Skip to main content

Image Segmentation

  • Chapter
  • First Online:
Handbook of Image Processing and Computer Vision

Abstract

This chapter describes different segmentation algorithms, which is the process of dividing the image into homogeneous regions, where all the pixels that correspond to an object in the scene are grouped together. The grouping of pixels in regions is based on a homogeneity criterion that distinguishes them from one another. Segmentation algorithms based on criteria of similarity of pixel attributes (color, texture, etc.) or based on geometric criteria of spatial proximity of pixels (Euclidean distance, etc.) are reported. These criteria are not always valid, and in different applications it is necessary to integrate other information in relation to the a priori knowledge of the application context (application domain). In this last case, the grouping of the pixels is based on comparing the hypothesized regions with the a priori modeled regions. Many segmentation algorithms are available. Here, we present various segmentation strategies based on contour, threshold, region growing and merging, watershed transform, texture, mean-shift and using clustering-based algorithms (K-mean) to handle complex images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The word raster derives from television technology to indicate the horizontal scan of a monitor’s video signal. In computer graphics it is a term used to indicate the grid (matrix) of pixels constituting a raster image or bitmap image.

  2. 2.

    This SSD of squared Euclidean distance coincides with the normal measure of match (similarity) formulated with the Sum of Squared Differences - SSD.

  3. 3.

    See par. 1.9.4 Vol. III for a complete description of Parzen’s window based non-parametric classifier.

  4. 4.

    Under the condition that \(\{\mathbf {x}_1,\ldots , \mathbf {x}_n\)} are independent and identically distributed random variables.

  5. 5.

    Hence the name of kernel density estimation (KDE). Often these basic kernel functions (indicating a profile) are indicated by the lowercase letter \(k(\bullet )\).

  6. 6.

    In our experiments \( c_d = 1 \).

  7. 7.

    In this case \(g(x)=1\).

References

  1. K. Karhunen, Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 37, 1–79 (1947)

    MathSciNet  MATH  Google Scholar 

  2. M. Loève, Probability Theory I, vol. I, 4th edn. (Springer, Berlin, 1977)

    Google Scholar 

  3. D.E. Knuth, Art of Computer Programming, Volume 1: Fundamental Algorithms, 7th edn. (Addison-Wesley, Boston, 1997). ISBN 0201896834

    Google Scholar 

  4. M.S.H. Khayal, A. Khan, S. Bashir, F.H. Khan, S. Aslam, Modified new algorithm for seed filling. Theor. Appl. Inf. Technol. 26(1) (2011)

    Google Scholar 

  5. T. Pavlidis, Contour filling in raster graphics. ACM Comput. Graph. 15(3), 29–36 (1981)

    Article  Google Scholar 

  6. A. Distante, N. Veneziani, A two-pass algorithm for raster graphics. Comput. Graph. Image Process. 20, 288–295 (1982)

    Article  Google Scholar 

  7. J. Illingworth, J. Kittler, A survey of efficient hough transform methods. Comput. Vis., Graph., Image Process. 44(1), 87–116 (1988)

    Article  Google Scholar 

  8. P.V.C. Hough, A method and means for recognising complex patterns. US Patent, p. US3069654 (1962)

    Google Scholar 

  9. R.O. Duda, P.E. Hart, Use of the hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)

    Article  Google Scholar 

  10. D.H. Ballard, Generalizing the hough transform to detect arbitrarys hapes. Pattern Recognit. (Elsevier) 13(2), 111–122 (1981)

    Article  Google Scholar 

  11. L. Xu, E. Oja, P. Kultanena, A new curve detection method: randomized Hough transform (RHT). Pattern Recognit. Lett. 11, 331–338 (1990)

    Article  Google Scholar 

  12. M.A. Fischler, R.C. Bolles, Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  13. C. Lantuejoul, H. Digabel, Iterative algorithms, in In Actes du Second Symposium Europeen d’Analyse Quantitative des Microstructures en Sciences des Materiaux, Biologie et Medecine, pp. 85–99 (1978)

    Google Scholar 

  14. S. Beucher, C. Lantuej, Use of watersheds in contour detection, in Proceeding of Workshop on Image Processing, Real-time Edge and Motion Detection (1979)

    Google Scholar 

  15. S. Beucher, F. Meyer, The morphological approach to segmentation: the watershed transformation, in Mathematical Morphology in Image Processing, pp. 433–481 (1993)

    Chapter  Google Scholar 

  16. J. Serra, Image Analysis and Mathematical Morphology (Academic Press, Cambridge, 1982)

    Google Scholar 

  17. L. Vincent, P. Soille, Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  18. R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, 2nd edn. (Wiley, Hoboken, 2001). ISBN 0471056693

    Google Scholar 

  19. D. Comaniciu, P. Meer, Mean-shift: a robust approach towards feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  20. G.R. Bradski, Computer vision face tracking for use in a perceptual user interface. Intel Technol. J. (1998)

    Google Scholar 

  21. P. Meer, D. Comaniciu, V. Ramesh, Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–575 (2003)

    Google Scholar 

  22. J.G. Allen, R.Y.D. Xu, J.S. Jin, Object tracking using camshift algorithm and multiple quantized feature spaces, in Proceedings of the Pan-Sydney Area Workshop on Visual Information Processing, pp. 3–7 (2004)

    Google Scholar 

  23. L. Tony, Scale-space theory: a basic tool for analysing structures at different scales. J. Appl. Stat. 21(2), 224–270 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arcangelo Distante .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Distante, A., Distante, C. (2020). Image Segmentation. In: Handbook of Image Processing and Computer Vision. Springer, Cham. https://doi.org/10.1007/978-3-030-42374-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42374-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42373-5

  • Online ISBN: 978-3-030-42374-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics