Skip to main content

Targeting the Underlying Defect in CFTR with Small Molecule Compounds

  • Chapter
  • First Online:
Cystic Fibrosis

Part of the book series: Respiratory Medicine ((RM))

  • 1418 Accesses

Abstract

Cystic fibrosis (CF), or mucoviscidosis, is an autosomal recessive disease that presents when a patient has two variant alleles of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) protein. Currently, 2031 genetic variants have been identified in CFTR, of which 312 are known to be disease causing. Variants for which the functional effects on CFTR are known have been sorted into six general molecular classes based on their underlying cell biology (Fig. 24.1). It is important to note that although the class system is a useful construct, the properties of individual mutations often overlap significantly, with many variants having features of multiple classes. For example, the most common variant in the United States, F508del, found in over 70% of patients, has features of Class II (altered protein maturation) and Class III (altered channel function).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cystic Fibrosis Centre at the Hospital for Sick Children. Cystic fibrosis mutation database 2011. Available from: http://www.genet.sickkids.on.ca/cftr/Home.html.

  2. The Clinical and Functional TRanslation of CFTR (CFTR2) http://cftr2.org2018. Updated 8/31/2018. Available from: http://cftr2.org.

  3. Oliver KE, Han ST, Sorscher EJ, Cutting GR. Transformative therapies for rare CFTR missense alleles. Curr Opin Pharmacol. 2017;34:76–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Veit G, Avramescu RG, Chiang AN, Houck SA, Cai Z, Peters KW, et al. From CFTR biology toward combinatorial pharmacotherapy: expanded classification of cystic fibrosis mutations. Mol Biol Cell. 2016;27(3):424–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Galietta LV, Jayaraman S, Verkman AS. Cell-based assay for high-throughput quantitative screening of CFTR chloride transport agonists. Am J Physiol Cell Physiol. 2001;281(5):C1734–42.

    CAS  PubMed  Google Scholar 

  6. Pedemonte N, Lukacs GL, Du K, Caci E, Zegarra-Moran O, Galietta LJ, et al. Small-molecule correctors of defective DeltaF508-CFTR cellular processing identified by high-throughput screening. J Clin Invest. 2005;115(9):2564–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A. 2011;108(46):18843–8.

    PubMed  PubMed Central  Google Scholar 

  8. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Cao D, Neuberger T, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. Proc Natl Acad Sci U S A. 2009;106(44):18825–30.

    PubMed  PubMed Central  Google Scholar 

  9. Van Goor F, Straley KS, Cao D, Gonzalez J, Hadida S, Hazlewood A, et al. Rescue of DeltaF508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules. Am J Physiol Lung Cell Mol Physiol. 2006;290(6):L1117–30.

    PubMed  Google Scholar 

  10. Jih KY, Hwang TC. Vx-770 potentiates CFTR function by promoting decoupling between the gating cycle and ATP hydrolysis cycle. Proc Natl Acad Sci U S A. 2013;110(11):4404–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Eckford PD, Li C, Ramjeesingh M, Bear CE. Cftr potentiator Vx-770 (ivacaftor) opens the defective channel gate of mutant Cftr in a phosphorylation-dependent but Atp-independent manner. J Biol Chem. 2012;287:36639.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Farinha CM, King-Underwood J, Sousa M, Correia AR, Henriques BJ, Roxo-Rosa M, et al. Revertants, low temperature, and correctors reveal the mechanism of F508del-CFTR rescue by VX-809 and suggest multiple agents for full correction. Chem Biol. 2013;20(7):943–55.

    CAS  PubMed  Google Scholar 

  13. Molinski SV, Ahmadi S, Ip W, Ouyang H, Villella A, Miller JP, et al. Orkambi(R) and amplifier co-therapy improves function from a rare CFTR mutation in gene-edited cells and patient tissue. EMBO Mol Med. 2017;9(9):1224–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wilschanski M, Miller LL, Shoseyov D, Blau H, Rivlin J, Aviram M, et al. Chronic ataluren (PTC124) treatment of nonsense mutation cystic fibrosis. Eur Respir J. 2011;38(1):59–69.

    CAS  PubMed  Google Scholar 

  15. Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2(7):539–47.

    CAS  PubMed  Google Scholar 

  16. Sermet-Gaudelus I, Boeck KD, Casimir GJ, Vermeulen F, Leal T, Mogenet A, et al. Ataluren (PTC124) induces cystic fibrosis transmembrane conductance regulator protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010;182(10):1262–72.

    CAS  PubMed  Google Scholar 

  17. Zhang Z, Liu F, Chen J. Molecular structure of the ATP-bound, phosphorylated human CFTR. Proc Natl Acad Sci U S A. 2018;115(50):12757–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hwang TC, Yeh JT, Zhang J, Yu YC, Yeh HI, Destefano S. Structural mechanisms of CFTR function and dysfunction. J Gen Physiol. 2018;150(4):539–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Abstracts of the 21st annual North American cystic fibrosis conference, October 3–6, 2007, Anaheim, California, USA. Pediatr Pulmonol Suppl. 2007;30:99–412.

    Google Scholar 

  20. Abstracts of the 21st annual North American cystic fibrosis conference, October 23–25, 2008, Orlando, Florida, USA. Pediatr Pulmonol Suppl. 2008;31:105–483.

    Google Scholar 

  21. Accurso FJ, Rowe SM, Clancy JP, Boyle MP, Dunitz JM, Durie PR, et al. Effect of VX-770 in persons with cystic fibrosis and the G551D-CFTR mutation. N Engl J Med. 2010;363(21):1991–2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramsey BW, Davies J, McElvaney NG, Tullis E, Bell SC, Drevinek P, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Davies JC, Wainwright CE, Canny GJ, Chilvers MA, Howenstine MS, Munck A, et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013;187(11):1219–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu H, Burton B, Huang CJ, Worley J, Cao D, Johnson JP Jr, et al. Ivacaftor potentiation of multiple CFTR channels with gating mutations. J Cyst Fibros. 2012;11(3):237–45.

    CAS  PubMed  Google Scholar 

  25. De Boeck K, Munck A, Walker S, Faro A, Hiatt P, Gilmartin G, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibrosis. 2014;13(6):674–80.

    Google Scholar 

  26. Guimbellot J, Solomon GM, Baines A, Heltshe SL, VanDalfsen J, Joseloff E, et al. Effectiveness of ivacaftor in cystic fibrosis patients with non-G551D gating mutations. J Cyst Fibrosis. 2019;18(1):102–9.

    Google Scholar 

  27. Davies JC, Cunningham S, Harris WT, Lapey A, Regelmann WE, Sawicki GS, et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4(2):107–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ratjen F, Klingel M, Black P, Powers MR, Grasemann H, Solomon M, et al. Changes in lung clearance index in preschool-aged patients with cystic fibrosis treated with ivacaftor (GOAL): a clinical trial. Am J Respir Crit Care Med. 2018;198(4):526–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosenfeld M, Wainwright CE, Higgins M, Wang LT, McKee C, Campbell D, et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lancet Respir Med. 2018;6(7):545–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Davies J, Sheridan H, Bell N, Cunningham S, Davis SD, Elborn JS, et al. Assessment of clinical response to ivacaftor with lung clearance index in cystic fibrosis patients with a G551D-CFTR mutation and preserved spirometry: a randomised controlled trial. Lancet Respir Med. 2013;1(8):630–8.

    CAS  PubMed  Google Scholar 

  31. Barry PJ, Plant BJ, Nair A, Bicknell S, Simmonds NJ, Bell NJ, et al. Effects of ivacaftor in patients with cystic fibrosis who carry the G551D mutation and have severe lung disease. Chest. 2014;146(1):152–8.

    CAS  PubMed  Google Scholar 

  32. Carter S, Kelly S, Caples E, Grogan B, Doyle J, Gallagher CG, et al. Ivacaftor as salvage therapy in a patient with cystic fibrosis genotype F508del/R117H/IVS8-5T. J Cyst Fibrosis. 2015;14(4):e4–5.

    CAS  Google Scholar 

  33. Hebestreit H, Sauer-Heilborn A, Fischer R, Kading M, Mainz JG. Effects of ivacaftor on severely ill patients with cystic fibrosis carrying a G551D mutation. J Cyst Fibrosis. 2013;12(6):599–603.

    CAS  Google Scholar 

  34. Polenakovik HM, Sanville B. The use of ivacaftor in an adult with severe lung disease due to cystic fibrosis (DeltaF508/G551D). J Cyst Fibrosis. 2013;12(5):530–1.

    Google Scholar 

  35. Ronan NJ, Fleming C, O’Callaghan G, Maher MM, Murphy DM, Plant BJ. The role of ivacaftor in severe cystic fibrosis in a patient with the R117H mutation. Chest. 2015;148(3):e72–e5.

    PubMed  Google Scholar 

  36. Taylor-Cousar J, Niknian M, Gilmartin G, Pilewski JM. Investigators VX. Effect of ivacaftor in patients with advanced cystic fibrosis and a G551D-CFTR mutation: safety and efficacy in an expanded access program in the United States. J Cyst Fibrosis. 2016;15(1):116–22.

    CAS  Google Scholar 

  37. Wood ME, Smith DJ, Reid DW, Masel PJ, France MW, Bell SC. Ivacaftor in severe cystic fibrosis lung disease and a G551D mutation. Respirol Case Rep. 2013;1(2):52–4.

    PubMed  PubMed Central  Google Scholar 

  38. Chassagnon G, Hubert D, Fajac I, Burgel PR, Revel MP. Investigators. Long-term computed tomographic changes in cystic fibrosis patients treated with ivacaftor. Eur Respir J. 2016;48(1):249–52.

    CAS  PubMed  Google Scholar 

  39. Ronan NJ, Einarsson GG, Twomey M, Mooney D, Mullane D, NiChroinin M, et al. CORK study in cystic fibrosis: sustained improvements in ultra-low-dose chest CT scores after CFTR modulation with ivacaftor. Chest. 2018;153(2):395–403.

    PubMed  Google Scholar 

  40. Adam RJ, Hisert KB, Dodd JD, Grogan B, Launspach JL, Barnes JK, et al. Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities. JCI Insight. 2016;1(4):e86183.

    PubMed  PubMed Central  Google Scholar 

  41. Bessonova L, Volkova N, Higgins M, Bengtsson L, Tian S, Simard C, et al. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax. 2018;73(8):731–40.

    PubMed  PubMed Central  Google Scholar 

  42. McKone EF, Borowitz D, Drevinek P, Griese M, Konstan MW, Wainwright C, et al. Long-term safety and efficacy of ivacaftor in patients with cystic fibrosis who have the Gly551Asp-CFTR mutation: a phase 3, open-label extension study (PERSIST). Lancet Respir Med. 2014;2(11):902–10.

    CAS  PubMed  Google Scholar 

  43. Volkova N, Moy K, Evans J, Campbell D, Tian S, Simard C, et al. Disease progression in patients with cystic fibrosis treated with ivacaftor: data from national US and UK registries. J Cyst Fibrosis. 2020;19(1):68–79.

    Google Scholar 

  44. Hubert D, Dehillotte C, Munck A, David V, Baek J, Mely L, et al. Retrospective observational study of French patients with cystic fibrosis and a Gly551Asp-CFTR mutation after 1 and 2years of treatment with ivacaftor in a real-world setting. J Cyst Fibrosis. 2018;17(1):89–95.

    CAS  Google Scholar 

  45. Strang A, Fischer AJ, Chidekel A. Pseudomonas eradication and clinical effectivness of Ivacaftor in four Hispanic patients with S549N. Pediatr Pulmonol. 2017;52(7):E37–E9.

    PubMed  Google Scholar 

  46. Rowe SM, Heltshe SL, Gonska T, Donaldson SH, Borowitz D, Gelfond D, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 2014;190(2):175–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Heltshe SL, Mayer-Hamblett N, Burns JL, Khan U, Baines A, Ramsey BW, et al. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin Infect Dis. 2015;60(5):703–12.

    CAS  PubMed  Google Scholar 

  48. Millar BC, McCaughan J, Rendall JC, Downey DG, Moore JE. Pseudomonas aeruginosa in cystic fibrosis patients with c.1652GA (G551D)-CFTR treated with ivacaftor-changes in microbiological parameters. J Clin Pharm Ther. 2018;43(1):92–100.

    CAS  PubMed  Google Scholar 

  49. Heltshe SL, Rowe SM, Skalland M, Baines A, Jain M. Network GIotCFFTD. Ivacaftor-treated patients with cystic fibrosis derive long-term benefit despite no short-term clinical improvement. Am J Respir Crit Care Med. 2018;197(11):1483–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Gelfond D, Heltshe S, Ma C, Rowe SM, Frederick C, Uluer A, et al. Impact of CFTR modulation on intestinal pH, motility, and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin Transl Gastroenterol. 2017;8(3):e81.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hayes D Jr, Warren PS, McCoy KS, Sheikh SI. Improvement of hepatic steatosis in cystic fibrosis with ivacaftor therapy. J Pediatr Gastroenterol Nutr. 2015;60(5):578–9.

    CAS  PubMed  Google Scholar 

  52. Stalvey MS, Pace J, Niknian M, Higgins MN, Tarn V, Davis J, et al. Growth in prepubertal children with cystic fibrosis treated with ivacaftor. Pediatrics. 2017;139(2). pii: e20162522.

    Google Scholar 

  53. McColley SA. A safety evaluation of ivacaftor for the treatment of cystic fibrosis. Expert Opin Drug Saf. 2016;15(5):709–15.

    CAS  PubMed  Google Scholar 

  54. Dryden C, Wilkinson J, Young D, Brooker RJ. Scottish Paediatric Cystic Fibrosis Managed Clinical N. The impact of 12 months treatment with ivacaftor on Scottish paediatric patients with cystic fibrosis with the G551D mutation: a review. Arch Dis Child. 2018;103(1):68–70.

    PubMed  Google Scholar 

  55. Robertson SM, Luo X, Dubey N, Li C, Chavan AB, Gilmartin GS, et al. Clinical drug-drug interaction assessment of ivacaftor as a potential inhibitor of cytochrome P450 and P-glycoprotein. J Clin Pharmacol. 2015;55(1):56–62.

    CAS  PubMed  Google Scholar 

  56. Jordan CL, Noah TL, Henry MM. Therapeutic challenges posed by critical drug-drug interactions in cystic fibrosis. Pediatr Pulmonol. 2016;51(S44):S61–70.

    PubMed  Google Scholar 

  57. Guimbellot JS, Acosta EP, Rowe SM. Sensitivity of ivacaftor to drug-drug interactions with rifampin, a cytochrome P450 3A4 inducer. Pediatr Pulmonol. 2018;53(5):E6–8.

    PubMed  PubMed Central  Google Scholar 

  58. Trimble AT, Donaldson SH. Ivacaftor withdrawal syndrome in cystic fibrosis patients with the G551D mutation. J Cyst Fibrosis. 2018;17(2):e13–e16.

    Google Scholar 

  59. Harbeson SL, Morgan AJ, Liu JF, Aslanian AM, Nguyen S, Bridson GW, et al. Altering metabolic profiles of drugs by precision deuteration 2: discovery of a deuterated analog of ivacaftor with differentiated pharmacokinetics for clinical development. J Pharmacol Exp Ther. 2017;362(2):359–67.

    CAS  PubMed  Google Scholar 

  60. Van Goor F, Yu H, Burton B, Hoffman BJ. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibrosis. 2014;13(1):29–36.

    Google Scholar 

  61. Flume PA, Liou TG, Borowitz DS, Li H, Yen K, Ordonez CL, et al. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142(3):718–24.

    PubMed  PubMed Central  Google Scholar 

  62. Yeh HI, Sohma Y, Conrath K, Hwang TC. A common mechanism for CFTR potentiators. J Gen Physiol. 2017;149(12):1105–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Phuan PW, Veit G, Tan JA, Finkbeiner WE, Lukacs GL, Verkman AS. Potentiators of defective DeltaF508-CFTR gating that do not interfere with corrector action. Mol Pharmacol. 2015;88(4):791–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Qu BH, Strickland E, Thomas PJ. Cystic fibrosis: a disease of altered protein folding. J Bioenerg Biomembr. 1997;29(5):483–90.

    CAS  PubMed  Google Scholar 

  65. Thibodeau PH, Richardson JM 3rd, Wang W, Millen L, Watson J, Mendoza JL, et al. The cystic fibrosis-causing mutation deltaF508 affects multiple steps in cystic fibrosis transmembrane conductance regulator biogenesis. J Biol Chem. 2010;285(46):35825–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Rubenstein RC, Egan ME, Zeitlin PL. In vitro pharmacologic restoration of CFTR-mediated chloride transport with sodium 4-phenylbutyrate in cystic fibrosis epithelial cells containing delta F508-CFTR. J Clin Invest. 1997;100(10):2457–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rubenstein RC, Zeitlin PL. A pilot clinical trial of oral sodium 4-phenylbutyrate (Buphenyl) in deltaF508-homozygous cystic fibrosis patients: partial restoration of nasal epithelial CFTR function. Am J Respir Crit Care Med. 1998;157(2):484–90.

    CAS  PubMed  Google Scholar 

  68. McCarty NA, Standaert TA, Teresi M, Tuthill C, Launspach J, Kelley TJ, et al. A phase I randomized, multicenter trial of CPX in adult subjects with mild cystic fibrosis. Pediatr Pulmonol. 2002;33(2):90–8.

    PubMed  Google Scholar 

  69. Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, Glockner-Pagel J, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science. 2004;304(5670):600–2.

    CAS  PubMed  Google Scholar 

  70. Van Goor F, Hadida S, Grootenhuis PD, Burton B, Stack JH, Straley KS, et al. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809. Proc Natl Acad Sci U S A. 2011;108(46):18843–8.

    PubMed  PubMed Central  Google Scholar 

  71. Rowe SM, Daines C, Ringshausen FC, Kerem E, Wilson J, Tullis E, et al. Tezacaftor-ivacaftor in residual-function heterozygotes with cystic fibrosis. N Engl J Med. 2017;377(21):2024–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Taylor-Cousar JL, Munck A, McKone EF, van der Ent CK, Moeller A, Simard C, et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017;377(21):2013–23.

    CAS  PubMed  Google Scholar 

  73. Boyle MP, Bell SC, Konstan MW, McColley SA, Rowe SM, Rietschel E, et al. A CFTR corrector (lumacaftor) and a CFTR potentiator (ivacaftor) for treatment of patients with cystic fibrosis who have a phe508del CFTR mutation: a phase 2 randomised controlled trial. Lancet Respir Med. 2014;2(7):527–38.

    CAS  PubMed  Google Scholar 

  74. Cholon DM, Esther CR Jr, Gentzsch M. Efficacy of lumacaftor-ivacaftor for the treatment of cystic fibrosis patients homozygous for the F508del-CFTR mutation. Expert Rev Precis Med Drug Dev. 2016;1(3):235–43.

    PubMed  PubMed Central  Google Scholar 

  75. Elborn JS, Ramsey BW, Boyle MP, Konstan MW, Huang X, Marigowda G, et al. Efficacy and safety of lumacaftor/ivacaftor combination therapy in patients with cystic fibrosis homozygous for Phe508del CFTR by pulmonary function subgroup: a pooled analysis. Lancet Respir Med. 2016;4(8):617–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hubert D, Chiron R, Camara B, Grenet D, Prevotat A, Bassinet L, et al. Real-life initiation of lumacaftor/ivacaftor combination in adults with cystic fibrosis homozygous for the Phe508del CFTR mutation and severe lung disease. J Cyst Fibrosis. 2017;16(3):388–91.

    CAS  Google Scholar 

  77. Konstan MW, McKone EF, Moss RB, Marigowda G, Tian S, Waltz D, et al. Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): a phase 3, extension study. Lancet Respir Med. 2017;5(2):107–18.

    CAS  PubMed  Google Scholar 

  78. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor–ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Clancy JP, Rowe SM, Accurso FJ, Aitken ML, Amin RS, Ashlock MA, et al. Results of a phase IIa study of VX-809, an investigational CFTR corrector compound, in subjects with cystic fibrosis homozygous for the F508del-CFTR mutation. Thorax. 2012;67(1):12–8.

    CAS  PubMed  Google Scholar 

  80. Wainwright CE, Elborn JS, Ramsey BW, Marigowda G, Huang X, Cipolli M, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Milla CE, Ratjen F, Marigowda G, Liu F, Waltz D, Rosenfeld M, et al. Lumacaftor/ivacaftor in patients aged 6-11 years with cystic fibrosis homozygous for F508del-CFTR. Am J Respir Crit Care Med. 2017;195(7):912–20.

    Google Scholar 

  82. Jennings MT, Dezube R, Paranjape S, West NE, Hong G, Braun A, et al. An observational study of outcomes and tolerances in patients with cystic fibrosis initiated on lumacaftor/ivacaftor. Ann Am Thorac Soc. 2017;14(11):1662–6.

    Google Scholar 

  83. Schneider EK. Cytochrome P450 3A4 induction: lumacaftor versus ivacaftor potentially resulting in significantly reduced plasma concentration of ivacaftor. Drug Metab Lett. 2018;12:71.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. The 30th annual North American cystic fibrosis conference, Orange County Convention Center, Orlando, Florida, October 27–29, 2016. Pediatr Pulmonol. 2016;51(S45):S1–S507.

    Google Scholar 

  85. Donaldson SH, Pilewski JM, Griese M, Cooke J, Viswanathan L, Tullis E, et al. Tezacaftor/Ivacaftor in subjects with cystic fibrosis and F508del/F508del-CFTR or F508del/G551D-CFTR. Am J Respir Crit Care Med. 2018;197(2):214–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. A study to evaluate the efficacy and safety of VX-661 in combination with ivacaftor in subjects aged 12 years and older with cystic fibrosis, heterozygous for the F508del-CFTR mutation clinicaltrials.gov2018 [updated 6/12/2018. NCT02516410]. Available from: https://clinicaltrials.gov/ct2/show/results/NCT02516410?term=vx-661&rank=5.

  87. ClinicalTrials.gov Identifier: NCT02516410.

  88. ClinicalTrials.gov Identifier: NCT02412111.

  89. Bell S, De Boeck K, Drevinek P, Plant B, Barry P, Elborn S, et al. WS01.4 GLPG2222 in subjects with cystic fibrosis and the F508del/class III mutation on stable treatment with ivacaftor: results from a phase II study (ALBATROSS). J Cyst Fibros. 2018;17:S2.

    Google Scholar 

  90. van der Ent KC, Minic P, Verhulst S, Van Braeckel E, Flume P, Boas S, et al. EPS3.05 GLPG2222 in subjects with cystic fibrosis homozygous for F508del: results from a phase II study (FLAMINGO). J Cyst Fibros. 2018;17:S42.

    Google Scholar 

  91. The 32nd annual North American cystic fibrosis conference, Colorado Convention Center, Denver, Colorado, October 18–20, 2018. Pediatr Pulmonol. 2018;53(S2):S1–S481.

    Google Scholar 

  92. Flume P, Sawicki G, Pressler T, Schwarz C, Fajac I, Layish D, et al. WS01.2 phase 2 initial results evaluating PTI-428, a novel CFTR amplifier, in patients with cystic fibrosis. J Cyst Fibros. 2018;17:S1–2.

    Google Scholar 

  93. ClinicalTrials.gov NCT03251092, NCT03500263.

  94. Keating D, Marigowda G, Burr L, Daines C, Mall MA, McKone EF, et al. VX-445-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379(17):1612–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Davies JC, Moskowitz SM, Brown C, Horsley A, Mall MA, McKone EF, et al. VX-659-tezacaftor-ivacaftor in patients with cystic fibrosis and one or two Phe508del alleles. N Engl J Med. 2018;379(17):1599–611.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Two phase 3 studies of the triple combination of VX-445, tezacaftor and ivacaftor met primary endpoint of improvement in lung function (ppFEV1) in people with cystic fibrosis [press release]. http://investors.vrtx.com: Vertex Pharmaceuticals, Inc. 2019.

  97. Eckford PD, Ramjeesingh M, Molinski S, Pasyk S, Dekkers JF, Li C, et al. VX-809 and related corrector compounds exhibit secondary activity stabilizing active F508del-CFTR after its partial rescue to the cell surface. Chem Biol. 2014;21(5):666–78.

    CAS  PubMed  Google Scholar 

  98. Cholon DM, O’Neal WK, Randell SH, Riordan JR, Gentzsch M. Modulation of endocytic trafficking and apical stability of CFTR in primary human airway epithelial cultures. Am J Physiol Lung Cell Mol Physiol. 2010;298(3):L304–14.

    CAS  PubMed  Google Scholar 

  99. Varga K, Goldstein RF, Jurkuvenaite A, Chen L, Matalon S, Sorscher EJ, et al. Enhanced cell-surface stability of rescued DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) by pharmacological chaperones. Biochem J. 2008;410(3):555–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Young A, Gentzsch M, Abban CY, Jia Y, Meneses PI, Bridges RJ, et al. Dynasore inhibits removal of wild-type and DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) from the plasma membrane. Biochem J. 2009;421(3):377–85.

    CAS  PubMed  Google Scholar 

  101. Kim Chiaw P, Wellhauser L, Huan LJ, Ramjeesingh M, Bear CE. A chemical corrector modifies the channel function of F508del-CFTR. Mol Pharmacol. 2010;78(3):411–8.

    Google Scholar 

  102. Wellhauser L, Kim Chiaw P, Pasyk S, Li C, Ramjeesingh M, Bear CE. A small-molecule modulator interacts directly with deltaPhe508-CFTR to modify its ATPase activity and conformational stability. Mol Pharmacol. 2009;75(6):1430–8.

    CAS  PubMed  Google Scholar 

  103. De Boeck K, Zolin A, Cuppens H, Olesen HV, Viviani L. The relative frequency of CFTR mutation classes in European patients with cystic fibrosis. J Cyst Fibrosis. 2014;13(4):403–9.

    Google Scholar 

  104. Bedwell DM, Kaenjak A, Benos DJ, Bebok Z, Bubien JK, Hong J, et al. Suppression of a CFTR premature stop mutation in a bronchial epithelial cell line. Nat Med. 1997;3(11):1280–4.

    CAS  PubMed  Google Scholar 

  105. Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996;2(4):467–9.

    CAS  PubMed  Google Scholar 

  106. Sermet-Gaudelus I, Renouil M, Fajac A, Bidou L, Parbaille B, Pierrot S, et al. In vitro prediction of stop-codon suppression by intravenous gentamicin in patients with cystic fibrosis: a pilot study. BMC Med. 2007;5:5–14.

    PubMed  PubMed Central  Google Scholar 

  107. Clancy JP, Bebok Z, Ruiz F, King C, Jones J, Walker L, et al. Evidence that systemic gentamicin suppresses premature stop mutations in patients with cystic fibrosis. Am J Respir Crit Care Med. 2001;163(7):1683–92.

    CAS  PubMed  Google Scholar 

  108. Wilschanski M, Yahav Y, Yaacov Y, Blau H, Bentur L, Rivlin J, et al. Gentamicin-induced correction of CFTR function in patients with cystic fibrosis and CFTR stop mutations. N Engl J Med. 2003;349(15):1433–41.

    CAS  PubMed  Google Scholar 

  109. Wilschanski M, Famini C, Blau H, Rivlin J, Augarten A, Avital A, et al. A pilot study of the effect of gentamicin on nasal potential difference measurements in cystic fibrosis patients carrying stop mutations. Am J Respir Crit Care Med. 2000;161(3 Pt 1):860–5.

    CAS  PubMed  Google Scholar 

  110. Keeling KM, Wang D, Dai Y, Murugesan S, Chenna B, Clark J, et al. Attenuation of nonsense-mediated mRNA decay enhances in vivo nonsense suppression. PLoS One. 2013;8(4):e60478.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Linde L, Boelz S, Nissim-Rafinia M, Oren YS, Wilschanski M, Yaacov Y, et al. Nonsense-mediated mRNA decay affects nonsense transcript levels and governs response of cystic fibrosis patients to gentamicin. J Clin Invest. 2007;117(3):683–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Kerem E, Konstan MW, De Boeck K, Accurso FJ, Sermet-Gaudelus I, Wilschanski M, et al. Ataluren for the treatment of nonsense-mutation cystic fibrosis: a randomised, double-blind, placebo-controlled phase 3 trial. Lancet Respir Med. 2014;2:539.

    CAS  PubMed  Google Scholar 

  113. Gorini L, Kataja E. Phenotypic repair by streptomycin of defective genotypes in E. Coli. Proc Nat Acad Sci United States of America. 1964;51:487–93.

    CAS  Google Scholar 

  114. Martin R, Mogg AE, Heywood LA, Nitschke L, Burke JF. Aminoglycoside suppression at UAG, UAA and UGA codons in Escherichia coli and human tissue culture cells. Mol Gen Genet. 1989;217(2–3):411–8.

    CAS  PubMed  Google Scholar 

  115. Sermet-Gaudelus I, De Boeck K, Casimir GJ, Vermeulen F, Leal T, Mogenet A, et al. Ataluren (PTC124) induces CFTR protein expression and activity in children with nonsense mutation cystic fibrosis. Am J Respir Crit Care Med. 2010;182(10):1262–72.

    Google Scholar 

  116. Xue X, Mutyam V, Thakerar A, Mobley J, Bridges RJ, Rowe SM, et al. Identification of the amino acids inserted during suppression of CFTR nonsense mutations and determination of their functional consequences. Hum Mol Genet. 2017;26(16):3116–29.

    Google Scholar 

  117. Rowe SM, Sloane P, Tang LP, Backer K, Mazur M, Buckley-Lanier J, et al. Suppression of CFTR premature termination codons and rescue of CFTR protein and function by the synthetic aminoglycoside NB54. J Mol Med. 2011;89(11):1149–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Xue X, Mutyam V, Tang L, Biswas S, Du M, Jackson LA, et al. Synthetic aminoglycosides efficiently suppress cystic fibrosis transmembrane conductance regulator nonsense mutations and are enhanced by ivacaftor. Am J Respir Cell Mol Biol. 2014;50(4):805–16.

    PubMed  PubMed Central  Google Scholar 

  119. Nudelman I, Glikin D, Smolkin B, Hainrichson M, Belakhov V, Baasov T. Repairing faulty genes by aminoglycosides: development of new derivatives of geneticin (G418) with enhanced suppression of diseases-causing nonsense mutations. Bioorg Med Chem. 2010;18(11):3735–46.

    CAS  PubMed  Google Scholar 

  120. Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447(7140):87–91.

    CAS  PubMed  Google Scholar 

  121. Roy B, Friesen WJ, Tomizawa Y, Leszyk JD, Zhuo J, Johnson B, et al. Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc Natl Acad Sci U S A. 2016;113(44):12508–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Shoseyov D, Cohen-Cymberknoh M, Wilschanski M. Ataluren for the treatment of cystic fibrosis. Expert Rev Respir Med. 2016;10(4):387–91.

    Google Scholar 

  123. Kerem E, Hirawat S, Armoni S, Yaakov Y, Shoseyov D, Cohen M, et al. Effectiveness of PTC124 treatment of cystic fibrosis caused by nonsense mutations: a prospective phase II trial. Lancet. 2008;372(9640):719–27.

    CAS  PubMed  Google Scholar 

  124. McHugh DR, Steele MS, Valerio DM, Miron A, Mann RJ, LePage DF, et al. A G542X cystic fibrosis mouse model for examining nonsense mutation directed therapies. PLoS One. 2018;13(6):e0199573.

    PubMed  PubMed Central  Google Scholar 

  125. Mutyam V, Du M, Xue X, Keeling KM, White EL, Bostwick JR, et al. Discovery of clinically approved agents that promote suppression of CFTR nonsense mutations. Am J Respir Crit Care Med. 2016;194(9):1092–103.

    Google Scholar 

  126. Keeling KM, Xue X, Gunn G, Bedwell DM. Therapeutics based on stop codon readthrough. Annu Rev Genomics Hum Genet. 2014;15:371–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Rehman A, Baloch NU, Janahi IA. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(18):1783.

    PubMed  Google Scholar 

  128. Quon BS, Rowe SM. New and emerging targeted therapies for cystic fibrosis. BMJ. 2016;352:i859.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven M. Rowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guimbellot, J.S., Rowe, S.M. (2020). Targeting the Underlying Defect in CFTR with Small Molecule Compounds. In: Davis, S., Rosenfeld, M., Chmiel, J. (eds) Cystic Fibrosis. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-42382-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42382-7_24

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-42381-0

  • Online ISBN: 978-3-030-42382-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics