Article  PubMed Central  CAS  Google Scholar 

  • Oomah, B.D., Patras, A., Rawson, A., Singh, N., & Compos-Vega, R. (2011). Chemistry of pulses. In Pulse foods: Processing, quality and nutraceutical applications (pp. 9–56), Elsevier, Oxford, UK.

    Google Scholar 

  • Orenia, R. M., Collado, A., Magno, M. G., & Cancino, L. T. (2018). Fruit and vegetable wastes as potential component of biodegradable plastic. Asian Journal of Multidisciplinary Studies, 1(1), 17.

    Google Scholar 

  • Park, S. K., Hettiarachchy, N. S., & Were, L. (2000). Degradation behavior of soy protein− Wheat gluten films in simulated soil conditions. Journal of Agricultural and Food Chemistry, 48(7), 3027–3031.

    Article  CAS  PubMed  Google Scholar 

  • Park, S. K., Rhee, C. O., Bae, D. H., & Hettiarachchy, N. S. (2001). Mechanical properties and water-vapor permeability of soy-protein films affected by calcium salts and glucono-δ-lactone. Journal of Agricultural and Food Chemistry, 49(5), 2308–2312.

    Article  CAS  PubMed  Google Scholar 

  • Peelman, N., Ragaert, P., De Meulenaer, B., Adons, D., Peeters, R., Cardon, L., Van Impe, F., & Devlieghere, F. (2013). Application of bioplastics for food packaging. Trends in Food Science & Technology, 32(2), 128–141.

    Article  CAS  Google Scholar 

  • Puscaselu, R., Gutt, G., & Amariei, S. (2019). Biopolymer-based films enriched with stevia rebaudiana used for the development of edible and soluble packaging. Coatings, 9(6), 360.

    Article  CAS  Google Scholar 

  • Rhim, J. W., Lee, J. H., & Ng, P. K. (2007). Mechanical and barrier properties of biodegradable soy protein isolate-based films coated with polylactic acid. LWT-Food Science and Technology, 40(2), 232–238.

    Article  CAS  Google Scholar 

  • Robertson, G. (2008). State-of-the-art biobased food packaging materials. In Environmentally compatible food packaging (pp. 3–28). Woodhead Publishing.

    Google Scholar 

  • Rydz, J., Musioł, M., Zawidlak-Węgrzyńska, B., & Sikorska, W. (2018). Present and future of biodegradable polymers for food packaging applications. In Biopolymers for food design (pp. 431–467). Academic Press, London, UK.

    Google Scholar 

  • Sabbah, M., Giosafatto, C.V.L., Esposito, M., Di Pierro, P., Mariniello, L., & Porta, R. (2019). Transglutaminase cross-linked edible films and coatings for food applications. In Enzymes in food biotechnology (pp. 369–388). Academic Press, London, UK.

    Google Scholar 

  • Salmoral, E. M., Gonzalez, M. E., & Mariscal, M. P. (2000). Biodegradable plastic made from bean products. Industrial Crops and Products, 11(2–3), 217–225.

    Article  CAS  Google Scholar 

  • Satyanarayana, K. G., Arizaga, G. G., & Wypych, F. (2009). Biodegradable composites based on lignocellulosic fibers—An overview. Progress in Polymer Science, 34(9), 982–1021.

    Article  CAS  Google Scholar 

  • Serventi, L., Wang, S., Zhu, J., Liu, S., & Fei, F. (2018). Cooking water of yellow soybeans as emulsifier in gluten-free crackers. European Food Research and Technology, 244(12), 2141–2148.

    Article  CAS  Google Scholar 

  • Sood, M., & Dwivedi, G. (2017). Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review. Egyptian journal of petroleum, 27(4), 775–783.

    Google Scholar 

  • Sreerama, Y. N., Neelam, D. A., Sashikala, V. B., & Pratape, V. M. (2010). Distribution of nutrients and antinutrients in milled fractions of chickpea and horse gram: seed coat phenolics and their distinct modes of enzyme inhibition. Journal of Agricultural and Food Chemistry, 58(7), 4322–4330.

    Article  CAS  PubMed  Google Scholar 

  • Stahel, W. R. (2016). The circular economy. Nature News, 531(7595), 435.

    Article  CAS  Google Scholar 

  • Stantiall, S. E., Dale, K. J., Calizo, F. S., & Serventi, L. (2018). Application of pulses cooking water as functional ingredients: The foaming and gelling abilities. European Food Research and Technology, 244(1), 97–104.

    Article  CAS  Google Scholar 

  • Suderman, N., Isa, M. I. N., & Sarbon, N. M. (2018). The effect of plasticizers on the functional properties of biodegradable gelatin-based film: A review. Food Bioscience, 24, 111–119.

    Article  CAS  Google Scholar 

  • Thakur, S., Chaudhary, J., Sharma, B., Verma, A., Tamulevicius, S., & Thakur, V. K. (2018). Sustainability of bioplastics: Opportunities and challenges. Current Opinion in Green and Sustainable Chemistry, 13, 68–75.

    Article  Google Scholar 

  • Tosh, S. M., & Yada, S. (2010). Dietary fibres in pulse seeds and fractions: Characterization, functional attributes, and applications. Food Research International, 43(2), 450–460.

    Article  CAS  Google Scholar 

  • Vaz, C. M., Van Doeveren, P. F. N. M., Reis, R. L., & Cunha, A. M. (2003). Development and design of double-layer co-injection moulded soy protein based drug delivery devices. Polymer, 44(19), 5983–5992.

    Article  CAS  Google Scholar 

  • Venkidasamy, B., Selvaraj, D., Nile, A. S., Ramalingam, S., Kai, G., & Nile, S. H. (2019). Indian pulses: A review on nutritional, functional and biochemical properties with future perspectives. Trends in Food Science & Technology, 88, 228–242.

    Google Scholar 

  • Wu, Y., Cai, L., Wang, C., Mei, C., & Shi, S. (2018). Sodium hydroxide-free soy protein isolate-based films crosslinked by pentaerythritol glycidyl ether. Polymers, 10(12), 1300.

    Article  PubMed Central  CAS  Google Scholar 

  • Yadav, A., Mangaraj, S., Singh, R., Kumar, N., & Simran, A. (2018). Biopolymers as packaging material in food and allied industry. International Journal of Chemical Studies, 6, 2411–2418.

    Google Scholar 

  • Zhang, S., Xia, C., Dong, Y., Yan, Y., Li, J., Shi, S. Q., & Cai, L. (2016). Soy protein isolate-based films reinforced by surface modified cellulose nanocrystal. Industrial Crops and Products, 80, 207–213.

    Article  CAS  Google Scholar 

  • Zheng, H., Tan, Z. A., Ran Zhan, Y., & Huang, J. (2003). Morphology and properties of soy protein plastics modified with chitin. Journal of Applied Polymer Science, 90(13), 3676–3682.

    Google Scholar 

Download references

Acknowledgments

This book chapter was written thanks to the resources allocated by Lincoln University (New Zealand) to the Bachelor course “FOOD 398 – Research Essay”. The author is the Postgraduate Diploma student, Ms. Yanyu Zhang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Serventi .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, Y., Serventi, L. (2020). Edible Packaging from Legume By-Products. In: Upcycling Legume Water: from wastewater to food ingredients. Springer, Cham. https://doi.org/10.1007/978-3-030-42468-8_11

Download citation

Publish with us

Policies and ethics