Skip to main content

Cornucopia that Brazil Gifted the World

  • Chapter
  • First Online:
The Rubber Tree Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 374 Accesses

Abstract

As an engineering material, natural rubber combines elasticity with other useful properties of vibration absorption, abrasion resistance, malleability, heat resistance and dispersion, electrical insulation, gas impermeability, and water resistance. It is a unique industrial material that is not mined, but grown. High-yield rubber from the rubber tree Hevea brasiliensis is realized through the extraction of rubber-bearing latex by tapping, which is a non-destructive method of harvesting. High turgor pressure in the laticifer network expels latex from the tapped tree, and its flow ceases when plugs form at the cut ends of the laticifers. At the termination of its rubber producing life, the tree is felled for cultivated timber, yet another renewable industrial material. Events in the year 1876, when the rubber tree was transferred from its native South America to the Orient, were pivotal in its transformation from a jungle tree to a plantation crop plant. After almost a century and a half, rubber productivity has increased sixfold through breeding and selection and the adoption of various agronomic practices (Kadir, Rubber Chem Technol 67:537–548, 1994). Recent advances in genomics have introduced new opportunities for further crop improvement. Breeders can now select genotypes that harbor not just individual desirable genes, but use microarrays to pick sets of genes that control polygenic traits.

Hoong-Yeet Yeang—Formerly Rubber Research Institute of Malaysia

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham PD, Tayler RS (1967) Stimulation of latex flow in Hevea brasiliensis. Expt Agric 3(1):1–12

    Article  CAS  Google Scholar 

  • Abraham PD, Wycherley PR, Pakianathan SW (1968) Stimulation of latex flow in Hevea brasiliensis by 4-amino-3,5,6-trichloropicolinic acid and 2-chloroethanephosphonic acid. J Rubb Res Inst Malaya 20(5):291–305

    CAS  Google Scholar 

  • Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Systematics 40:311–331

    Article  Google Scholar 

  • Archer BL, Audley BG (1987) New aspects of rubber biosynthesis. Bot J Linn Soc 94:181–196

    Article  Google Scholar 

  • d’Auzac J (1989) Factors involved in the stopping of flow after tapping, (d’Auzac J. In: Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press, Florida, pp 257–285

    Google Scholar 

  • Barlow C (1978) The natural rubber industry: its development, technology and economy in Malaysia. Oxford University Press, p 26

    Google Scholar 

  • van Beilen JB, Poirier Y (2007) Guayule and Russian dandelion as alternative sources of natural rubber. Critical Rev Biotech 27:217–231

    Article  Google Scholar 

  • Berthelot K, Lecomte S, Estevez Y, Zhendre V, Henry S et al (2014) Rubber particle proteins, HbREF and HbSRPP, show different interactions with model membranes. Biochem Biophys Acta 1838:287–299

    Article  CAS  Google Scholar 

  • Berthelot K, Peruch F, Lecomte S (2016) Highlights on Hevea brasiliensis (pro)hevein proteins. Biochimie 127:258–270

    Article  CAS  Google Scholar 

  • Benevenuto JAZ, Passos JRS, Furtado EL (2017) Microcyclus ulei races in Brazil. Summa Phytopathol 43(4). http://dx.doi.org/10.1590/0100-5405/172339

  • Burkill IH (1935) Dictionary of the economic products of the Malay Peninsula. Crown Agents of the Colonies, on behalf of Governments of the Straits Settlements and Federated Malay States, London

    Google Scholar 

  • Buttery BR, Boatman SG (1966) Manometric measurement of turgor pressures in laticiferous phloem tissues. J Exp Bot 17(51):283–296

    Article  Google Scholar 

  • Chee KH (1976) Factors affecting discharge, germination and viability of spores of Microcyclus ulei. Transac British Mycol Soc 66(3):499–504

    Article  Google Scholar 

  • Chow K-S, Mat-Isa M-N, Bahari A, Ghazali A-K, Alias H et al (2012) Metabolic routes affecting rubber biosynthesis in Hevea brasiliensis latex. J Exp Bot 63(5):1863–1871

    Article  CAS  Google Scholar 

  • Chrestin H, Jacob JL, d’Auzac J (1986) Biochemical basis for cessation of latex flow and occurrence of physiological bark dryness. In: Proceedings of the International Rubber Conference 1985, Kuala Lumpur 3:20–42

    Google Scholar 

  • Dickenson PB (1965) The ultrastructure of the latex vessel of Hevea brasiliensis. In: Mullins L (ed) Proceedings of the natural rubber producers research association jubilee conference, Cambridge 1964. Maclaren & Sons Ltd., London, pp 52–66

    Google Scholar 

  • Gomez JB, Narayanan R, Chen KT (1972) Some structural factors affecting the productivity of Hevea brasiliensis. I. Structural determination of the laticiferous tissue. J Rubb Res Inst Malaya 23(3):193–203

    Google Scholar 

  • Goodman A, Schilder H, Aldrich W (1974) The thermomechanical properties of gutta-percha. II. The history and molecular chemistry of gutta-percha. Oral Surgery, Oral Med, Oral Pathol, Oral Radiol 37(6):954–961

    Google Scholar 

  • Herath HMG (1984) The rubber industry in Sri Lanka. Asian Surv 24(8):817–827

    Article  Google Scholar 

  • Imle EP (1978) Hevea rubber: past and future. Econ Bot 32(3):264–277

    Article  Google Scholar 

  • Jackson J (2008) The thief at the end of the world: rubber, power, and the seeds of empire. Penguin

    Google Scholar 

  • Jones KP, Allen PW (1992) Historical development of the world rubber industry. In: Sethuraj MR, Mathew NM (eds) Natural rubber: biology, cultivation and technology. Elsevier Science Publishers, Amsterdam

    Google Scholar 

  • Kadir AASA (1994) Advances in natural rubber production. Rubber Chem Technol 67(3):537–548

    Article  CAS  Google Scholar 

  • Kekwick RGO (1989) The formation of isoprenoids in Hevea latex. In: d’Auzac J, Jacob JL, Chrestin L (eds) Physiology of rubber tree latex. CRC Press, Florida, pp 145–164

    Google Scholar 

  • Kew Guild (2017) Robert MacKenzie Cross (1836–1911). J Kew Guild. https://kewguild.org.uk/2017/01/27/robert-mackenzie-cross-1836-1911/

  • Li D, Deng Z, Chen C, Xia Z, Wu M, He, P, Chen S (2010) Identification and characterization of genes associated with tapping panel dryness from Hevea brasiliensis latex using suppression subtractive hybridization. BMC Plant Biol 10:140. http://www.biomedcentral.com/1471-2229/10/140

  • Lieberei R (2007) South American Leaf Blight of the rubber tree (Hevea spp.): new steps in plant domestication using physiological features and molecular markers. Ann Bot 100:1125–1142

    Article  Google Scholar 

  • Messer AC (1990) Traditional and chemical techniques for stimulation of Shorea javanica (Dipterocarpaceae) resin exudation in Sumatra. Econ Bot 44(4):463–469

    Article  CAS  Google Scholar 

  • Nair MNB (2001) Sustainable utilization of gums and resins by improved tapping techniques in some species. In: Proceedings: harvesting of non-wood forest products. Ministry of Forestry, Turkey. http://www.fao.org/3/Y4496E/Y4496E29.htm. Accessed 8 July 2019

  • Oh SK, Kang H, Shin DH, Yang J, Chow K-S et al (1999) Isolation, characterization, and functional analysis of a novel cDNA clone encoding a small rubber particle protein from Hevea brasiliensis. J Biol Chem 274(24):17132–17138

    Article  CAS  Google Scholar 

  • Paardekooper EC, Soomark S (1969) Diurnal variation in latex yield and dry rubber content, and relation to saturation deficit of air. J Rubb Res Inst Malaya 21:241–347

    Google Scholar 

  • Pakianathan SW (1977) Some factors affecting yield response to stimulation with 2-chloroethylphosphonic acid. J. Rubb Res Inst 25(1):50–60

    Google Scholar 

  • Paranjothy K, Yeang HY (1977) A consideration of the nature and control of brown bast. In: Proceedings of the RRIM Planters’ Conference, Kuala Lumpur, pp 74–90

    Google Scholar 

  • Priyadarshan PM (2017) Refinements to Hevea rubber breeding. Tree Genet Genomes 13:1–17

    Article  Google Scholar 

  • Rao BS (1965) Pests of Hevea plantations in Malaya. Rubber Research Institute, Kuala Lumpur

    Google Scholar 

  • Simmonds NW (1986) Theoretical aspects of synthetic/polycross populations of rubber seedlings. J Nat Rubb Res 1(1):1–15

    Google Scholar 

  • Simmonds NW (1990) Breeding horizontal resistance to South American Leaf Blight of rubber. J Nat Rubb Res 5(2):102–113

    Google Scholar 

  • Sipat A (1985) 3-Hydroxy-3-methylglutaryl-CoA reductase in the latex of Hevea brasiliensis. Methods Enzym 110:40–51

    Article  CAS  Google Scholar 

  • Southorn WA, Yip E (1968) Latex flow studies. III. Electrostatic considerations in the colloidal stability of fresh Hevea latex. J Rubb Res Inst Malaya 20(4):201–215

    Google Scholar 

  • de Souza LM, Le Guen V, Cerqueira-Silva CBM, Silva CC, Mantello CC, Conson ARO et al (2015) Genetic diversity strategy for the management and use of rubber genetic resources: more than 1,000 wild and cultivated accessions in a 100-genotype core collection. PLoS ONE 10(7):e0134607. https://doi.org/10.1371/journal.pone.0134607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan H, Khoo SK, Ong SH (1996) Selection of advanced poly cross progenies in Hevea improvement. J Nat Rubb Res 11(3):215–225

    Google Scholar 

  • Tanaka Y, Nunogaki K, Kageyu A, Mori M, Sato Y (1988) Structure and biosynthesis mechanism of trans-polyisoprene from chicle. J Nat Rubb Res 3(3):177–183

    CAS  Google Scholar 

  • Thomas KK (2001) Role of Clements Robert Markham in the introduction of Hevea rubber into the British India. Planter 77(902):287–292

    Google Scholar 

  • Tungngoen K, Kongsawadworakul P, Viboonjun U, Katsuhara M, Brunel N, Sakr S, Narangajavana J, Chrestin H (2009) Involvement of HbPIP2;1 and HbTIP1;1 aquaporins in ethylene stimulation of latex yield through regulation of water exchanges between inner liber and latex cells in Hevea brasiliensis. Plant Physiol 151:843–856

    Article  CAS  Google Scholar 

  • Van Parijs J, Broekaert WF, Goldstein IJ, Peumans WJ (1991) Hevein: an antifungal protein from rubber-tree (Hevea brasiliensis) latex. Planta 183:258–264

    Article  Google Scholar 

  • Wenzlhuemer R (2008) From coffee to tea cultivation in Ceylon, 1880–1900. An economic and social history. Brill, Leiden

    Book  Google Scholar 

  • Wycherley PR (1958) The Singapore Botanic Gardens and rubber in Malaya. Gardens Bull Singapore 17:175–186

    Google Scholar 

  • Wycherley PR (1971) Hevea seed, Part 1. Planter 47:291–298

    Google Scholar 

  • Yeang HY (2005) The kinetics of latex flow from the rubber tree in relation to latex vessel plugging and turgor pressure. J Rubb Res 8(3):160–181

    Google Scholar 

  • Yeang HY (2007) The brown bast syndrome of Hevea brasiliensis. Malaysian rubber board monograph 21. Malaysian Rubber Board, Kuala Lumpur

    Google Scholar 

  • Yeang HY, Yip E, Hamzah S (1995) Characterisation of Zone 1 and Zone 2 rubber particles in Hevea brasiliensis latex. J Nat Rubb Res 10(2):108–123

    Google Scholar 

  • Yuan K, Wang Z, Zhou X, Zou Z, Yang L (2014) The identification of differentially expressed latex proteins in healthy and tapping panel dryness (TPD) Hevea brasiliensis trees by iTRAQ and 2D LC-MS/MS. Acta Agric Univ Jiangxiensis 36(3):650–655 (Chinese text with English summary)

    Google Scholar 

  • Yusof F, Audley BG, Ismail F, Walker JM (1998) A rapid assay for the incorporation of isopentenyl phosphate in rubber biosynthesis. J Rubb Res 1(1):48–56

    CAS  Google Scholar 

  • Zhang Y, Leclercq J, Montoro P (2017) Reactive oxygen species in Hevea brasiliensis latex and relevance to tapping panel dryness. Tree Physiol 37:261–269

    Article  Google Scholar 

  • Zou Z, Gong J, An F, Xie G, Wang J, Mo Y, Yang L (2015) Genome-wide identification of rubber tree (Hevea brasiliensis Muell. Arg.) Aquaporin genes and their response to ethephon stimulation in the laticifer, a rubber producing tissue. BMC Genomics 16:1001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yeang, HY. (2020). Cornucopia that Brazil Gifted the World. In: Matsui, M., Chow, KS. (eds) The Rubber Tree Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-42258-5_1

Download citation

Publish with us

Policies and ethics