Skip to main content

Hepatobiliary Involvement in Cystic Fibrosis

  • Chapter
  • First Online:
Cystic Fibrosis

Part of the book series: Respiratory Medicine ((RM))

  • 1439 Accesses

Abstract

The improved life expectancy of cystic fibrosis (CF) patients has increased the prevalence of extrapulmonary complications. Liver disease is present in about one-third of CF patients and presents in various forms. The clinically most relevant forms are cirrhosis, possibly arising from the pathognomonic focal biliary fibrosis, and non-cirrhotic portal hypertension. Various forms of liver disease may present in different age groups, including childhood. Cirrhosis mostly presents in the first or second decade of life. The pathogenesis of focal biliary fibrosis and cirrhosis in CF is incompletely understood, although the most accepted hypothesis envisions fibrosis as a response to stasis of inspissated bile, possibly with a second hit provided by increased pro-inflammatory responses of CF bile ducts to gut-derived microbial by-products. Since the disease is often subclinical until complications develop, and because serum liver enzymes are often nonspecifically elevated in CF, annual screening for structural liver disease is recommended. Once the diagnosis is established, treatment with ursodeoxycholate is often advised, although evidence for its efficacy remains a subject of discussion. The efficacy of CFTR modulators in preventing or reversing liver disease progression is not yet established. Complications of severe liver disease are related to portal hypertension, functional hepatic decompensation including exacerbation of malnutrition, and secondary complications of cirrhosis in other organs and may warrant liver transplantation. CF liver disease confers poorer survival and accounts for 2–3% of mortality among CF patients. Current research is aimed at diagnosing early, progressive disease noninvasively, as well as at the discovery of novel therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cystic Fibrosis Foundation. 2017 patient registry: annual data report. Bethesda. 2018.

    Google Scholar 

  2. Debray D, Kelly D, Houwen R, Strandvik B, Colombo C. Best practice guidance for the diagnosis and management of cystic fibrosis-associated liver disease. J Cyst Fibros. 2011;10:S29–36.

    PubMed  Google Scholar 

  3. Woodruff SA, Sontag MK, Accurso FJ, Sokol RJ, Narkewicz MR. Prevalence of elevated liver enzymes in children with cystic fibrosis diagnosed by newborn screen. J Cyst Fibros. 2017;16:139–45.

    CAS  PubMed  Google Scholar 

  4. Jong T, Geake J, Yerkovich S, Bell SC. Idiosyncratic reactions are the most common cause of abnormal liver function tests in patients with cystic fibrosis. Intern Med J. 2015;45:395–401.

    CAS  PubMed  Google Scholar 

  5. Bodewes FAJA, van der Doef HPJ, Houwen RHJ, Verkade HJ. Increase of serum gamma glutamyltransferase (GGT) associated with the development of cirrhotic cystic fibrosis liver disease. J Pediatr Gastroenterol Nutr. 2015;61:113–8.

    CAS  PubMed  Google Scholar 

  6. Boëlle P-Y, Debray D, Guillot L, Clement A, Corvol H. Cystic fibrosis liver disease: outcomes and risk factors in a large cohort of French patients. Hepatology. 2019;69(4):1648–56.

    PubMed  Google Scholar 

  7. European Cystic Fibrosis Society. ECFS patient registry annual data report. Karup. 2016.

    Google Scholar 

  8. Chryssostalis A, Hubert D, Coste J, Kanaan R, Burgel PR, Desmazes-Dufeu N, Soubrane O, Dusser D, Sogni P. Liver disease in adult patients with cystic fibrosis: a frequent and independent prognostic factor associated with death or lung transplantation. J Hepatol. 2011;55:1377–82.

    PubMed  Google Scholar 

  9. Bhardwaj S, Canlas K, Kahi C, Temkit M, Molleston J, Ober M, Howenstine M, Kwo PY. Hepatobiliary abnormalities and disease in cystic fibrosis. J Clin Gastroenterol. 2009;43:858–64.

    PubMed  Google Scholar 

  10. Desmond CP, Wilson J, Bailey M, Clark D, Roberts SK. The benign course of liver disease in adults with cystic fibrosis and the effect of ursodeoxycholic acid. Liver Int. 2007;27:1402–8.

    CAS  PubMed  Google Scholar 

  11. Lamireau T, Monnereau S, Martin S, Marcotte J-E, Winnock M, Alvarez F. Epidemiology of liver disease in cystic fibrosis: a longitudinal study. J Hepatol. 2004;41:920–5.

    PubMed  Google Scholar 

  12. Efrati O, Barak A, Modan-Moses D, Augarten A, Vilozni D, Katznelson D, Szeinberg A, Yahav J, Bujanover Y. Liver cirrhosis and portal hypertension in cystic fibrosis. Eur J Gastroenterol Hepatol. 2003;15:1073–8.

    PubMed  Google Scholar 

  13. Parkins MD, Parkins VM, Rendall JC, Elborn S. Changing epidemiology and clinical issues arising in an ageing cystic fibrosis population. Ther Adv Respir Dis. 2011;5:105–19.

    PubMed  Google Scholar 

  14. Nash KL, Allison ME, McKeon D, Lomas DJ, Haworth CS, Bilton D, Alexander GJM. A single centre experience of liver disease in adults with cystic fibrosis 1995–2006. J Cyst Fibros. 2008;7:252–7.

    CAS  PubMed  Google Scholar 

  15. Koh C, Sakiani S, Surana P, et al. Adult-onset cystic fibrosis liver disease: diagnosis and characterization of an underappreciated entity. Hepatology. 2017;66:591–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Stonebraker JR, Ooi CY, Pace RG, Corvol H, Knowles MR, Durie PR, Ling SC. Features of severe liver disease with portal hypertension in patients with cystic fibrosis. Clin Gastroenterol Hepatol. 2016;14:1207–1215.e3.

    PubMed  PubMed Central  Google Scholar 

  17. Ciucă IM, Pop L, Tămaş L, Tăban S. Cystic fibrosis liver disease - from diagnosis to risk factors. Romanian J Morphol Embryol. 2014;55:91–5.

    Google Scholar 

  18. Colombo C, Apostolo MG, Ferrari M, Seia M, Genoni S, Giunta A, Piceni Sereni L. Analysis of risk factors for the development of liver disease associated with cystic fibrosis. J Pediatr. 1994;124:393–9.

    CAS  PubMed  Google Scholar 

  19. Colombo C, Battezzati PM, Crosignani A, Morabito A, Costantini D, Padoan R, Giunta A. Liver disease in cystic fibrosis: a prospective study on incidence, risk factors, and outcome. Hepatology. 2002;36:1374–82.

    PubMed  Google Scholar 

  20. Bartlett JR. Genetic modifiers of liver disease in cystic fibrosis. JAMA. 2009;302:1076–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Flass T, Narkewicz MR. Cirrhosis and other liver disease in cystic fibrosis. J Cyst Fibros. 2013;12:116–24.

    PubMed  Google Scholar 

  22. Wilschanski M, Rivlin J, Cohen S, et al. Clinical and genetic risk factors for cystic fibrosis-related liver disease. Pediatrics. 1999;103:52–7.

    CAS  PubMed  Google Scholar 

  23. Slieker MG, Deckers-Kocken JM, Uiterwaal CSPM, van der Ent CK, Houwen RHJ. Risk factors for the development of cystic fibrosis related liver disease. Hepatology. 2003;38:775–6.

    PubMed  Google Scholar 

  24. Cohn JA, Strong TV, Picciotto MR, Nairn AC, Collins FS, Fitz JG. Localization of the cystic fibrosis transmembrane conductance regulator in human bile duct epithelial cells. Gastroenterology. 1993;105:1857–64.

    CAS  PubMed  Google Scholar 

  25. Strong TV, Boehm K, Collins FS. Localization of cystic fibrosis transmembrane conductance regulator mRNA in the human gastrointestinal tract by in situ hybridization. J Clin Invest. 1994;93:347–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Concepcion AR, Lopez M, Ardura-Fabregat A, Medina JF. Role of AE2 for pHi regulation in biliary epithelial cells. Front Physiol. 2014;4:1–7.

    Google Scholar 

  27. Yang N, Garcia MAS, Quinton PM. Normal mucus formation requires cAMP-dependent HCO3- secretion and Ca2+-mediated mucin exocytosis. J Physiol. 2013;591:4581–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lewindon PJ, Pereira TN, Hoskins AC, Bridle KR, Williamson RM, Shepherd RW, Ramm GA. The role of hepatic stellate cells and transforming growth factor-beta(1) in cystic fibrosis liver disease. Am J Pathol. 2002;160:1705–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Feranchak AP, Sokol RJ. Cholangiocyte biology and cystic fibrosis liver disease. Semin Liver Dis. 2001;21:471–88.

    CAS  PubMed  Google Scholar 

  30. Oppenheimer EH, Esterly JR. Hepatic changes in young infants with cystic fibrosis: possible relation to focal biliary cirrhosis. J Pediatr. 1975;86:683–9.

    CAS  PubMed  Google Scholar 

  31. Potter CJ, Fishbein M, Hammond S, McCoy K, Qualman S. Can the histologic changes of cystic fibrosis-associated hepatobiliary disease be predicted by clinical criteria ? J Pediatr Gastroenterol Nutr. 1997;25:32–6.

    CAS  PubMed  Google Scholar 

  32. Lindblad A, Hultcrantz R, Strandvik B. Bile-duct destruction and collagen deposition: a prominent ultrastructural feature of the liver in cystic fibrosis. Hepatology. 1992;16:372–81.

    CAS  PubMed  Google Scholar 

  33. Durie PR, Kent G, Phillips MJ, Ackerley CA. Characteristic multiorgan pathology of cystic fibrosis in a long-living cystic fibrosis transmembrane regulator knockout murine model. Am J Pathol. 2004;164:1481–93.

    PubMed  PubMed Central  Google Scholar 

  34. Ramm GA, Shepherd RW, Hoskins AC, et al. Fibrogenesis in pediatric cholestatic liver disease: role of taurocholate and hepatocyte-derived monocyte chemotaxis protein-1 in hepatic stellate cell recruitment. Hepatology. 2009;49:533–44.

    CAS  PubMed  Google Scholar 

  35. Pozniak KN, Pearen MA, Pereira TN, et al. Taurocholate induces biliary differentiation of liver progenitor cells causing hepatic stellate cell chemotaxis in the ductular reaction: role in pediatric cystic fibrosis liver disease. Am J Pathol. 2017;187:2744–57.

    CAS  PubMed  Google Scholar 

  36. Strandvik B, Einarsson K, Lindblad A, Angelin B. Bile acid kinetics and biliary lipid composition in cystic fibrosis. J Hepatol. 1996;25:43–8.

    CAS  PubMed  Google Scholar 

  37. O’Brien S, Mulcahy H, Fenlon H, O’Broin A, Casey M, Burke A, FitzGerald MX, Hegarty JE. Intestinal bile acid malabsorption in cystic fibrosis. Gut. 1993;34:1137–41.

    PubMed  PubMed Central  Google Scholar 

  38. Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, Iuliano L, Piroddi M, Dechecchi MC, Cabrini G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta Mol basis Dis. 2012;1822:690–713.

    CAS  Google Scholar 

  39. Bodewes FAJA, van der Wulp MYM, Beharry S, Doktorova M, Havinga R, Boverhof R, James Phillips M, Durie PRR, Verkade HJJ. Altered intestinal bile salt biotransformation in a cystic fibrosis (Cftr-/-) mouse model with hepato-biliary pathology. J Cyst Fibros. 2015;14:440–6.

    PubMed  Google Scholar 

  40. Freudenberg F, Broderick AL, Yu BB, Leonard MR, Glickman JN, Carey MC. Pathophysiological basis of liver disease in cystic fibrosis employing a DeltaF508 mouse model. Am J Physiol Gastrointest Liver Physiol. 2008;294:G1411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bodewes FAJAJA, Bijvelds MJ, De Vries W, Baller JFWW, Gouw ASHH, De Jonge HR, Verkade HJ. Cholic acid induces a Cftr dependent biliary secretion and liver growth response in mice. PLoS One. 2015;10:1–14.

    Google Scholar 

  42. Bruscia EM, Zhang P-X, Satoh A, Caputo C, Medzhitov R, Shenoy A, Egan ME, Krause DS. Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis. J Immunol. 2011;186:6990–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Fiorotto R, Scirpo R, Trauner M, Fabris L, Hoque R, Spirli C, Strazzabosco M. Loss of CFTR affects biliary epithelium innate immunity and causes TLR4NF-κB-mediated inflammatory response in mice. Gastroenterology. 2011;141:1498–1508.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Fiorotto R, Villani A, Kourtidis A, Scirpo R, Amenduni M, Geibel PJ, Cadamuro M, Spirli C, Anastasiadis PZ, Strazzabosco M. The cystic fibrosis transmembrane conductance regulator controls biliary epithelial inflammation and permeability by regulating Src tyrosine kinase activity. Hepatology. 2016;64:2118–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Werlin S, Scotet V, Uguen K, et al. Primary sclerosing cholangitis is associated with abnormalities in CFTR. J Cyst Fibros. 2018;17:666–71.

    CAS  PubMed  Google Scholar 

  46. Karlsen TH, Folseraas T, Thorburn D, Vesterhus M. Primary sclerosing cholangitis – a comprehensive review. J Hepatol. 2017;67:1298–323.

    PubMed  Google Scholar 

  47. De Lisle RC, Borowitz D. The cystic fibrosis intestine. Cold Spring Harb Perspect Med. 2013;3:1–17.

    Google Scholar 

  48. Fiorotto R, Strazzabosco M. Cystic fibrosis-related liver diseases: new paradigm for treatment based on pathophysiology. Clin Liver Dis. 2016;8:113–6.

    Google Scholar 

  49. Flass T, Tong S, Frank DN, et al. Intestinal lesions are associated with altered intestinal microbiome and are more frequent in children and young adults with cystic fibrosis and cirrhosis. PLoS One. 2015;10:e0116967.

    PubMed  PubMed Central  Google Scholar 

  50. Witters P, Libbrecht L, Roskams T, et al. Liver disease in cystic fibrosis presents as non-cirrhotic portal hypertension. J Cyst Fibros. 2017;16:e11–3.

    PubMed  Google Scholar 

  51. Lewindon PJ, Shepherd RW, Walsh MJ, Greer RM, Williamson R, Pereira TN, Frawley K, Bell SC, Smith JL, Ramm GA. Importance of hepatic fibrosis in cystic fibrosis and the predictive value of liver biopsy. Hepatology. 2011;53:193–201.

    CAS  PubMed  Google Scholar 

  52. Witters P, Libbrecht L, Roskams T, et al. Noncirrhotic presinusoidal portal hypertension is common in cystic fibrosis-associated liver disease. Hepatology. 2011;53:1064–5.

    PubMed  Google Scholar 

  53. Wu H, Vu M, Dhingra S, Ackah R, Goss JA, Rana A, Quintanilla N, Patel K, Leung DH. Obliterative portal venopathy without cirrhosis is prevalent in pediatric cystic fibrosis liver disease with portal hypertension. Clin Gastroenterol Hepatol. 2019;17(10):2134–6.

    PubMed  Google Scholar 

  54. Hillaire S, Cazals-Hatem D, Bruno O, et al. Liver transplantation in adult cystic fibrosis: clinical, imaging, and pathological evidence of obliterative portal venopathy. Liver Transpl. 2017;23:1342–7.

    PubMed  Google Scholar 

  55. Lewindon PJ, Ramm GA. Cystic fibrosis-cirrhosis, portal hypertension, and liver biopsy: reply. Hepatology. 2011;53:1065–6.

    PubMed  Google Scholar 

  56. Witters P, Dupont L, Vermeulen F, Proesmans M, Cassiman D, Wallemacq P, De Boeck K. Lung transplantation in cystic fibrosis normalizes essential fatty acid profiles. J Cyst Fibros. 2013;12:222–8.

    CAS  PubMed  Google Scholar 

  57. Lloyd-Still JD. Essential fatty acid deficiency and nutritional supplementation in cystic fibrosis. J Pediatr. 2002;141:157–9.

    CAS  PubMed  Google Scholar 

  58. Werner A. Essential fatty acid deficiency in mice is associated with hepatic steatosis and secretion of large VLDL particles. Am J Physiol Gastrointest Liver Physiol. 2005;288:G1150–8.

    CAS  PubMed  Google Scholar 

  59. Ducheix S, Montagner A, Polizzi A, et al. Essential fatty acids deficiency promotes lipogenic gene expression and hepatic steatosis through the liver X receptor. J Hepatol. 2013;58:984–92.

    CAS  PubMed  Google Scholar 

  60. Lindblad A, Glaumann H, Strandvik B. Natural history of liver disease in cystic fibrosis. Hepatology. 1999;30:1151–8.

    CAS  PubMed  Google Scholar 

  61. Strandvik B, Hultcrantz R. Liver function and morphology during long-term fatty acid supplementation in cystic fibrosis. Liver. 2008;14:32–6.

    Google Scholar 

  62. Beharry S, Ackerley C, Corey M, et al. Long-term docosahexaenoic acid therapy in a congenic murine model of cystic fibrosis. Am J Physiol Gastrointest Liver Physiol. 2007;292:G839–48.

    CAS  PubMed  Google Scholar 

  63. Cottart CH, Bonvin E, Rey C, et al. Impact of nutrition on phenotype in CFTR-deficient mice. Pediatr Res. 2007;62:528–32.

    CAS  PubMed  Google Scholar 

  64. Smith C, Winn A, Seddon P, Ranganathan S. A fat lot of good: balance and trends in fat intake in children with cystic fibrosis. J Cyst Fibros. 2012;11:154–7.

    CAS  PubMed  Google Scholar 

  65. Ayoub F, Trillo-Alvarez C, Morelli G, Lascano J. Risk factors for hepatic steatosis in adults with cystic fibrosis: similarities to non-alcoholic fatty liver disease. World J Hepatol. 2018;10:34–40.

    PubMed  PubMed Central  Google Scholar 

  66. Hanna RM, Weiner DJ. Overweight and obesity in patients with cystic fibrosis: a center-based analysis. Pediatr Pulmonol. 2015;50:35–41.

    PubMed  Google Scholar 

  67. González Jiménez D, Muñoz-Codoceo R, Garriga-García M, et al. Excess weight in patients with cystic fibrosis: is it always beneficial? Nutr Hosp. 2017;34:578.

    PubMed  Google Scholar 

  68. Kastner-Cole D, Palmer CNA, Ogston SA, Mehta A, Mukhopadhyay S. Overweight and obesity in ΔF508 homozygous cystic fibrosis. J Pediatr. 2005;147:402–4.

    PubMed  Google Scholar 

  69. Treem WR, Stanley CA. Massive hepatomegaly, steatosis, and secondary plasma carnitine deficiency in an infant with cystic fibrosis. Pediatrics. 1989;83:993–7.

    CAS  PubMed  Google Scholar 

  70. Innis SM, Hasman D. Evidence of choline depletion and reduced betaine and dimethylglycine with increased homocysteine in plasma of children with cystic fibrosis. J Nutr. 2006;136:2226–31.

    CAS  PubMed  Google Scholar 

  71. Schall JI, Mascarenhas MR, Maqbool A, et al. Choline supplementation with a structured lipid in children with cystic fibrosis: a randomized placebo-controlled trial. J Pediatr Gastroenterol Nutr. 2016;62:618–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Terheggen-Lagro S, de Jager W, Prakken B, van der Ent CK. Multiplex cytokine profile detection in young children with cystic fibrosis. J Cyst Fibros. 2007;6:S30.

    Google Scholar 

  73. Tarantino G, Savastano S, Colao A. Hepatic steatosis, low-grade chronic inflammation and hormone/growth factor/adipokine imbalance. World J Gastroenterol. 2010;16:4773–83.

    PubMed  PubMed Central  Google Scholar 

  74. Capeau J. Insulin resistance and steatosis in humans. Diabetes Metab. 2008;34:649–57.

    CAS  PubMed  Google Scholar 

  75. Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65:350–62.

    PubMed  Google Scholar 

  76. Alisi A, Ceccarelli S, Panera N, et al. Association between serum atypical fibroblast growth factors 21 and 19 and pediatric nonalcoholic fatty liver disease. PLoS One. 2013;8:e67160.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Van De Peppel IP, Doktorova M, Berkers G, de Jonge HR, Houwen RHJJ, Verkade HJ, Jonker JW, Bodewes FAJA. IVACAFTOR restores FGF19 regulated bile acid homeostasis in cystic fibrosis patients with an S1251N or a G551D gating mutation. J Cyst Fibros. 2018;50:297.

    Google Scholar 

  78. Zhou M, Learned RM, Rossi SJ, DePaoli AM, Tian H, Ling L. Engineered FGF19 eliminates bile acid toxicity and lipotoxicity leading to resolution of steatohepatitis and fibrosis in mice. Hepatol Commun. 2017;1:1024–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Cortes-Santiago N, Leung DH, Castro E, Finegold M, Wu H, Patel K. Hepatic steatosis is prevalent following orthotopic liver transplantation in children with cystic fibrosis. J Pediatr Gastroenterol Nutr. 2018;68:96–103.

    Google Scholar 

  80. Hillaire S, Bonte E, Denninger MH, Casadevall N, Cadranel JF, Lebrec D, Valla D, Degott C. Idiopathic non-cirrhotic intrahepatic portal hypertension in the West: a re-evaluation in 28 patients. Gut. 2002;51:275–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. King LJ, Scurr ED, Murugan N, Williams SGJ, Westaby D, Healy JC. Hepatobiliary and pancreatic manifestations of cystic fibrosis: MR imaging appearances. Radiographics. 2000;20:767–77.

    CAS  PubMed  Google Scholar 

  82. Yamada A, Komaki Y, Komaki F, Micic D, Zullow S, Sakuraba A. Risk of gastrointestinal cancers in patients with cystic fibrosis: a systematic review and meta-analysis. Lancet Oncol. 2018;19:758–67.

    PubMed  Google Scholar 

  83. Lykavieris P, Bernard O, Hadchouel M. Neonatal cholestasis as the presenting feature in cystic fibrosis. Arch Dis Child. 1996;75:67–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Van De Peppel IP, Bertolini A, Jonker JW, Bodewes FAJAJA, Verkade HJ. Diagnosis, follow-up and treatment of cystic fibrosis-related liver disease. Curr Opin Pulm Med. 2017;23:562–9.

    PubMed  Google Scholar 

  85. Mueller-Abt PR, Frawley KJ, Greer RM, Lewindon PJ. Comparison of ultrasound and biopsy findings in children with cystic fibrosis related liver disease. J Cyst Fibros. 2008;7:215–21.

    PubMed  Google Scholar 

  86. Lemaitre C, Dominique S, Billoud E, et al. Relevance of 3D cholangiography and transient elastography to assess cystic fibrosis-associated liver disease? Can Respir J. 2016;2016:1–8.

    Google Scholar 

  87. Erlinger S, Dumont M. Influence of ursodeoxycholic acid on bile secretion. In: Paumgartner G, Stiehl A, Barbara L, Roda E, editors. Strategies for the treatment of hepatobiliary disease. Dordrecht: Kluwer Academic; 1990. p. 35–42.

    Google Scholar 

  88. Cheng K, Ashby D, Smyth RL. Ursodeoxycholic acid for cystic fibrosis-related liver disease. Cochrane Database Syst Rev. 2017. https://doi.org/10.1002/14651858.CD000222.pub4.

  89. Colombo C, Crosignani A, Alicandro G, Zhang W, Biffi A, Motta V, Corti F, Setchell KDR. Long-term ursodeoxycholic acid therapy does not alter lithocholic acid levels in patients with cystic fibrosis with associated liver disease. J Pediatr. 2016;177:59–65.e1.

    CAS  PubMed  Google Scholar 

  90. Merli M, Bertasi S, Servi R, Diamanti S, Martino F, De Santis A, Goffredo F, Quattrucci S, Antonelli M, Angelico M. Effect of a medium dose of ursodeoxycholic acid with or without taurine supplementation on the nutritional status of patients with cystic fibrosis: a randomized, placebo-controlled, crossover trial. J Pediatr Gastroenterol Nutr. 1994;19:198–203.

    CAS  PubMed  Google Scholar 

  91. O’Brien S, Fitzgerald M, Hegarty JE. A controlled trial of ursodeoxycholic acid treatment in cystic fibrosis-related liver disease. Eur J Gastroenterol Hepatol. 1992;4:857–63.

    Google Scholar 

  92. van der Feen C, van der Doef HPJ, van der Ent CK, Houwen RHJ. Ursodeoxycholic acid treatment is associated with improvement of liver stiffness in cystic fibrosis patients. J Cyst Fibros. 2016;15:834–8.

    PubMed  Google Scholar 

  93. Lindblad A, Glaumann H, Strandvik B. A two-year prospective study of the effect of ursodeoxycholic acid on urinary bile acid excretion and liver morphology in cystic fibrosis- associated liver disease. Hepatology. 1998;27:166–74.

    CAS  PubMed  Google Scholar 

  94. Ciucă IM, Pop L, Ranetti E, Popescu IM, Almajan-Guta B, Malita IM, Anghel I. Ursodeoxycholic acid effects on cystic fibrosis liver disease. Farmacia. 2015;63:2–6.

    Google Scholar 

  95. Nousia-Arvanitakis S, Fotoulaki M, Economou H, Xefteri M, Galli-Tsinopoulou A. Long-term prospective study of the effect of ursodeoxycholic acid on cystic fibrosis-related liver disease. J Clin Gastroenterol. 2001;32:324–8.

    CAS  PubMed  Google Scholar 

  96. Ooi CY, Nightingale S, Durie PR, Freedman SD. Ursodeoxycholic acid in cystic fibrosis-associated liver disease. J Cyst Fibros. 2012;11:72–3.

    CAS  PubMed  Google Scholar 

  97. Hayes D, Warren PS, McCoy KS, Sheikh SI. Improvement of hepatic steatosis in cystic fibrosis with ivacaftor therapy. J Pediatr Gastroenterol Nutr. 2015;60:578–9.

    CAS  PubMed  Google Scholar 

  98. Davies JC, Cunningham S, Harris WT, et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4:107–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Fickert P, Hirschfield GM, Denk G, et al. norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol. 2017;67:549–58.

    CAS  PubMed  Google Scholar 

  100. Beuers U, Trauner M, Jansen P, Poupon R. New paradigms in the treatment of hepatic cholestasis: from UDCA to FXR, PXR and beyond. J Hepatol. 2015;62:S25–37.

    CAS  PubMed  Google Scholar 

  101. Jonker JW, Suh JM, Atkins AR, et al. A PPARγ-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature. 2012;485:391–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu W, Struik D, Nies VJM, et al. Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proc Natl Acad Sci. 2016;113:2288–93.

    CAS  PubMed  Google Scholar 

  103. Ding N, Yu RT, Subramaniam N, et al. A vitamin D receptor/SMAD genomic circuit gates hepatic fibrotic response. Cell. 2013;153:601–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Scirpo R, Fiorotto R, Villani A, Amenduni M, Spirli C, Strazzabosco M. Stimulation of nuclear receptor peroxisome proliferator-activated receptor-γ limits NF-κB-dependent inflammation in mouse cystic fibrosis biliary epithelium. Hepatology. 2015;62:1551–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Fiorotto R, Amenduni M, Mariotti V, Fabris L, Spirli C, Strazzabosco M. Src kinase inhibition reduces inflammatory and cytoskeletal changes in ΔF508 human cholangiocytes and improves cystic fibrosis transmembrane conductance regulator correctors efficacy. Hepatology. 2018;67:972–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Garcia-Tsao G, Abraldes JG, Berzigotti A, Bosch J. Portal hypertensive bleeding in cirrhosis: risk stratification, diagnosis, and management: 2016 practice guidance by the American Association for the Study of Liver Diseases. Hepatology. 2017;65:310–35.

    PubMed  Google Scholar 

  107. Palaniappan SK, Than NN, Thein AW, Moe S, van Mourik I. Interventions for preventing and managing advanced liver disease in cystic fibrosis. Cochrane Database Syst Rev. 2017;8:CD012056.

    PubMed  Google Scholar 

  108. Black SM, Woodley FW, Tumin D, Mumtaz K, Whitson BA, Tobias JD, Hayes D. Cystic fibrosis associated with worse survival after liver transplantation. Dig Dis Sci. 2016;61:1178–85.

    CAS  PubMed  Google Scholar 

  109. Rowland M, Gallagher CG, Ó’Laoide R, et al. Outcome in cystic fibrosis liver disease. Am J Gastroenterol. 2011;106:104–9.

    PubMed  Google Scholar 

  110. Rowland M, Gallagher C, Gallagher CG, et al. Outcome in patients with cystic fibrosis liver disease. J Cyst Fibros. 2015;14:120–6.

    PubMed  Google Scholar 

  111. Ye W, Narkewicz MR, Leung DH, Karnsakul W, Murray KF, Alonso EM, Magee JC, Schwarzenberg SJ, Weymann A, Molleston JP. Variceal hemorrhage and adverse liver outcomes in patients with cystic fibrosis cirrhosis. J Pediatr Gastroenterol Nutr. 2018;66:122–7.

    PubMed  PubMed Central  Google Scholar 

  112. Breuer O, Shteyer E, Wilschanski M, Perles Z, Cohen-Cymberknoh M, Kerem E, Shoseyov D. Hepatopulmonary syndrome in patients with cystic fibrosis and liver disease. Chest. 2016;149:e35–8.

    PubMed  Google Scholar 

  113. O’Donnell DH, Ryan R, Hayes B, Fennelly D, Gibney RG. Hepatocellular carcinoma complicating cystic fibrosis related liver disease. J Cyst Fibros. 2009;8:288–90.

    PubMed  Google Scholar 

  114. Kelleher T, Staunton M, O’Mahony S, McCormick PA. Advanced hepatocellular carcinoma associated with cystic fibrosis. Eur J Gastroenterol Hepatol. 2005;17:1123–4.

    PubMed  Google Scholar 

  115. Mckeon D, Day A, Parmar J, Alexander G, Bilton D. Hepatocellular carcinoma in association with cirrhosis in a patient with cystic fibrosis. J Cyst Fibros. 2004;3:193–5.

    CAS  PubMed  Google Scholar 

  116. Pals FH, Verkade HJ, Gulmans VAM, et al. Cirrhosis associated with decreased survival and a 10-year lower median age at death of cystic fibrosis patients in the Netherlands. J Cyst Fibros. 2019;18(3):385–9.

    CAS  PubMed  Google Scholar 

  117. Alex G, Catto-Smith AG, Ditchfield M, Roseby R, Robinson PJ, Cameron FJ, Oliver MR. Is significant cystic fibrosis-related liver disease a risk factor in the development of bone mineralization abnormalities? Pediatr Pulmonol. 2006;41:338–44.

    PubMed  Google Scholar 

  118. Corbett K, Kelleher S, Rowland M, Daly L, Drumm B, Canny G, Greally P, Hayes R, Bourke B. Cystic fibrosis-associated liver disease: a population-based study. J Pediatr. 2004;145:327–32.

    PubMed  Google Scholar 

  119. Polineni D, Piccorelli AV, Hannah WB, Dalrymple SN, Pace RG, Durie PR, Ling SC, Knowles MR, Stonebraker JR. Analysis of a large cohort of cystic fibrosis patients with severe liver disease indicates lung function decline does not significantly differ from that of the general cystic fibrosis population. PLoS One. 2018;13:e0205257.

    PubMed  PubMed Central  Google Scholar 

  120. Slieker MG, van der Doef HPJ, Deckers-Kocken JM, van der Ent CK, Houwen RHJ. Pulmonary prognosis in cystic fibrosis patients with liver disease. J Pediatr. 2006;149:144.

    PubMed  Google Scholar 

  121. Tabernero da Veiga S, González Lama Y, Lama More R, Martínez Carrasco MC, Antelo Landeria MC, Jara Vega P. Chronic liver disease associated with cystic fibrosis: energy expenditure at rest, risk factors, and impact on the course of the disease. Nutr Hosp. 2004;19:19–27.

    CAS  PubMed  Google Scholar 

  122. Gälman C, Arvidsson I, Angelin B, Rudling M. Monitoring hepatic cholesterol 7α-hydroxylase activity by assay of the stable bile acid intermediate 7α-hydroxy-4-cholesten-3-one in peripheral blood. J Lipid Res. 2003;44:859–66.

    PubMed  Google Scholar 

  123. Guilbault C, Saeed Z, Downey GP, Radzioch D. Cystic fibrosis mouse models. Am J Respir Cell Mol Biol. 2007;36:1–7.

    CAS  PubMed  Google Scholar 

  124. Wilke M, Buijs-Offerman RM, Aarbiou J, Colledge WH, Sheppard DN, Touqui L, Bot A, Jorna H, De Jonge HR, Scholte BJ. Mouse models of cystic fibrosis: phenotypic analysis and research applications. J Cyst Fibros. 2011;10:S152–71.

    CAS  PubMed  Google Scholar 

  125. Delaney SJ, Alton EW, Smith SN, et al. Cystic fibrosis mice carrying the missense mutation G551D replicate human genotype-phenotype correlations. EMBO J. 1996;15:955–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Blanco PG, Zaman MM, Junaidi O, Sheth S, Yantiss RK, Nasser IA, Freedman SD. Induction of colitis in cftr −/− mice results in bile duct injury. Am J Physiol Gastrointest Liver Physiol. 2004;287:G491–6.

    CAS  PubMed  Google Scholar 

  127. Debray D, El Mourabit H, Merabtene F, et al. Diet-induced dysbiosis and genetic background synergize with cystic fibrosis transmembrane conductance regulator deficiency to promote cholangiopathy in mice. Hepatol Commun. 2018;2:1533–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Snouwaert J, Brigman K, Latour A. An animal fibrosis made for model by gene cystic targeting. Science (80- ). 1992;257:1083–8.

    CAS  Google Scholar 

  129. Debray D, Rainteau D, Barbu V, et al. Defects in gallbladder emptying and bile acid homeostasis in mice with cystic fibrosis transmembrane conductance regulator deficiencies. Gastroenterology. 2012;142:1581–1591.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Tuggle KL, Birket SE, Cui X, et al. Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)-knockout rats. PLoS One. 2014;9:e91253.

    PubMed  PubMed Central  Google Scholar 

  131. Sun X, Sui H, Fisher JT, et al. Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis. J Clin Invest. 2010;120:3149–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Rogers CS, Stoltz DA, Meyerholz DK, et al. Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science (80- ). 2008;321:1837–41.

    CAS  Google Scholar 

  133. Ostedgaard LS, Meyerholz DK, Chen JH, et al. The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis-like disease in pigs. Sci Transl Med. 2011;3:74–98.

    Google Scholar 

  134. Wilschanski M, Durie PR. Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut. 2007;56:1153–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Uc A, Giriyappa R, Meyerholz DK, et al. Pancreatic and biliary secretion are both altered in cystic fibrosis pigs. Am J Physiol Gastrointest Liver Physiol. 2012;303:G961–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Stoltz DA, Rokhlina T, Ernst SE, et al. Intestinal CFTR expression alleviates meconium ileus in cystic fibrosis pigs. J Clin Invest. 2013;123:2685–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Ballard ST, Evans JW, Drag HS, Schuler M. Pathophysiologic evaluation of the transgenic CFTR “gut-corrected” porcine model of cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. 2016;311:L779–87.

    PubMed  PubMed Central  Google Scholar 

  138. Stoltz DA, Meyerholz DK, Pezzulo AA, et al. Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth. Sci Transl Med. 2010;2:29–31.

    Google Scholar 

  139. Leeuwen L, Fitzgerald DA, Gaskin KJ. Liver disease in cystic fibrosis. Paediatr Respir Rev. 2014;15:69–74.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wilschanski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bertolini, A., Bodewes, F.A.J.A., Slae, M., Wilschanski, M. (2020). Hepatobiliary Involvement in Cystic Fibrosis. In: Davis, S., Rosenfeld, M., Chmiel, J. (eds) Cystic Fibrosis. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-42382-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42382-7_14

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-42381-0

  • Online ISBN: 978-3-030-42382-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics