Skip to main content

Diagnosis Methods

  • Chapter
  • First Online:
Expert Knowledge-based Inspection Systems

Abstract

Classification lists are a useful tool within building inspection systems. Hence, in situ diagnosis methods are here arranged in a classification list to assist surveyors’ recommendations. This list includes destructive and non-destructive diagnosis methods that can be performed on site, but excludes laboratory tests. Diagnosis methods may complement visual observations to better assess the defects’ characteristics, extent and causes. In the context of a global inspection system for the non-structural building envelope, the classification of diagnosis methods is organised in ten categories: assisted sensory analysis; electrical methods; thermo-hygrometric methods; sound and acoustic methods; nuclear methods; hydric methods; mechanical methods; pressure methods; colour methods; and chemical methods. Considering this classification list and the classification list of defects, the adequacy of each diagnosis method to assess each defect is determined according to the type of results each test can provide. That adequacy is expressed in the defects–diagnosis methods correlation matrix, favouring the use of non-destructive, easier to use and less expensive methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • ACI Committee 224 (2007) Causes, evaluation, and repair of cracks in concrete structures ACI 224.1R-07. Farmington Hills, MI USA

    Google Scholar 

  • Aggelis DG, Kordatos EZ, Soulioti DV, Matikas TE (2010) Combined use of thermography and ultrasound for the characterization of subsurface cracks in concrete. Constr Build Mater 24:1888–1897. https://doi.org/10.1016/j.conbuildmat.2010.04.014

    Article  Google Scholar 

  • Almeida Santos L, Flores-Colen I, Gomes MG (2013) In-situ techniques for mechanical performance and degradation analysis of rendering walls. Restor Build Monum 19:255–266

    Article  Google Scholar 

  • Amaro B, Saraiva D, de Brito J, Flores-Colen I (2013) Inspection and diagnosis system of ETICS on walls. Constr Build Mater 47:1257–1267. https://doi.org/10.1016/j.conbuildmat.2013.06.024

    Article  Google Scholar 

  • Barreira E, de Freitas VP, Delgado JMPQ, Ramos NMM (2012) Thermography applications in the study of buildings hygrothermal behaviour. In: Prakash RV (ed) Infrared thermography. InTech, Rijeka, Croatia, pp 171–192

    Google Scholar 

  • Boettcher O, Ascione F, Bianco N, et al (2017) Energy, comfort and cost optimization of a net-zero energy building in Berlin. In: World sustainable built environment conference 2017. Hong Kong, pp 1132–1139

    Google Scholar 

  • Branco FA, de Brito J (2004) Handbook of concrete bridge management. ASCE Press, Reston, VA USA

    Book  Google Scholar 

  • British Standards Institution (1996) BS 1881: Part 208: 1996 Testing concrete. Part 208. Recommendations for the determination of the initial surface absorption of concrete. British Standards Institution, London, United Kingdom

    Google Scholar 

  • Bungey JH, Millard SG, Grantham MG (2006) Testing of concrete in structures, 4th edn. Taylor & Francis, Oxon, United Kingdom

    Book  Google Scholar 

  • Burkinshaw R (2006) Moisture on tap. J Build Apprais 2:62–68. https://doi.org/10.1057/palgrave.jba.2940039

    Article  Google Scholar 

  • Busching HW, Mathey RG, Rossiter WJ Jr, Cullen WC (1978) Effects of moisture in built-up roofing—A state-of-the-art literature survey. U. S. Department of Commerce/National Bureau of Standards, Washington DC, USA

    Book  Google Scholar 

  • Canadian Roofing Contractors’ Association (2007) Flood testing. Advis Bull 1–2

    Google Scholar 

  • Capolino R (2004) Integrity testing. Interface August 12–18

    Google Scholar 

  • Carasek H, Vaz FH, Cascudo O (2018) Statistical analysis of test methods to evaluate rendering surface properties. Ambient Construído 18:87–105. https://doi.org/10.1080/00958972.2014.986472

    Article  Google Scholar 

  • Carino NJ (2008) Nondestructive test methods. In: Nawy EG (ed) Concrete construction engineering handbook, 2nd edn. CRC Press, Boca Raton, FL USA, pp 21-1–21-73

    Google Scholar 

  • Carvalho C, de Brito J, Flores-Colen I, Pereira C (2018) Inspection, diagnosis, and rehabilitation system for vinyl and linoleum floorings in health infrastructures. J Perform Constr Facil 32:04018078. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001229

    Article  Google Scholar 

  • Cerdeira F, Vázquez ME, Collazo J, Granada E (2011) Applicability of infrared thermography to the study of the behaviour of stone panels as building envelopes. Energy Build 43:1845–1851. https://doi.org/10.1016/j.enbuild.2011.03.029

    Article  Google Scholar 

  • Chastre C, Ludovico-Marques M (2018) Nondestructive testing methodology to assess the conservation of historic stone buildings and monuments. In: Makhlouf ASH, Aliofkhazraei M (eds) Handbook of materials failure analysis. With case studies from the construction industries. Butterworth-Heinemann, Oxford, UK, pp 255–294

    Google Scholar 

  • CIB W86 (1993) Building pathology: a state-of-the-art report. International Council for Research and Innovation in Building and Construction, Delft, The Netherlands

    Google Scholar 

  • Conceição J, Poça B, de Brito J et al (2017) Inspection, diagnosis, and rehabilitation system for flat roofs. J Perform Constr Facil 31:04017100. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001094

    Article  Google Scholar 

  • Connor M, Scott DD (1998) Metal detector use in archaeology: an introduction. Hist Archaeol 32:76–85. https://doi.org/10.1007/BF03374273

  • Cornerstones Community Partnerships, Contreras FU (2006) Adobe conservation: a preservation handbook. Cornerstones Community Partnerships, Santa Fe, NM USA

    Google Scholar 

  • da Silva C, Coelho F, de Brito J et al (2017) Inspection, diagnosis, and repair system for architectural concrete surfaces. J Perform Constr Facil 31:04017035. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001034

    Article  Google Scholar 

  • Daniotti B, Paolini R, Re Cecconi F (2013) Effects of ageing and moisture on thermal performance of ETICS cladding. In: Freitas VP de, Delgado JMPQ (eds) Durability of building materials and components. Springer, Berlin, Heidelberg, Germany, pp 127–171

    Google Scholar 

  • de Brito JMCL (1992) Desenvolvimento de um sistema de gestão de obras de arte em betão (Development of a concrete bridge management system for concrete bridges). PhD thesis, Universidade Técnica de Lisboa, Instituto Superior Técnico, Lisboa, Portugal

    Google Scholar 

  • de Brito J, Branco FA, Ibañez M (1994) Knowledge-based concrete bridge inspection system. Concr Int 16:29–63

    Google Scholar 

  • Delgado A, de Brito J, Silvestre JD (2013) Inspection and diagnosis system for wood flooring. J Perform Constr Facil 27:564–574. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000342

    Article  Google Scholar 

  • Douglas J, Noy EA (2011) Building surveys and reports, 4th edn. Wiley-Blackwell, Chichester, United Kingdom

    Google Scholar 

  • Douglas J, Ransom B (2007) Understanding building failures, 3rd edn. Taylor & Francis, London, United Kingdom

    Book  Google Scholar 

  • Duarte R, Flores-Colen I, de Brito J (2011) In situ testing techniques for evaluation of water penetration in rendered facades—the portable moisture meter and Karsten tube. In: XII DBMC International Conference on Durabilty of Building Materials and Components. Porto, Portugal, pp 1–8

    Google Scholar 

  • Edis E, Flores-Colen I, de Brito J (2014) Passive thermographic detection of moisture problems in façades with adhered ceramic cladding. Constr Build Mater 51:187–197. https://doi.org/10.1016/j.conbuildmat.2013.10.085

    Article  Google Scholar 

  • Edis E, Flores-Colen I, de Brito J (2013) Passive thermographic inspection of adhered ceramic claddings: limitations and conditioning factors. J Perform Constr Facil 27:737–747. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000365

    Article  Google Scholar 

  • Edis E, Flores-Colen I, de Brito J (2011) Effect of the inspection conditions on the in-situ infrared thermographic examination of facades with adhered ceramic cladding. In: XII DBMC international conference on durability of building materials and components. Porto, pp 1–8

    Google Scholar 

  • Edis E, Flores-Colen I, De Brito J (2015) Building thermography: detection of delamination of adhered ceramic claddings using the passive approach. J Nondestruct Eval 34. https://doi.org/10.1007/s10921-014-0268-2

  • Environmental Protection Agency (2013) Moisture control. Guidance for building design, construction and maintenance. Washington DC, USA

    Google Scholar 

  • European Organisation for Technical Approvals (2013) ETAG 004: guideline for European technical approval of external thermal insulation composite systems (ETICS) with rendering. European Organisation for Technical Approvals, Brussels, Belgium

    Google Scholar 

  • Flores-Colen I (2013) Survey information sheets. In: Freitas VP de (ed) A state-of-the-art report on building pathology. CIB International Council for Research and Innovation in Building and Construction, pp 78–83

    Google Scholar 

  • Flores-Colen I, de Brito J (2015) Renders. In: Gonçalves MC, Margarido F (eds) Materials for construction and civil engineering: science, processing, and design. Springer, Switzerland, pp 53–122

    Google Scholar 

  • Flores-Colen I, de Brito J, de Freitas VP (2008) Stains in facades’ rendering—diagnosis and maintenance techniques’ classification. Constr Build Mater 22:211–221. https://doi.org/10.1016/j.conbuildmat.2006.08.023

    Article  Google Scholar 

  • Gaião C, de Brito J, Silvestre J (2011) Inspection and diagnosis of gypsum plasterboard walls. J Perform Constr Facil 25:172–180. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000149

    Article  Google Scholar 

  • Galvão J, Flores-Colen I, de Brito J (2011) In situ testing to evaluate the mechanical performance of rendered façades—rebound hammer and ultrasound techniques. In: XII DBMC—international conference on durability of building materials and components. Porto, Portugal

    Google Scholar 

  • Garcez N, Lopes N, de Brito J, Silvestre J (2012) System of inspection, diagnosis and repair of external claddings of pitched roofs. Constr Build Mater 35:1034–1044. https://doi.org/10.1016/j.conbuildmat.2012.06.047

    Article  Google Scholar 

  • Garcia J, de Brito J (2008) Inspection and diagnosis of epoxy resin industrial floor coatings. J Mater Civ Eng 20:128–136. https://doi.org/10.10617/(ASCE)0899-1561(2008)20:2(128)

  • Gehlen C, Dauberschimdt C, Nürnberger U (2006) Condition control of existing structures by performance testing. Otto-Graf-Journal 17:19–44

    Google Scholar 

  • Glover P (2009) Building surveys, 7th edn. Butterworth-Heinemann, Oxford, United Kingdom

    Google Scholar 

  • Goldberg RP (2011) Direct adhered ceramic tile, stone, masonry veneer, and thin brick facades—technical manual, 2nd edn. Laticrete—Innovative Tile and Stone Installation Systems, North Bethany, CT USA

    Google Scholar 

  • González RF, Azcona MCL de, Martín FM (2000) Petrophysical analysis of the sculptures decay at the Cathedral of Burgos, Spain. In: 9th International congress on deterioration and conservation of stone. Venice, Italy, pp 125–133

    Google Scholar 

  • Grew R (1996) The surveying of structural damage. Struct Surv 14:4–9. https://doi.org/10.1108/EUM0000000004270

    Article  Google Scholar 

  • Grimmer AE, Hensley JE, Petrella L, Tepper AT (2011) The secretary of the interior’s standards for rehabilitation and illustrated guidelines on sustainability for rehabilitating historic buildings. U.S. Department of the Interior, National Park Service, Technical Preservation Services, Washington DC, USA

    Google Scholar 

  • Hård A, Sivik L, Tonnquist G (1996) NCS, natural color system—from concept to research and applications. Part I. Color Res Appl 21:180–205. https://doi.org/10.1002/(SICI)1520-6378(199606)21:3%3c180:AID-COL2%3e3.0.CO;2-O

    Article  Google Scholar 

  • Hendrickx R (2013) Using the Karsten tube to estimate water transport parameters of porous building materials: the possibilities of analytical and numerical solutions. Mater Struct 46:1309–1320. https://doi.org/10.1617/s11527-012-9975-2

    Article  Google Scholar 

  • Henriques DF, Azevedo ACB (2018) Outdoor wood weathering and protection. In: Villegas L, Lombillo I, Blanco H, Boffill Y (eds) 7th Rehabend congress—construction pathology, rehabilitation technology and heritage management. University of Cantabria, University of Extremadura, Cáceres, Spain, pp 2007–2015

    Google Scholar 

  • Hume I (2007) Investigating, monitoring and load testing historic structures. In: Forsyth M (ed) Structures and construction in historic building conservation. Blackwell Publishing, Oxford, UK, pp 64–81

    Google Scholar 

  • James WL (1988) Electric moisture meters for wood. United States Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI USA

    Book  Google Scholar 

  • Johnson RW (2002) The significance of cracks in low-rise buildings. Struct Surv 20:155–161. https://doi.org/10.1108/02630800210456805

    Article  Google Scholar 

  • Kenchington A (1992) Automatic and autonomous monitoring. In: Moore JFA (ed) Monitoring building structures. Blackie, Glasgow, UK

    Google Scholar 

  • Kylili A, Fokaides PA, Christou P, Kalogirou SA (2014) Infrared thermography (IRT) applications for building diagnostics: A review. Appl Energy 134:531–549. https://doi.org/10.1016/j.apenergy.2014.08.005

    Article  Google Scholar 

  • Laboratório Nacional de Engenharia Civil (2002) Ficha de ensaio: revestimentos de paredes: ensaio de absorção de água sob baixa pressão (Test file: wall claddings: water absorption test under low pressure). Laboratório Nacional de Engenharia Civil (LNEC), Lisboa, Portugal

    Google Scholar 

  • Morice PB, Base GD (1953) The design and use of a demountable mechanical strain gauge for concrete structures. Mag Concr Res 5:37–42. https://doi.org/10.1680/macr.1953.5.13.37

    Article  Google Scholar 

  • National Aeronautics and Space Administration (2008) Reliability-centered maintenance guide for facilities and collateral equipment. National Aeronautics and Space Administration, Washington DC, USA

    Google Scholar 

  • Neto N, de Brito J (2011) Inspection and defect diagnosis system for natural stone cladding. J Mater Civ Eng 23:1433–1443. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000314

    Article  Google Scholar 

  • Pereira A, Palha F, de Brito J, Silvestre JD (2011) Inspection and diagnosis system for gypsum plasters in partition walls and ceilings. Constr Build Mater 25:2146–2156. https://doi.org/10.1016/j.conbuildmat.2010.11.015

    Article  Google Scholar 

  • Pires R, de Brito J, Amaro B (2015) Inspection, diagnosis, and rehabilitation system of painted rendered façades. J Perform Constr Facil 29:04014062. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000534

    Article  Google Scholar 

  • Ramos NMM, Simões ML, Delgado JMPQ, de Freitas VP (2012) Reliability of the pull-off test for in situ evaluation of adhesion strength. Constr Build Mater 31:86–93. https://doi.org/10.1016/j.conbuildmat.2011.12.097

    Article  Google Scholar 

  • Ricks C (2010) Roof leaks: pinpointing and repairing. Waterproof! Mag. 18–25

    Google Scholar 

  • RILEM TC 177-MDT (2004) RILEM Recommendation MDT.D.3—Determination “in situ” of the adhesive strength of rendering and plastering mortars to their substrate. Mater Struct 37:488–490

    Google Scholar 

  • RILEM Technical Committee 207-INR (2012) Non-destructive assessment of concrete structures: reliability and limits of single and combined techniques. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Rocha JHA, Santos CF, Póvoas YV (2018) Detection of precipitation infiltration in buildings by infrared thermography: a case study. Procedia Struct Integr 11:99–106. https://doi.org/10.1016/j.prostr.2018.11.014

    Article  Google Scholar 

  • Sá G, Sá J, de Brito J, Amaro B (2014) Inspection and diagnosis system for rendered walls. Int J Civ Eng 12:279–290

    Google Scholar 

  • Salehi A, Torres I, Ramos A (2016) An analytical approach to the ventilation effectiveness of mediterranean buildings. Case study: existing residential building. Portugal. Energy Procedia 96:613–619. https://doi.org/10.1016/j.egypro.2016.09.109

    Article  Google Scholar 

  • Santos A, Vicente M, de Brito J et al (2017) Inspection, diagnosis, and rehabilitation system of door and window frames. J Perform Constr Facil 31:04016118. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000992

    Article  Google Scholar 

  • Santos CP, Matias L, Magalhães AC, Veiga MR (2003) Application of thermography and ultra-sounds for wall anomalies diagnosis a laboratory research study. In: NDT-CE 2003—international symposium non-destructive testing in civil engineering. Berlin, Germany

    Google Scholar 

  • Schwetz J (2014) Risks of roofing over concrete decks. Interface July: 20–32

    Google Scholar 

  • Siedel H, Siegesmund S (2014) Characterization of stone deterioration on buildings. In: Siegesmund S, Snethlage R (eds) Stone in architecture. Properties, durability, 5th edn. Springer, Heidelberg, pp 349–414

    Google Scholar 

  • Silvestre JD, de Brito J (2011) Ceramic tiling in building façades: inspection and pathological characterization using an expert system. Constr Build Mater 25:1560–1571. https://doi.org/10.1016/j.conbuildmat.2010.09.039

    Article  Google Scholar 

  • Silvestre JD, de Brito J (2010) Inspection and repair of ceramic tiling within a building management system. J Mater Civ Eng 22:39–48. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:1(39)

    Article  Google Scholar 

  • Silvestre JD, de Brito J (2009) Ceramic tiling inspection system. Constr Build Mater 23:653–668. https://doi.org/10.1016/j.conbuildmat.2008.02.007

    Article  Google Scholar 

  • Tuna J, Feiteira J, Flores-Colen I et al (2015) In situ characterization of damaging soluble salts in wall construction materials. J Perform Constr Facil 29:04014127. https://doi.org/10.1061/(asce)cf.1943-5509.0000616

    Article  Google Scholar 

  • Urbanowicz C (1987) Weaponry in structural surveys—2 common building defects and their diagnosis. Struct Surv 5:109–120. https://doi.org/10.1108/eb006249

    Article  Google Scholar 

  • Walter A, de Brito J, Lopes JG (2005) Current flat roof bituminous membranes waterproofing systems—inspection, diagnosis and pathology classification. Constr Build Mater 19:233–242. https://doi.org/10.1016/j.conbuildmat.2004.05.008

    Article  Google Scholar 

  • Icons Credits Licensed as Creative Commons CCBY

    Google Scholar 

  • AC supply by Arthur Shlain from the Noun Project

    Google Scholar 

  • Drop water by ruliani from the Noun Project

    Google Scholar 

  • Fan by Ricardo Moreira from the Noun Project

    Google Scholar 

  • Hand by Nick Abrams from the Noun Project

    Google Scholar 

  • Lawn mower by Chanut is Industries from the Noun Project

    Google Scholar 

  • Speedometer by kiddo from the Noun Project

    Google Scholar 

  • Steel spring by ProSymbols from the Noun Project

    Google Scholar 

  • Tachometer by kiddo from the Noun Project

    Google Scholar 

  • Water drop by Deanna Low from the Noun Project

    Google Scholar 

  • Water pressure by Yazmin Alanis from the Noun Project

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge de Brito .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Brito, J., Pereira, C., Silvestre, J., Flores-Colen, I. (2020). Diagnosis Methods. In: Expert Knowledge-based Inspection Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-42446-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42446-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42445-9

  • Online ISBN: 978-3-030-42446-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics