Skip to main content

Retinoic Acid Signaling and Development of the Respiratory System

  • Chapter
  • First Online:
The Biochemistry of Retinoid Signaling III

Part of the book series: Subcellular Biochemistry ((SCBI,volume 95))

Abstract

Retinoic acid (RA), the bioactive metabolite of vitamin A (VA), has long been recognized as a critical regulator of the development of the respiratory system. During embryogenesis, RA signaling is involved in the development of the trachea, airways, lung, and diaphragm. During postnatal life, RA continues to impact respiratory health. Disruption of RA activity during embryonic development produces dramatic phenotypes in animal models and human diseases, including tracheoesophageal fistula, tracheomalacia, congenital diaphragmatic hernia (CDH), and lung agenesis or hypoplasia. Several experimental methods have been used to target RA pathways during the formation of the embryonic lung. These have been performed in different animal models using gain- and loss-of-function strategies and dietary, pharmacologic, and genetic approaches that deplete retinoid stores or disrupt retinoid signaling. Experiments utilizing these methods have led to a deeper understanding of RA’s role as an important signaling molecule that influences all stages of lung development. Current research is uncovering RA cross talk interactions with other embryonic signaling factors, such as fibroblast growth factors, WNT, and transforming growth factor-beta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACTA2:

Alpha-actin-2 or alpha smooth muscle actin

ALDH:

Aldehyde dehydrogenase

ASM:

Airway smooth muscle

BMP4:

Bone morphogenetic protein 4

BMS493:

A pan-retinoic acid receptor inverse agonist

CDH:

Congenital diaphragmatic hernia

COPD:

Chronic obstructive pulmonary disease

DEAB:

Diethylaminobenzaldehyde

DKK1:

Dickkopf WNT signaling pathway inhibitor 1

E:

Embryonic day

FGF:

Fibroblast growth factor

GLI:

GLI-Kruppel family member

HH:

Hedgehog

MYH11:

Myosin heavy chain 11

MYOCD:

Myocardin

n.d.:

Not determined

NKX2.1:

NK2 homeobox 1

p.c.:

Post coitum

PH:

Pulmonary hypertension

PN:

Postnatal day

RA:

Retinoic acid

RAD:

Retinoic acid deficiency or retinoic acid-deficient

RALDH:

Retinaldehyde dehydrogenase

RAR:

Retinoic acid receptor

RARE:

Retinoic acid response element

SHH:

Sonic hedgehog

SRF:

Serum response factor

STRA6:

Stimulated by retinoic acid 6

TAGLN:

Transgelin

TEF:

Tracheoesophageal fistula

TGFβ:

Transforming growth factor-beta

VA:

Vitamin A

VAD:

Vitamin A deficiency or vitamin A-deficient

WNT:

Wingless-type MMTV integration site family

References

  • Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K, Von Lintig J (2014) STRA6 is critical for cellular vitamin A uptake and homeostasis. Hum Mol Genet 23:5402–5417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson DH (1941) Incidence of congenital diphragmatic hernia in the young of rats bred on a diet deficient in vitamin A. Am J Dis Child 62:888–889

    Google Scholar 

  • Anderson DH (1949) Effect of diet during pregnancy upon the incidence of congenital diaphragmatic hernia in the rat. Am J Pathol 25:163–185

    Google Scholar 

  • Babiuk RP, Thebaud B, Greer JJ (2004) Reductions in the incidence of nitrofen-induced diaphragmatic hernia by vitamin A and retinoic acid. Am J Physiol Lung Cell Mol Physiol 286:L970-973

    Article  CAS  PubMed  Google Scholar 

  • Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878

    CAS  PubMed  Google Scholar 

  • Berry DC, Jacobs H, Marwarha G, Gely-Pernot A, O’Byrne SM, DeSantis D, Klopfenstein M, Feret B, Dennefeld C, Blaner WS, Croniger CM, Mark M, Noy N, Ghyselinck NB (2013) The STRA6 receptor is essential for retinol-binding protein-induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. J Biol Chem 288:24528–24539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouillet P, Sapin V, Chazaud C, Messaddeq N, Decimo D, Dolle P, Chambon P (1997) Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. Mech Dev 63:173–186

    Article  CAS  PubMed  Google Scholar 

  • Burgos CM, Davey MG, Riley JS, Jia H, Flake AW, Peranteau WH (2018) Lung function and pulmonary artery blood flow following prenatal maternal retinoic acid and imatinib in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 53:1681–1687

    Article  PubMed  Google Scholar 

  • Burri PH (1974) The postnatal growth of the rat lung. 3. Morphology Anat Rec 180:77–98

    Article  CAS  PubMed  Google Scholar 

  • Carden KA, Boiselle PM, Waltz DA, Ernst A (2005) Tracheomalacia and tracheobronchomalacia in children and adults: an in-depth review. Chest 127:984–1005

    Article  PubMed  Google Scholar 

  • Chazaud C, Dolle P, Rossant J, Mollard R (2003) Retinoic acid signaling regulates murine bronchial tubule formation. Mech Dev 120:691–700

    Article  CAS  PubMed  Google Scholar 

  • Checkley W, West KP Jr, Wise RA, Baldwin MR, Wu L, LeClerq SC, Christian P, Katz J, Tielsch JM, Khatry S, Sommer A (2010) Maternal vitamin A supplementation and lung function in offspring. N Engl J Med 362:1784–1794

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Cao Y, Qian J, Shao F, Niederreither K, Cardoso WV (2010) A retinoic acid-dependent network in the foregut controls formation of the mouse lung primordium. J Clin Invest 120:2040–2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Desai TJ, Qian J, Niederreither K, Lu J, Cardoso WV (2007) Inhibition of Tgf beta signaling by endogenous retinoic acid is essential for primary lung bud induction. Development 134:2969–2979

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Marquez H, Kim YK, Qian J, Shao F, Fine A, Cruikshank WW, Quadro L, Cardoso WV (2014) Prenatal retinoid deficiency leads to airway hyperresponsiveness in adult mice. J Clin Invest 124:801–811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clugston RD, Zhang W, Alvarez S, de Lera AR, Greer JJ (2010) Understanding abnormal retinoid signaling as a causative mechanism in congenital diaphragmatic hernia. Am J Respir Cell Mol Biol 42:276–285

    Article  CAS  PubMed  Google Scholar 

  • Comroe JH (1965) Physiology of respiration, an introductory text. Year Book Medical Publishers, Chicago

    Google Scholar 

  • Dersch H, Zile MH (1993) Induction of normal cardiovascular development in the vitamin A-deprived quail embryo by natural retinoids. Dev Biol 160:424–433

    Article  CAS  PubMed  Google Scholar 

  • Desai TJ, Chen F, Lu J, Qian J, Niederreither K, Dolle P, Chambon P, Cardoso WV (2006) Distinct roles for retinoic acid receptors alpha and beta in early lung morphogenesis. Dev Biol 291:12–24

    Article  CAS  PubMed  Google Scholar 

  • Desai TJ, Malpel S, Flentke GR, Smith SM, Cardoso WV (2004) Retinoic acid selectively regulates Fgf10 expression and maintains cell identity in the prospective lung field of the developing foregut. Dev Biol 273:402–415

    Article  CAS  PubMed  Google Scholar 

  • Dickman ED, Thaller C, Smith SM (1997) Temporally-regulated retinoic acid depletion produces specific neural crest, ocular and nervous system defects. Development 124:3111–3121

    CAS  PubMed  Google Scholar 

  • Dirami G, Massaro GD, Clerch LB, Ryan US, Reczek PR, Massaro D (2004) Lung retinol storing cells synthesize and secrete retinoic acid, an inducer of alveolus formation. Am J Physiol Lung Cell Mol Physiol 286:L249-256

    Article  CAS  PubMed  Google Scholar 

  • Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X (2011) Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 138:971–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes-Silva H, Vaz-Cunha P, Barbosa VB, Silva-Goncalves C, Correia-Pinto J, Moura RS (2017) Retinoic acid regulates avian lung branching through a molecular network. Cell Mol Life Sci 74:4599-4619

    Google Scholar 

  • Gaxiola A, Varon J, Valladolid G (2009) Congenital diaphragmatic hernia: an overview of the etiology and current management. Acta Paediatr 98:621–627

    Article  PubMed  Google Scholar 

  • Geevarghese SK, Chytil F (1994) Depletion of retinyl esters in the lungs coincides with lung prenatal morphological maturation. Biochem Biophys Res Commun 200:529–535

    Article  CAS  PubMed  Google Scholar 

  • Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, Bonniere M, Delahaye S, Munnich A, Encha-Razavi F, Lyonnet S, Vekemans M, Attie-Bitach T, Etchevers HC (2007) Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. Am J Hum Genet 80:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE (2009) Wnt2/2b and beta-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17:290–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goumy C, Gouas L, Marceau G, Coste K, Veronese L, Gallot D, Sapin V, Vago P, Tchirkov A (2010) Retinoid pathway and congenital diaphragmatic hernia: hypothesis from the analysis of chromosomal abnormalities. Fetal Diagn Ther 28:129–139

    Article  PubMed  Google Scholar 

  • Harris-Johnson KS, Domyan ET, Vezina CM, Sun X (2009) beta-Catenin promotes respiratory progenitor identity in mouse foregut. Proc Natl Acad Sci U S A 106:16287–16292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsia CC, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3:849–915

    PubMed  PubMed Central  Google Scholar 

  • Kalter H, Warkany J (1959) Experimental production of congenital maiformations in mammals by metabolic procedure. Physiol Rev 39:69–115

    Article  CAS  PubMed  Google Scholar 

  • Kaplan NB, Grant MM, Brody JS (1985) The lipid interstitial cell of the pulmonary alveolus. Age and species differences. Am Rev Respir Dis 132:1307–1312

    CAS  PubMed  Google Scholar 

  • Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, Ping P, Wiita P, Bok D, Sun H (2007) A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. Science (New York, N.Y.) 315:820–825

    Google Scholar 

  • Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86:125–136

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Gordon J, Manley NR, Litingtung Y, Chiang C (2008) Bmp4 is required for tracheal formation: a novel mouse model for tracheal agenesis. Dev Biol 322:145–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953

    CAS  PubMed  Google Scholar 

  • Lohnes D, Kastner P, Dierich A, Mark M, LeMeur M, Chambon P (1993) Function of retinoic acid receptor gamma in the mouse. Cell 73:643–658

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Sucov HM, Bader JA, Evans RM, Giguere V (1996) Compound mutants for retinoic acid receptor (RAR) beta and RAR alpha 1 reveal developmental functions for multiple RAR beta isoforms. Mech Dev 55:33–44

    Article  CAS  PubMed  Google Scholar 

  • MacLean G, Abu-Abed S, Dolle P, Tahayato A, Chambon P, Petkovich M (2001) Cloning of a novel retinoic-acid metabolizing cytochrome P450, Cyp26B1, and comparative expression analysis with Cyp26A1 during early murine development. Mech Dev 107:195–201

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2006) Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev Camb Philos Soc 81:545–579

    Article  PubMed  Google Scholar 

  • Major D, Cadenas M, Fournier L, Leclerc S, Lefebvre M, Cloutier R (1998) Retinol status of newborn infants with congenital diaphragmatic hernia. Pediatr Surg Int 13:547–549

    Article  CAS  PubMed  Google Scholar 

  • Malpel S, Mendelsohn C, Cardoso WV (2000) Regulation of retinoic acid signaling during lung morphogenesis. Development 127:3057–3067

    CAS  PubMed  Google Scholar 

  • Marquez HA, Cardoso WV (2016) Vitamin A-retinoid signaling in pulmonary development and disease. Mol Cell Pediatr 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Massaro GD, Massaro D, Chambon P (2003) Retinoic acid receptor-alpha regulates pulmonary alveolus formation in mice after, but not during, perinatal period. Am J Physiol Lung Cell Mol Physiol 284:L431-433

    Article  CAS  PubMed  Google Scholar 

  • Massaro GD, Massaro D, Chan WY, Clerch LB, Ghyselinck N, Chambon P, Chandraratna RA (2000) Retinoic acid receptor-beta: an endogenous inhibitor of the perinatal formation of pulmonary alveoli. Physiol Genomics 4:51–57

    Article  CAS  PubMed  Google Scholar 

  • McCollum EV, Davis M (1913) The necessity of certain lipins in the diet during growth. J Biol Chem 15:167–175

    CAS  Google Scholar 

  • McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM (2000) Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol 23:162–167

    Article  CAS  PubMed  Google Scholar 

  • McGowan SE, Doro MM, Jackson SK (1997) Endogenous retinoids increase perinatal elastin gene expression in rat lung fibroblasts and fetal explants. Am J Physiol 273:L410-416

    CAS  PubMed  Google Scholar 

  • Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M, Chambon P, Mark M (1994) Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–2771

    CAS  PubMed  Google Scholar 

  • Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12:3156–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mollard R, Ghyselinck NB, Wendling O, Chambon P, Mark M (2000) Stage-dependent responses of the developing lung to retinoic acid signaling. Int J Dev Biol 44:457–462

    CAS  PubMed  Google Scholar 

  • Moura RS (2019) Retinoic acid as a modulator of proximal-distal patterning and branching morphogenesis of the avian lung. In: Methods in molecular biology. Clifton, N.J., pp 209–224.

    Google Scholar 

  • Niederreither K, Dolle P (2008) Retinoic acid in development: towards an integrated view. Nat Rev Genet 9:541–553

    Article  CAS  PubMed  Google Scholar 

  • Niederreither K, Subbarayan V, Dolle P, Chambon P (1999) Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nat Genet 21:444–448

    Article  CAS  PubMed  Google Scholar 

  • Noy N (2016) Vitamin A Transport and Cell Signaling by the Retinol-Binding Protein Receptor STRA6. Sub-Cell Biochem 81:77–93

    Article  CAS  Google Scholar 

  • Okabe T, Yorifuji H, Yamada E, Takaku F (1984) Isolation and characterization of vitamin-A-storing lung cells. Exp Cell Res 154:125–135

    Article  CAS  PubMed  Google Scholar 

  • Pasutto F, Sticht H, Hammersen G, Gillessen-Kaesbach G, Fitzpatrick DR, Nurnberg G, Brasch F, Schirmer-Zimmermann H, Tolmie JL, Chitayat D, Houge G, Fernandez-Martinez L, Keating S, Mortier G, Hennekam RC, von der Wense A, Slavotinek A, Meinecke P, Bitoun P, Becker C, Nurnberg P, Reis A, Rauch A (2007) Mutations in STRA6 cause a broad spectrum of malformations including anophthalmia, congenital heart defects, diaphragmatic hernia, alveolar capillary dysplasia, lung hypoplasia, and mental retardation. Am J Human Genet 80:550–560.

    Google Scholar 

  • Pringle KC (1986) Human fetal lung development and related animal models. Clin Obstet Gynecol 29:502–513

    Article  CAS  PubMed  Google Scholar 

  • Que J, Okubo T, Goldenring JR, Nam KT, Kurotani R, Morrisey EE, Taranova O, Pevny LH, Hogan BL (2007) Multiple dose-dependent roles for Sox2 in the patterning and differentiation of anterior foregut endoderm. Development 134:2521–2531

    Article  CAS  PubMed  Google Scholar 

  • Rankin SA, Han L, McCracken KW, Kenny AP, Anglin CT, Grigg EA, Crawford CM, Wells JM, Shannon JM, Zorn AM (2016) A Retinoic Acid-Hedgehog Cascade Coordinates Mesoderm-Inducing Signals and Endoderm Competence during Lung Specification. Cell Rep 16:66–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin SA, Thi Tran H, Wlizla M, Mancini P, Shifley ET, Bloor SD, Han L, Vleminckx K, Wert SE, Zorn AM (2015) A molecular atlas of xenopus respiratory system development. Dev Dyn 244:69–85

    Google Scholar 

  • Rossant J, Zirngibl R, Cado D, Shago M, Giguere V (1991) Expression of a retinoic acid response element-hsplacZ transgene defines specific domains of transcriptional activity during mouse embryogenesis. Genes Dev 5:1333–1344

    Article  CAS  PubMed  Google Scholar 

  • Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, Rey JP, Ma JX, Staehling-Hampton K, Trainor PA (2007) RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 21:1113–1124

    Google Scholar 

  • Schittny JC (2017) Development of the lung. Cell Tissue Res 367:427–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141

    Article  CAS  PubMed  Google Scholar 

  • Shenai JP, Chytil F, Stahlman MT (1985) Vitamin A status of neonates with bronchopulmonary dysplasia. Pediatr Res 19:185–188

    Article  CAS  PubMed  Google Scholar 

  • Shifley ET, Kenny AP, Rankin SA, Zorn AM (2012) Prolonged FGF signaling is necessary for lung and liver induction in Xenopus. BMC Dev Biol 12:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder JM, Jenkins-Moore M, Jackson SK, Goss KL, Dai HH, Bangsund PJ, Giguere V, McGowan SE (2005) Alveolarization in retinoic acid receptor-beta-deficient mice. Pediatr Res 57:384–391

    Article  CAS  PubMed  Google Scholar 

  • Tahayato A, Dolle P, Petkovich M (2003) Cyp26C1 encodes a novel retinoic acid-metabolizing enzyme expressed in the hindbrain, inner ear, first branchial arch and tooth buds during murine development. Gene Expr Patterns : GEP 3:449–454

    Article  CAS  PubMed  Google Scholar 

  • Thebaud B, Tibboel D, Rambaud C, Mercier JC, Bourbon JR, Dinh-Xuan AT, Archer SL (1999) Vitamin A decreases the incidence and severity of nitrofen-induced congenital diaphragmatic hernia in rats. Am J Physiol 277:L423–429

    Google Scholar 

  • Torfs CP, Curry CJ, Bateson TF, Honore LH (1992) A population-based study of congenital diaphragmatic hernia. Teratology 46:555–565

    Article  CAS  PubMed  Google Scholar 

  • Wang JH, Deimling SJ, D’Alessandro NE, Zhao L, Possmayer F, Drysdale TA (2011) Retinoic acid is a key regulatory switch determining the difference between lung and thyroid fates in Xenopus laevis. BMC Dev Biol 11:75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburton D, El-Hashash A, Carraro G, Tiozzo C., Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E (2010) Lung organogenesis. Curr Top Dev Biol 90:73–158

    Google Scholar 

  • Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV (2000) The molecular basis of lung morphogenesis. Mech Dev 92:55–81

    Article  CAS  PubMed  Google Scholar 

  • Warkany J, Roth CB, Wilson JG (1948) Multiple congenital malformations; a consideration of etiologic factors. Pediatrics 1:462–471

    CAS  PubMed  Google Scholar 

  • Warkany J, Schraffenberger E (1946) Congenital malformations induced in rats by maternal vitamin A deficiency; defects of the eye. Arch Ophthalmol (Chicago, Ill. : 1929) 35:150–169

    Google Scholar 

  • Weaver M, Yingling JM, Dunn NR, Bellusci S, Hogan BL (1999) Bmp signaling regulates proximal-distal differentiation of endoderm in mouse lung development. Development 126:4005–4015

    CAS  PubMed  Google Scholar 

  • Wei H, Huang HM, Li TY, Qu P, Liu YX, Chen J (2009) Marginal vitamin A deficiency affects lung maturation in rats from prenatal to adult stage. J Nutr Sci Vitaminol (Tokyo) 55:208–214

    Article  CAS  Google Scholar 

  • White JA, Guo YD, Baetz K, Beckett-Jones B, Bonasoro J, Hsu KE, Dilworth FJ, Jones G, Petkovich M (1996) Identification of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. J Biol Chem 271:29922–29927

    Article  CAS  PubMed  Google Scholar 

  • Wilson JG, Barch S (1949) Fetal death and maldevelopment resulting from maternal vitamin A deficiency in the rat. Proc Soc Exp Biol Med 72:687–693. illust

    Google Scholar 

  • Wilson JG, Roth CB, Warkany J (1953) An analysis of the syndrome of malformations induced by maternal vitamin A deficiency. Effects of restoration of vitamin A at various times during gestation. Am J Anatomy 92:189–217

    Article  CAS  Google Scholar 

  • Wilson JG, Warkany J (1948) Malformations in the genito-urinary tract induced by maternal vitamin A deficiency in the rat. Am J Anat 83:357–407

    Article  CAS  PubMed  Google Scholar 

  • Wolbach SB, Howe PR (1925) Tissue changes following deprivation of fat-soluble A vitamin. J Exp Med 42:753–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongtrakool C, Malpel S, Gorenstein J, Sedita J, Ramirez MI, Underhill TM, Cardoso WV (2003) Down-regulation of retinoic acid receptor alpha signaling is required for sacculation and type I cell formation in the developing lung. J Biol Chem 278:46911–46918

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Naltner A, Yan C (2003) Overexpression of dominant negative retinoic acid receptor alpha causes alveolar abnormality in transgenic neonatal lungs. Endocrinology 144:3004–3011

    Article  CAS  PubMed  Google Scholar 

  • Yin A, Winata CL, Korzh S, Korzh V, Gong Z (2010) Expression of components of Wnt and Hedgehog pathways in different tissue layers during lung development in Xenopus laevis. Gene Expr Patterns 10:338–344

    Article  CAS  PubMed  Google Scholar 

  • Zachman RD (1995) Role of vitamin A in lung development. J Nutr 125:1634s–1638s

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felicia Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marquez, H.A., Chen, F. (2020). Retinoic Acid Signaling and Development of the Respiratory System. In: Asson-Batres, M., Rochette-Egly, C. (eds) The Biochemistry of Retinoid Signaling III. Subcellular Biochemistry, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-030-42282-0_6

Download citation

Publish with us

Policies and ethics