Skip to main content

The Dead Sea and Its Deviation from Natural Conditions

  • Chapter
  • First Online:

Part of the book series: Springer Water ((SPWA))

Abstract

The Dead Sea is a hypersaline terminal lake located in a tectonic depression along the Dead Sea Transform. The regional paleogeographic setting began to take shape in the Miocene, and by the late Neogene fluvio-lacustrine sequences confined to the basin announced a new subsidence regime. Marine intrusion flooded the tectonic valley in the Pliocene, leading to the accumulation of a thick sequence of evaporites and initiated the development of the unique Ca-chloride brine of the basin. Rapid tectonic movements during the Pleistocene, or even earlier, disconnected the open sea and the valley became a deep, landlocked depression that hosted a series of lacustrine phases. The lakes deposited fine-laminated sequences during relatively wet phases and precipitated gypsum and halite during arid periods. The uppermost sedimentary fill comprises the Late Pleistocene Lisan Formation and the Holocene Ze’elim Formation. Lake Lisan existed during the last glacial period and in its highest stand extended from the Sea of Galilee to south of the Dead Sea, more than 200 m above the current level. The transition to the Holocene began with a dramatic dry-up recorded as a series of retreat strands on the margins of the basin and deposition of a thick halite unit. The Holocene Dead Sea was restricted to the deepest depression and its level fluctuated around 400 m below sea level in pace with climatic fluctuations dictated mostly by precipitation over the northern headwaters. The lake-water balance is a proxy for regional freshwater availability that influenced cultural transformations and demographic patterns during historical periods. The modern Dead Sea is being altered by intensified human activities. Water diversion and damming of freshwater for domestic and agricultural use, and brine evaporation for the potash industry have resulted in a level drop of over 1 m yr−1. The negative water balance has led to erosion of the exposed margins and development of sinkholes due to subsurface evaporite dissolution. The stable stratification of the lake-water column has diminished, and seasonal halite deposition characterizes the modern lake. The level drop has also resulted in drying and migration of spring seepages, putting unique ecosystems under threat. Currently, diversion of sea water from the Red Sea to the Dead Sea is viewed as a comprehensive solution for stabilizing the level as well as for producing hydroelectric power and desalinated water. However, this ambitious initiative must hurdle diplomatic tensions and financing difficulties, as well as intensive environmentalists’ objections.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abelson M, Yechieli Y, Baer G, Lapid G, Behar N, Calvo R, Rosensaft M (2017) Natural versus human control on subsurface salt dissolution and development of thousands of sinkholes along the Dead Sea coast. J Geophys Res-Earth 122(6):1262–1277

    Article  Google Scholar 

  • Abelson M, Aksinenko T, Kurzon I, Pinsky V, Baer G, Nof R, Yechieli Y (2018) Nanoseismicity forecasts sinkhole collapse in the Dead Sea coast years in advance. Geology 46(1):83–86

    Article  Google Scholar 

  • Abelson M, Yechieli Y, Crouvi O, Baer G, Wachs D, Bein A, Shtivelman V (2006) Evolution of the Dead Sea sinkholes. Geol S Am Spec Pap 401:241–254

    Google Scholar 

  • Abelson M, Baer G, Shtivelman V, Wachs D, Raz E, Crouvi O, Kurzon I, Yechieli Y (2003) Collapse-sinkholes and radar interferometry reveal neotectonics concealed within the Dead Sea Basin. Geophys Res Lett 30(10) https://doi.org/10.1029/2003gl017103

  • Alley RB, Ágústsdóttir AM (2005) The 8k event: cause and consequences of a major Holocene abrupt climate change. Quat Sci Rev 24(10–11):1123–1149

    Article  Google Scholar 

  • Allan JA, Malkawi AH, Tsur Y (2014) Red Sea–Dead Sea water conveyance study program, study of alternatives. Final Report Executive Summary and Main Report. The World Bank, 186pp

    Google Scholar 

  • Alpert P, Neumann J (1989) An ancient “correlation” between streamflow and distant rainfall in the Near East. J Near Eastern Stud 48:313–314

    Article  Google Scholar 

  • Al-Rubaiy S (2000) Water security, and the concept of sovereignty and peace in Jordan River Valley States. Dar al Hasad, Damascus, Syria

    Google Scholar 

  • Amiran R, Ilan O (1996) Early Arad II. The chalcolithic and Early Bronze IB settlements and the Early Bronze II city—architecture and town planning. Israel Museum and Israel Exploration Society, Jerusalem

    Google Scholar 

  • Anati DA, Stiller M (1991) The post-1979 thermohaline structure of the Dead Sea and the role of double-diffusive mixing. Limnol Oceanogr 36(2):342–353

    Article  Google Scholar 

  • Astour MC (1965) New evidence on the last days of Ugarit. Am J Archaeol 69(3):253–258

    Article  Google Scholar 

  • Avni Y, Lensky N, Dente E, Shviro M, Arav R, Gavrieli I, Yechieli Y, Abelson M, Lutzky H, Filin S, Haviv I (2016) Self-accelerated development of salt karst during flash floods along the Dead Sea Coast, Israel. J Geophys Res-Earth 121(1):17–38

    Article  Google Scholar 

  • Bar-Adon P (1989) Excavations in the Judean Desert. In: Zusman A, Straws D (eds) Antiquities. Israel Antiquities Authority, Jerusalem (in Hebrew)

    Google Scholar 

  • Barker G, Goucher C (2015) The Cambridge world history Volume II: a world with agriculture, 12,000 BCE–500 CE. Cambridge University Press, Cambridge

    Google Scholar 

  • Bar-Matthews M, Ayalon A, Kaufman A, Wasserburg GJ (1999) The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet Sci Lett 166(1–2):85–95

    Article  Google Scholar 

  • Barkan E, Luz B, Lazar B (2001) Dynamics of the carbon dioxide system in the Dead Sea. Geochim Cosmochim Ac 65(3):355–368

    Article  Google Scholar 

  • Bartov Y (2004) Sedimentary fill analysis of a continental basin - the Late Pleistocene Dead Sea. Ph.D. thesis, Hebrew University of Jerusalem, Israel (in Hebrew with English abstract)

    Google Scholar 

  • Bartov Y, Goldstein SL, Stein M, Enzel Y (2003) Catastrophic arid episodes in the Eastern Mediterranean linked with the North Atlantic Heinrich events. Geology 31(5):439–442

    Article  Google Scholar 

  • Bartov Y, Bookman R, Enzel Y (2006) Current depositional environments at the Dead Sea margins as indicators of past lake levels. Geol S Am Spec Pap 401:127–140

    Google Scholar 

  • Bar-Yosef O (2000) The impact of radiocarbon dating on old world archaeology: past achievements and future expectations. Radiocarbon 42(1):23–39

    Article  Google Scholar 

  • Bar-Yosef O, Kra RS (eds) (1995) Late Quaternary chronology and paleoclimates of the Eastern Mediterranean. University of Arizona, Tucson

    Google Scholar 

  • Belmaker R, Lazar B, Beer J, Christl M, Tepelyakov N, Stein M (2013) 10Be dating of Neogene halite. Geochim Cosmochim Ac 122:418–429

    Article  Google Scholar 

  • Belmaker R, Lazar B, Stein M, Taha N, Bookman R (2019) Constraints on aragonite precipitation in the Dead Sea from geochemical measurements of flood plumes. Quat Sci Rev 221:105876

    Google Scholar 

  • Ben Moshe LB, Haviv I, Enzel Y, Zilberman E, Matmon A (2008) Incision of alluvial channels in response to a continuous base level fall: field characterization, modeling, and validation along the Dead Sea. Geomorphology 93(3–4):524–536

    Article  Google Scholar 

  • Ben-Avraham Z, Lazar M (2006) The structure and development of the Dead Sea Basin: recent studies. Geol S Am Spec Pap 401:1–13

    Google Scholar 

  • Ben-Avraham Z, Lazar M, Schattner U, Marco S (2005) The Dead Sea fault and its effect on civilization. In: Wenzel F (ed) Perspectives in modern seismology. Springer, Heidelberg

    Google Scholar 

  • Berger JF, Guilaine J (2009) The 8200 cal BP abrupt environmental change and the Neolithic transition: a Mediterranean perspective. Quat Int 200(1–2):31–49

    Article  Google Scholar 

  • Begin ZB, Erlich A, Nathan I (1974) Lisan lake, the representative of the Pleistocene age in the dead sea. Geol Surv Isr Bull 63:1–30

    Google Scholar 

  • Beyth M (2007) The Red Sea and the Mediterranean-Dead Sea canal project. Desalination 214(1–3):365–371

    Article  Google Scholar 

  • Bookman (Ken-Tor) R, Enzel Y, Agnon A, Stein M (2004) Late Holocene lake levels of the Dead Sea. Geol Soc Am Bull 116(5–6):555–571

    Google Scholar 

  • Bookman R, Bartov Y, Enzel Y, Stein M (2006) Quaternary lake levels in the Dead Sea Basin: two centuries of research. Geol Soc Am Spec Pap 401:155–170

    Google Scholar 

  • Bookman R, Filin S, Avni Y, Rosenfeld D, Marco S (2014) Possible connection between large volcanic eruptions and level rise episodes in the Dead Sea Basin. Quat Sci Rev 89:123–128

    Article  Google Scholar 

  • Bowman D, Svoray T, Devora S, Shapira I, Laronne JB (2010) Extreme rates of channel incision and shape evolution in response to a continuous, rapid base-level fall, the Dead Sea, Israel. Geomorphology 114(3):227–237

    Article  Google Scholar 

  • Burg A, Yechieli Y, Galili U (2016) Response of a coastal hydrogeological system to a rapid decline in sea level; the case of Zuqim springs–the largest discharge area along the Dead Sea coast. J Hydrol 536:222–235

    Article  Google Scholar 

  • Charrach J (2018) Investigations into the Holocene geology of the Dead Sea Basin. Carbonate Evaporite 34:1415–1442

    Google Scholar 

  • Closson D, Karaki NA (2009) Human-induced geological hazards along the Dead Sea coast. Environ Geol 58(2):371–380

    Article  Google Scholar 

  • Connan J, Nissenbaum A, Dessort D (1992) Molecular archaeology: export of Dead Sea asphalt to Canaan and Egypt in the Chalcolithic-Early Bronze Age (4th-3rd millennium BC). Geochim Cosmochim Ac 56(7):2743–2759

    Article  Google Scholar 

  • Cullen HM, deMenocal PB, Hemming S, Hemming G, Brown FH, Guilderson T, Sirocko F (2000) Climate change and the collapse of the Akkadian empire: evidence from the Deep Sea. Geology 28(4):379–382

    Article  Google Scholar 

  • DeMenocal PB (2001) Cultural responses to climate change during the late Holocene. Science 292(5517):667–673

    Article  Google Scholar 

  • Dente E, Lensky NG, Morin E, Dunne T, Enzel Y (2019) Sinuosity evolution along an incising channel: new insights from the Jordan River response to the Dead Sea level fall. Earth Surf Proc Landforms 44(3):781–795

    Article  Google Scholar 

  • EcoPeace (2015) Regional NGO master plan for sustainable development in the Jordan valley, 181pp

    Google Scholar 

  • Elazari-Volcani B (1943) Bacteria in the bottom sediments of the Dead Sea. Nature 152(3853):274

    Article  Google Scholar 

  • Ellenblum R (1991) Frankish rural settlement in crusader Palestine. Ph.D. thesis, Hebrew University of Jerusalem, Israel (in Hebrew)

    Google Scholar 

  • Enzel Y, Bookman R, Sharon D, Gvirtzman H, Dayan U, Ziv B, Stein M (2003) Late Holocene climates of the Near East deduced from Dead Sea level variations and modern regional winter rainfall. Quat Res 60(3):263–273

    Article  Google Scholar 

  • et Bellier C (2014) Red Sea–Dead Sea water conveyance study program, feasibility study. Final Feasibility Study Report - Summary of Final FS Report. Accessed 14 Jan 2015

    Google Scholar 

  • Ezersky M (2008) Geoelectric structure of the Ein Gedi sinkhole occurrence site at the Dead Sea shore in Israel. J Appl Geophys 64(3–4):56–69

    Article  Google Scholar 

  • Filin S, Avni Y, Baruch A, Morik S, Arav R, Marco S (2014) Characterization of land degradation along the receding Dead Sea coastal zone using airborne laser scanning. Geomorphology 206:403–420

    Article  Google Scholar 

  • Finkelstein I (1995) The great transformation: the “conquest” of the highlands frontiers and the rise of the territorial states. In: Levy TE (ed) The Archaeology of society in the Holy Land. Leicester University Press, London

    Google Scholar 

  • Finkelstein I, Halpern B, Lehmann G, Niemann HM (2006) The Megiddo hinterland project. In: Finkelstein I, Ussishkin D, Halpern B (eds) Megiddo IV: the 1998–2002 seasons. Institute of Archaeology, Tel Aviv, pp 1998–2002

    Google Scholar 

  • Finkelstein I, Gophna R (1993) Settlement, demographic, and economic patterns in the highlands of Palestine in the Chalcolithic and Early Bronze periods and the beginning of urbanism. B Am Sch Orient Res 289:1–22

    Article  Google Scholar 

  • Finkelstein I, Langgut D (2014) Dry climate in the middle Bronze I and its impact on settlement patterns in the Levant and beyond: new pollen evidence. J Near Eastern Stud 73(2):219–234

    Article  Google Scholar 

  • Fischhendler I, Cohen-Blankshtain G, Shuali Y, Boykoff M (2015) Communicating mega-projects in the face of uncertainties: Israeli mass media treatment of the Dead Sea Water Canal. Public Underst Sci 24(7):794–810

    Article  Google Scholar 

  • Frumkin A, Stein M (2004) The Sahara–East Mediterranean dust and climate connection revealed by strontium and uranium isotopes in a Jerusalem speleothem. Earth Planet Sci Lett 217(3–4):451–464

    Google Scholar 

  • Frumkin A, Ezersky M, Al-Zoubi A, Akkawi E, Abueladas AR (2011) The Dead Sea sinkhole hazard: geophysical assessment of salt dissolution and collapse. Geomorphology 134(1–2):102–117

    Article  Google Scholar 

  • Frumkin A, Raz E (2001) Collapse and subsidence associated with salt karstification along the Dead Sea. Carbonate Evaporite 16(2):117–130

    Article  Google Scholar 

  • Fuks D, Ackermann O, Ayalon A, Bar-Matthews M, Bar-Oz G, Levi Y, Maeir AM, Weiss E, Zilberman T, Safrai Z (2017) Dust clouds, climate change and coins: consiliences of palaeoclimate and economy in the Late Antique southern Levant. Levant 49(2):205–223

    Article  Google Scholar 

  • Galili E (2011) Summary of hydrometric measurements in Einot Zukim, 2003–2011. Hydro Report: 1/2012, Gilat, Israel

    Google Scholar 

  • Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80(1–4):81–108

    Article  Google Scholar 

  • Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea Basin. Tectonophysics 266(1–4):155–176

    Article  Google Scholar 

  • Garfunkel Z, Horowitz A (1966) The upper Tertiary and Quaternary morphology of the Negev, Israel. Isr J Earth Sci 15(3):101–117

    Google Scholar 

  • Gavrieli I, Lensky N, Abelson M, Ganor J, Oren A, Brenner S, Lensky I, Shalev E, Yechieli Y, Dvorkin Y, Gertman I, Wells S, Simon E, Rosentraub Z, Reznik I (2011) Dead Sea study. Final Report, August 2011. Isr Geol Surv Rep. GSI/10/2011. Tel Aviv: TAHAL, Il-201280-R11-218 (Red Sea - Dead Sea Water Conveyance Study Program)

    Google Scholar 

  • Gavrieli I, Oren A (2004) The Dead Sea as a dying lake. In: Nihoul JCJ, Zavialov PO, Micklin PP (eds) Dying and Dead Seas: climatic versus anthropogenic causes. Springer, New York

    Google Scholar 

  • Goren-Inbar N, Feibel CS, Verosub KL, Melamed Y, Kislev ME, Tchernov E, Saragusti I (2000) Pleistocene milestones on the out-of-Africa corridor at Gesher Benot Ya’aqov, Israel. Science 289(5481):944–947

    Article  Google Scholar 

  • Goren H (2002) Sacred, but not surveyed: nineteenth-century surveys of Palestine. Imago Mundi 54(1):87–110

    Article  Google Scholar 

  • Goren M, Ortal R (1999) Biogeography, diversity and conservation of the inland water fish communities in Israel. Biol Conserv 89(1):1–9

    Article  Google Scholar 

  • Greenbaum N, Ben-Zvi A, Haviv I, Enzel Y (2006) The hydrology and paleohydrology of the Dead Sea tributaries. Geol Soc Am Spec Pap 401:63–93

    Google Scholar 

  • Haase-Schramm A, Goldstein SL, Stein M (2004) U-Th dating of Lake Lisan (late Pleistocene Dead Sea) aragonite and implications for glacial East Mediterranean climate change. Geochim Cosmochim Ac 68(5):985–1005

    Article  Google Scholar 

  • Haliva-Cohen A, Stein M, Goldstein SL, Sandler A, Starinsky A (2012) Sources and transport routes of fine detritus material to the Late Quaternary Dead Sea Basin. Quat Sci Rev 50:55–70

    Article  Google Scholar 

  • Hall JK (1996) Digital topography and bathymetry of the area of the Dead Sea depression. Tectonophysics 266(1–4):177–185

    Article  Google Scholar 

  • Hassan MA, Klein M (2002) Fluvial adjustment of the Lower Jordan River to a drop in the Dead Sea level. Geomorphology 45(1–2):21–33

    Article  Google Scholar 

  • Harza JRV Group (1996) Red Sea–Dead Sea Canal Project: draft prefeasibility report. Jordan Rift Valley Integrated Development Study

    Google Scholar 

  • Hazan N, Stein M, Agnon A, Marco S, Nadel D, Negendank JFW, Schwab MJ, Neev D (2005) The late Quaternary limnological history of Lake Kinneret (Sea of Galilee), Israel. Quat Res 63(1):60–77

    Google Scholar 

  • Heim C, Nowaczyk NR, Negendank JF, Leroy SA, Ben-Avraham Z (1997) Near East desertification: evidence from the Dead Sea. Naturwissenschaften 84(9):398–401

    Article  Google Scholar 

  • Hirschfeld Y (2006) The archaeology of the Dead Sea valley in the Late Hellenistic and Early Roman periods. Geol S Am Spec Pap 401:215–229

    Google Scholar 

  • Hirschfeld Y (2004) A climatic change in the early Byzantine period? Some archaeological evidence. Palest Explor Q 136(2):133–149

    Article  Google Scholar 

  • Hussein H (2017) Politics of the Dead Sea Canal: a historical review of the evolving discourses, interests, and plans. Water Int 42(5):527–542

    Article  Google Scholar 

  • Issar AS, Govrin Y, Geyh MA, Wakshal E, Wolf M (1992) Climate changes during the Upper Holocene in Israel. Isr J Earth Sci 40:219–223

    Google Scholar 

  • Issar A (1998) Climate change and history during the Holocene in the eastern Mediterranean region. In: Issar A, Brown N (eds) Water, environment and society in times of climate change. Kluwer Academic, Dordrecht, pp 113-128

    Chapter  Google Scholar 

  • Izdebski A, Pickett J, Roberts N, Waliszewski T (2016) The environmental, archaeological and historical evidence for regional climatic changes and their societal impacts in the Eastern Mediterranean in Late Antiquity. Quat Sc Rev 136:189–208

    Article  Google Scholar 

  • Kadan G (1997) Evidence for Dead Sea Lake-level fluctuations and recent tectonism from the Holocene Fan-Delta of Nahal Darga, Israel. M.Sc. thesis, Ben Gurion University of the Negev, Israel (in Hebrew with English abstract)

    Google Scholar 

  • Kagan EJ, Langgut D, Boaretto E, Neumann FH, Stein M (2015) Dead Sea levels during the Bronze and Iron ages. Radiocarbon 57(2):237–252

    Article  Google Scholar 

  • Kaniewski D, Marriner N, Cheddadi R, Guiot J, Van Campo E (2018) The 4.2 ka BP event in the Levant. Clim Past 14(10):1529–1542‏

    Google Scholar 

  • Kaplan IR, Friedmann A (1970) Biological productivity in the Dead Sea Part I. Microorganisms in the water column. Isr J Chem 8(3):513–528

    Google Scholar 

  • Katz A, Starinsky A (2009) Geochemical history of the Dead Sea. Aquat Geochem 15(1–2):159–194

    Article  Google Scholar 

  • Kiro Y, Weinstein Y, Starinsky A, Yechieli Y (2014) The extent of seawater circulation in the aquifer and its role in elemental mass balances: a lesson from the Dead Sea. Earth Planet Sci Lett 394:146–158

    Article  Google Scholar 

  • Klein C (1961) On the fluctuations of the level of the Dead Sea since the beginning of the 19th century. Hydrological Service, Jerusalem, Hydrological Paper 7, revised edition

    Google Scholar 

  • Klein C (1986) Fluctuations of the level of the Dead Sea and climatic fluctuations in Israel during historical times. Ph.D. thesis, Hebrew University of Jerusalem, Israel (in Hebrew with English abstract)

    Google Scholar 

  • Klein C (1982) Morphological evidence of lake level changes, western shore of the Dead-Sea. Isr J Earth Sci 31(2–4):67–94

    Google Scholar 

  • Klein M (1990) Dead Sea level changes. Isr J Earth Sci 39:49–50

    Google Scholar 

  • Langgut D, Almogi-Labin A, Bar-Matthews M, Weinstein-Evron M (2011) Vegetation and climate changes in the South Eastern Mediterranean during the Last Glacial-Interglacial cycle (86 ka): new marine pollen record. Quat Sci Rev 30(27–28):3960–3972

    Article  Google Scholar 

  • Langgut D, Finkelstein I, Litt T (2013) Climate and the Late Bronze Collapse: new evidence from the Southern Levant. J Inst Archaeol Tel Aviv 40(2):149–175

    Article  Google Scholar 

  • Langgut D, Neumann FH, Stein M, Wagner A, Kagan EJ, Boaretto E, Finkelstein I (2014) Dead Sea pollen record and history of human activity in the Judean Highlands (Israel) from the Intermediate Bronze into the Iron Ages (~2500–500 BCE). Palynol 38(2):280–302

    Google Scholar 

  • Langgut D, Adams MJ, Finkelstein I (2016) Climate, settlement patterns and olive horticulture in the southern Levant during the Early Bronze and Intermediate Bronze Ages (c. 3600–1950 BC). Levant 48(2):117–134

    Google Scholar 

  • Langgut D, Finkelstein I, Litt T, Neumann FH, Stein M (2015) Vegetation and climate changes during the Bronze and Iron Ages (~3600–600 BCE) in the southern Levant based on palynological records. Radiocarbon 57(2):217–235

    Article  Google Scholar 

  • Laronne J, Lekach J, Cohen H, Alexandrov Y (2003) Experimental drainage basins in Israel: rainfall, runoff, suspended sediment and bedload monitoring. Proceedings of the First Interagency Conference on Research in the Watersheds, October 2003, Benson, Arizona

    Google Scholar 

  • Lensky NG, Dente E (2015) The hydrological processes driving the accelerated Dead Sea level decline in the past decades. Geol Surv Isr Rep, GSI/16/2015, Jerusalem

    Google Scholar 

  • Levy EJ, Yechieli Y, Gavrieli I, Lazar B, Kiro Y, Stein M, Sivan O (2018) Salt precipitation and dissolution in the late Quaternary Dead Sea: evidence from chemical and δ37Cl composition of pore fluids and halites. Earth Planet Sci Lett 487:127–137

    Article  Google Scholar 

  • Litt T, Ohlwein C, Neumann FH, Hense A, Stein M (2012) Holocene climate variability in the Levant from the Dead Sea pollen record. Quat Sci Rev 49:95–105

    Article  Google Scholar 

  • López-Merino L, Leroy SA, Eshel A, Epshtein V, Belmaker R, Bookman R (2016) Using palynology to re-assess the Dead Sea laminated sediments – indeed varves? Quat Sci Rev 140:49–66

    Article  Google Scholar 

  • Lu Y, Waldmann N, Nadel D, Marco S (2017) Increased sedimentation following the Neolithic Revolution in the Southern Levant. Glob Planet Change 152:199–208

    Article  Google Scholar 

  • Lu Y, Bookman R, Waldmann N, Marco S (2020) A 45 kyr laminae record from the Dead Sea: Implications for basin erosion and floods recurrence. Quat Sci Rev 229:106143

    Google Scholar 

  • Machlus M, Enzel Y, Goldstein SL, Marco S, Stein M (2000) Reconstructing low levels of Lake Lisan by correlating fan-delta and lacustrine deposits. Quat Int 73:137–144

    Article  Google Scholar 

  • Malkawi AIH, Tsur Y (2016) Reclaiming the Dead Sea: alternatives for action. Society-Water-Technology. Springer, Cham, pp 205–225

    Google Scholar 

  • Marder E, Bookman R, Filin S (2018) Geomorphological response of the lower Jordan River basin to active tectonics of the Dead Sea transform. Geomorphology 317:75–90

    Article  Google Scholar 

  • Markel D, Alster J, Beyth M (2013) The Red Sea-Dead Sea conveyance feasibility study. In: Becker N (ed) Water policy in Israel. Springer, Dordrecht, pp 2008–2012

    Google Scholar 

  • Markel D, Sagiv M, Gavrieli I, Goldstein N, Cohen G, Arieli N (2011) Discussion on the Dead Sea rehabilitation. Ecol Environ 1:55–67 (in Hebrew)

    Google Scholar 

  • Migowski C, Stein M, Prasad S, Negendank JF, Agnon A (2006) Holocene climate variability and cultural evolution in the Near East from the Dead Sea sedimentary record. Quat Res 66(3):421–431

    Article  Google Scholar 

  • Miller R (2003) Bible and Soil: Walter Clay Lowdermilk, the Jordan valley project and the Palestine debate. Middle Eastern Stud 39(2):55–81

    Article  Google Scholar 

  • Millstein D, Uzon A, Hazan E, Lidar N, Sabah A, Nesher R, Keshet N (2017) Development of wet habitats in Zukim nature reserve as a tool for nature preservation values. Ecol Environ 8(1):354–360 (in Hebrew)

    Google Scholar 

  • Na’aman N (1994) The ‘Conquest of Canaan’ in the Book of Joshua and in history. In: Finkelstein I, Na’aman N (eds) From nomadism to monarchy: archaeological and historical aspects of early Israel. Israel Exploration Society, Jerusalem

    Google Scholar 

  • Neev D, Emery KO (1967) The Dead Sea: depositional processes and environments of evaporates. Isr Geol Surv B 41:1–147

    Google Scholar 

  • Neev D, Emery KO (1995) The destruction of Sodom, Gomorrah, and Jericho: geological, climatological, and archaeological background. Oxford University Press, Oxford

    Google Scholar 

  • Neugebauer I, Brauer A, Schwab MJ, Dulski P, Frank U, Hadzhiivanova E, Kitagawa H, Litt T, Schiebel V, Taha N, Waldmann ND (2015) Evidences for centennial dry periods at ~3300 and ~2800 cal. yr BP from micro-facies analyses of the Dead Sea sediments. Holocene 25(8):1358–1371

    Google Scholar 

  • Neugebauer I, Brauer A, Schwab MJ, Waldmann ND, Enzel Y, Kitagawa H, Torfstein A, Frank U, Dulski P, Agnon A, Ariztegui D, Ben-Avraham Z, Goldstein SL, Stein M, DSDDP Scientific Party (2014) Lithology of the long sediment record recovered by the ICDP Dead Sea Deep Drilling Project (DSDDP). Quat Sci Rev 102:149–165

    Article  Google Scholar 

  • Neumann FH, Kagan EJ, Schwab MJ, Stein M (2007a) Palynology, sedimentology and palaeoecology of the Late Holocene Dead Sea. Quat Sci Rev 26(11–12):1476–1498

    Article  Google Scholar 

  • Neumann F, Schölzel C, Litt T, Hense A, Stein M (2007b) Holocene vegetation and climate history of the northern Golan Heights (Near East). Veg Hist Archaeobot 16(4):329–346

    Article  Google Scholar 

  • Neumann J, Parpola S (1987) Climatic change and the eleventh-tenth-century eclipse of Assyria and Babylonia. J Near Eastern Stud 46(3):161–182

    Article  Google Scholar 

  • Nof RN, Baer G, Ziv A, Raz E, Atzori S, Salvi S (2013) Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology 41(9):1019–1022

    Article  Google Scholar 

  • Nof R, Abelson M, Raz E, Magen Y, Atzori S, Salvi S, Baer GSAR (2019) Interferometry for sinkhole early warning and susceptibility assessment along the Dead Sea, Israel. Remote Sens-Basel 11(1):89

    Article  Google Scholar 

  • Nuriel P, Weinberger R, Kylander-Clark AR, Hacker BR, Craddock JP (2017) The onset of the Dead Sea transform based on calcite age-strain analyses. Geology 45(7):587–590

    Article  Google Scholar 

  • Ofer A (1994) ‘All the hill country of Judah’: from a settlement fringe to a prosperous monarchy. In: Finkelstein I, Na’aman N (eds) From nomadism to monarchy: archaeological and historical aspects of early Israel. Israel Exploration Society, Jerusalem

    Google Scholar 

  • Oren A (2003) Biodiversity and community dynamics in the Dead Sea: archaea, bacteria and eucaryotic algae. In: Nevo E, Oren A, Wasser SP (eds) Fungal life in the Dead Sea Ruggell. ARG Gantner Verlag

    Google Scholar 

  • Oren A, Gavrieli J, Kohen M, Lati J, Aharoni M, Gavrieli I (2009) Long-term mesocosm simulation of algal and archaeal blooms in the Dead Sea following dilution with Red Sea water. Nat Resour Env Iss 15(1):27

    Google Scholar 

  • Orland IJ, Bar-Matthews M, Kita NT, Ayalon A, Matthews A, Valley JW (2009) Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quat Res 71(1):27–35

    Google Scholar 

  • Oron A, Galili E, Hadas G, Klein M (2015) Early maritime activity on the Dead Sea: bitumen harvesting and the possible use of reed watercraft. J Marit Archaeol 10(1):65–88

    Article  Google Scholar 

  • Oz I, Shalev E, Gvirtzman H, Yechieli Y, Gavrieli I (2011) Groundwater flow patterns adjacent to a long-term stratified (meromictic) lake. Water Resour Res 47(8):W08528

    Article  Google Scholar 

  • Palmisano A, Woodbridge J, Roberts CN, Bevan A, Fyfe R, Shennan S, Cheddadi R, Greenberg R, Kaniewski D, Langgut D, Leroy SAG, Litt T, Miebach A (2019) Holocene landscape dynamics and long-term populations trends in the Levant. Holocene 29(5):708–727

    Article  Google Scholar 

  • Powell JM (2005) The empire meets the new deal. Geograph Res 43(4):337–360

    Article  Google Scholar 

  • Prasad S, Vos H, Negendank JFW, Waldmann N, Goldstein SL, Stein M (2004) Evidence from Lake Lisan of solar influence on decadal-to centennial-scale climate variability during marine oxygen isotope stage 2. Geology 32(7):581–584

    Article  Google Scholar 

  • Rauschning D, Wiesbrock Katja, Lailach M (eds) (1997) Key resolutions of the United Nations General Assembly 1946–1996. CUP Archive

    Google Scholar 

  • Reznik IJ, Ganor J, Gal A, Gavrieli I (2009a) Gypsum saturation degrees and precipitation potentials from Dead Sea–seawater mixtures. Environ Chem 6(5):416–423

    Article  Google Scholar 

  • Reznik IJ, Gavrieli I, Ganor J (2009b) Kinetics of gypsum nucleation and crystal growth from Dead Sea brine. Geochim Cosmochim Ac 73(20):6218–6230

    Article  Google Scholar 

  • Roberts N, Woodbridge J, Palmisano A, Bevan A, Fyfe R, Shennan S (2019) Mediterranean landscape change during the Holocene: synthesis, comparison and regional trends in population, land cover and climate. Holocene 29(5):923–937

    Article  Google Scholar 

  • Rohling EJ, Pälike H (2005) Centennial-scale climate cooling with a sudden cold event around 8,200 years ago. Nature 434(7036):975–979

    Article  Google Scholar 

  • Schramm A, Stein M, Goldstein SL (2000) Calibration of the 14C time scale to >40 ka by 234U–230Th dating of Lake Lisan sediments (last glacial Dead Sea). Earth Planet Sci Lett 175(1–2):27–40

    Article  Google Scholar 

  • Shalev E, Lyakhovsky V, Yechieli Y (2006) Salt dissolution and sinkhole formation along the Dead Sea shore. J Geophys Res-Sol Earth 111(B3)

    Google Scholar 

  • Simmons AH, Köhler-Rollefson I, Rollefson GO, Mandel R, Kafafi Z (1988) ‘Ain Ghazal: a major Neolithic settlement in central Jordan. Science 240(4848):35–39

    Article  Google Scholar 

  • Siebert C, Rödiger T, Mallast U, Gräbe A, Guttman J, Laronne JB, Storz-Peretz Y, Greenman A, Salameh E, Al-Raggad M, Vachtman D (2014) Challenges to estimate surface-and groundwater flow in arid regions: the Dead Sea catchment. Sci Total Environ 485:828–841

    Article  Google Scholar 

  • Singer I (1999) A political history of Ugarit. In: Watson GEW, Wyatt N (eds) Handbook of Ugaritic Studies. Brill, Leiden

    Google Scholar 

  • Singer I (2000) New evidence on the end of the Hittite empire. In: Oren ED (ed) The Sea peoples and their world: a reassessment. University of Pennsylvania Press, Philadelphia

    Google Scholar 

  • Sirota I, Arnon A, Lensky NG (2016) Seasonal variations of halite saturation in the Dead Sea. Water Resour Res 52(9):7151–7162

    Article  Google Scholar 

  • Sirota I, Enzel Y, Lensky NG (2017) Temperature seasonality control on modern halite layers in the Dead Sea: in situ observations. GSA Bull 129(9–10):1181–1194

    Google Scholar 

  • Sirota I, Enzel Y, Lensky NG (2018) Halite focusing and amplification of salt layer thickness: from the Dead Sea to deep hypersaline basins. Geology 46(10):851–854

    Article  Google Scholar 

  • Shamir G (2006) The active structure of the Dead Sea depression. Geol S Am Spec Pap 401:15–32

    Google Scholar 

  • Shviro M (2015) The influence of flash-floods on subsidence rates in sinkholes sites along the Dead Sea: insights from high-resolution InSAR. Ph.D. thesis, Ben-Gurion University of the Negev, Israel

    Google Scholar 

  • Starinsky A (1974) Relationship between Ca chloride brines and sedimentary rocks in Israel. Ph.D. thesis, The Hebrew University of Jerusalem, Israel (in Hebrew)

    Google Scholar 

  • Stanislavsky E, Gvirtzman H (1999) Basin-scale migration of continental-rift brines: paleohydrologic modeling of the Dead Sea Basin. Geology 27(9):791–794

    Article  Google Scholar 

  • Stein M (2001) The sedimentary and geochemical record of Neogene-Quaternary water bodies in the Dead Sea Basin-inferences for the regional paleoclimatic history. J Paleolimnol 26(3):271–282

    Article  Google Scholar 

  • Stein M, Starinsky A, Katz A, Goldstein SL, Machlus M, Schramm A (1997) Strontium isotopic, chemical, and sedimentological evidence for the evolution of Lake Lisan and the Dead Sea. Geochim Cosmochim Ac 61(18):3975–3992

    Article  Google Scholar 

  • Stein M, Torfstein A, Gavrieli I, Yechieli Y (2010) Abrupt aridities and salt deposition in the post-glacial Dead Sea and their North Atlantic connection. Quat Sci Rev 29(3–4):567–575

    Article  Google Scholar 

  • Stein M (2014) The evolution of Neogene-Quaternary water-bodies in the Dead Sea rift valley. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) Dead Sea Transform Fault System: Reviews. Springer, Dordrecht, pp 279–316

    Google Scholar 

  • Steinhorn I, Assaf G, Gat JR, Nishry A, Nissenbaum A, Stiller M, Beyth MT, Neev D, Garber R, Friedman GM, Weiss W (1979) The Dead Sea: deepening of the mixolimnion signifies the overture to overturn of the water column. Science 206(4414):55–57

    Article  Google Scholar 

  • Steinhorn I, Gat JR (1983) The Dead Sea. Sci Am 249(4):102–111, C1–C8

    Google Scholar 

  • Stern O (2010) Geochemistry, hydrology and paleo-hydrology of Ein Qedem spring system. Geol Surv Isr Rep, GSI/17/2010, Jerusalem

    Google Scholar 

  • Stiller M, Chung YC (1984) Radium in the Dead Sea: a possible tracer for the duration of meromixis. Limnol Oceanogr 29(3):574–586

    Article  Google Scholar 

  • ten Brink US, Ben-Avraham Z (1989) The anatomy of a pull-apart basin: seismic reflection observations of the Dead Sea Basin. Tectonics 2:333–350

    Article  Google Scholar 

  • ten Brink US, Flores CH (2012) Geometry and subsidence history of the Dead Sea Basin: a case for fluid-induced mid-crustal shear zone? J Geophys Res-Sol Earth 117(B1)

    Google Scholar 

  • Torfstein A, Gavrieli I, Katz A, Kolodny Y, Stein M (2008) Gypsum as a monitor of the paleo-limnological–hydrological conditions in Lake Lisan and the Dead Sea. Geochim Cosmochim Ac 72(10):2491–2509

    Article  Google Scholar 

  • Torfstein A, Haase-Schramm A, Waldmann N, Kolodny Y, Stein M (2009) U-series and oxygen isotope chronology of the mid-Pleistocene Lake Amora (Dead Sea Basin). Geochim Cosmochim Ac 73(9):2603–2630

    Article  Google Scholar 

  • Torfstein A, Goldstein SL, Kagan EJ, Stein M (2013) Integrated multi-site U-Th chronology of the last glacial Lake Lisan. Geochim Cosmochim Ac 104:210–231

    Article  Google Scholar 

  • Trigo IF (2006) Climatology and interannual variability of torm-tracks in the Euro-Atlantic sector: a comparison between ERA-40 and NCEP/NCAR reanalyses. Clim Dynam 26 (2–3):127–143

    Google Scholar 

  • Underhill HW (1967) Dead Sea levels and the P.E.F. mark. Palest Explor Quarterly 99(1):45–53

    Google Scholar 

  • Vardi J (1990) Mediterranean–Dead Sea Project – historical review. In: Arad V, Beyth M, Vardi J (eds) Geol Surv Isr Rep, GSI/9/90, Jerusalem

    Google Scholar 

  • Volcani B (1944) Studies on the microflora of the Dead Sea. Ph.D. thesis, The Hebrew University of Jerusalem (in Hebrew)

    Google Scholar 

  • Waldmann N, Starinsky A, Stein M (2007) Primary carbonates and Ca-chloride brines as monitors of a paleo-hydrological regime in the Dead Sea Basin. Quat Sci Rev 26(17–18):2219–2228

    Article  Google Scholar 

  • Ward WA, Joukowsky M (1992) The crisis years: the 12th century BC: from beyond the Danube to the Tigris. Kendall Hunt, Dubuque

    Google Scholar 

  • Weber N, Yechieli Y, Stein M, Yokochi R, Gavrieli I, Zappala J, Mueller P, Lazar B (2018) The circulation of the Dead Sea brine in the regional aquifer. Earth Planet Sci Lett 493:242–261

    Article  Google Scholar 

  • Weiss B (1982) The decline of Late Bronze Age civilization as a possible response to climatic change. Clim Change 4(2):173–198

    Article  Google Scholar 

  • Wilkansky B (1936) Life in the Dead Sea. Nature 138(3489):467

    Article  Google Scholar 

  • Yakir D, Issar A, Gat J, Adar E, Trimborn P, Lipp J (1994) 13C and 18O of wood from the Roman siege rampart in Masada, Israel (AD 70–73): evidence for a less arid climate for the region. Geochim Cosmochim Ac 58(16):3535–3539

    Article  Google Scholar 

  • Yechieli Y, Magaritz M, Levy Y, Weber U, Kafri U, Woelfli W, Bonani G (1993) Late Quaternary geological history of the Dead Sea area, Israel. Quat Res 39(1):59–67

    Article  Google Scholar 

  • Yechieli Y, Ronen D, Berkowitz B, Dershowitz WS, Hadad A (1995) Aquifer characteristics derived from the interaction between water levels of a terminal lake (Dead Sea) and an adjacent aquifer. Water Resour Res 31(4):893–902

    Article  Google Scholar 

  • Yechieli Y, Gavrieli I, Berkowitz B, Ronen D (1998) Will the Dead Sea die? Geology 26(8):755–758

    Article  Google Scholar 

  • Yechieli Y, Abelson M, Bein A, Crouvi O, Shtivelman V (2006) Sinkhole “swarms” along the Dead Sea coast: reflection of disturbance of lake and adjacent groundwater systems. Geol Soc Am Bull 118(9–10):1075–1087

    Article  Google Scholar 

  • Yechieli Y, Abelson M, Wachs D, Shtivelman V, Crouvi O, Baer G (2003) Formation of sinkholes along the shore of the Dead Sea - preliminary investigation. In: Beck BF (ed) Sinkholes and the Engineering and Environmental Impacts of Karst. Americal Society of Civil Engineers, San Antonio, Texas

    Google Scholar 

  • Zaccagnini C (1995) War and famine at Emar. Orientalia 64:92–109

    Google Scholar 

  • Zak I (1967) The geology of Mount Sedom. Ph.D. thesis, The Hebrew University of Jerusalem, Israel (in Hebrew with English abstract)

    Google Scholar 

  • Zilberman T, Gavrieli I, Yechieli Y, Gertman I, Katz A (2017) Constraints on evaporation and dilution of terminal, hypersaline lakes under negative water balance: the Dead Sea, Israel. Geochim Cosmochim Ac 217:384–398

    Article  Google Scholar 

  • Zilberman-Kron T (2008) The source and geochemical evolution of the brines in sinkholes along the western shore of the Dead Sea. M.Sc. thesis, The Hebrew University of Jerusalem, Israel

    Google Scholar 

  • Ziv B, Dayan U, Kushnir Y, Roth C, Enzel Y (2006) Regional and global atmospheric patterns governing rainfall in the southern Levant. Int J Climatol 26:55–73

    Article  Google Scholar 

  • Ziv B, Saaroni H, Alpert P (2004) The factors governing the summer regime of the eastern Mediterranean. Int J Climatol 24(14):1859–1871

    Article  Google Scholar 

Download references

Acknowledgements

The writing of this paper was made possible through the support of the Israel Science Fund grant (ISF, Grant # 1093/10) to R. Bookman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Revital Bookman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bookman, R. (2020). The Dead Sea and Its Deviation from Natural Conditions. In: Mischke, S. (eds) Large Asian Lakes in a Changing World. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-42254-7_1

Download citation

Publish with us

Policies and ethics