Skip to main content

Part of the book series: Monographs in Electrochemistry ((MOEC))

  • 380 Accesses

Abstract

Adsorption of ions or neutral molecules on electrode surfaces leads to changes in the macroscopic properties of surfaces such as the surface energy, contact angle, surface charge density or surface potential. Potential-driven adsorption-desorption process of ions or neutral molecules on electrode surfaces belongs to an important research topic in electrochemistry. The process of adsorption of ions and molecules on the electrode surface may be understood at the molecular level when structure analyzing techniques, such as PM IRRAS, are applied to the electrochemical interface. Since the first application of PM IRRAS to the electrochemical interface the picture of potential-dependent changes in the structure, composition, and orientation of ions and amphiphilic molecules present on metallic electrode surfaces is available in the literature. Numerous studies are dedicated to investigate potential-dependent structural changes in biomimetic systems such as lipid bilayers, their interaction with proteins as well as self-assembled protein or DNA films.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen EM, Buckingham MJ, Robins JL (1977) Potential energy of an isolated gold atom on the (100) surface of alkali halide crystals. Surf Sci 67:285–298

    Article  Google Scholar 

  2. Parsons R (1975) A primitive four state model for solvent at the electrode-solution interface. J Electroanal Chem 59:229–237

    Article  CAS  Google Scholar 

  3. Parsons R (1964) The description of adsorption at electrodes. J Electroanal Chem 7:136–157

    CAS  Google Scholar 

  4. Lipkowski J, Shi Z, Chen A, Pettinger B, Bilger C (1998) Ionic adsorption at the Au(111) electrode. Electrochim Acta 43:2875–2888

    Article  CAS  Google Scholar 

  5. Pajkossy T, Wandlowski T, Kolb DM (1996) Impedance spectra of anion adsorption on gold single crystal electrodes. J Electroanal Chem 414:209–220

    Google Scholar 

  6. Valette G, Heamelin A, Parsons R (1978) Specific adsorption on silver single crystals in aqueous solutions. Z Phys Chem 113:71–89

    Article  CAS  Google Scholar 

  7. Valette G (1982) Double layer on silver single crystal electrodes in contact with electrolytes having anions which are slightly specifically adsorbed Part II. The (100) face. J Electroanal Chem 138:37–54

    Article  CAS  Google Scholar 

  8. Hamm UW, Kramer D, Zhai RS, Kolb DM (1996) The pzc of Au(111) and Pt(111) in a perchloric acid solution: an ex situ approach to the immersion technique. J Electroanal Chem 414:85–89

    Article  Google Scholar 

  9. Silva F, Sottomayor MJ, Martins A (1994) Study of electrochemical properties of Au(210) face electrode in nitrate solutions. Electrochim Acta 39:491–496

    Article  CAS  Google Scholar 

  10. Stolberg L, Richer J, Lipkowski J (1986) Adsorption of pyridine at the polycrystalline gold-solution interface. J Electroanal Chem 207:213–234

    Article  CAS  Google Scholar 

  11. Stolberg L, Morin S, Lipkowski J, Irish DE (1991) Adsorption of pyridine at the Au(111)-solution interface. J Electroanal Chem 307:241–262

    Article  CAS  Google Scholar 

  12. Richer J, Lipkowski J (1985) Measurement of physical adsorption of organic species at solid electrodes. J Electrochem Soc 133:121–128

    Article  Google Scholar 

  13. Bizzotto D, Pettinger B (1999) Fluorescence imaging studies of the electrochemical adsorption/desorption of octadecanol. Langmuir 15:8309–8314

    Article  CAS  Google Scholar 

  14. Musgrove A, Bridges CR, Sammis GM, Bizzotto D (2013) Potential-dependent interaction of DOPC liposomes with an octadecanol-covered Au(111) surface using electrochemical methods coupled with in situ fluorescence microscopy. Langmuir 29:3347–3360

    Article  CAS  PubMed  Google Scholar 

  15. Nelson A, Benton A (1986) Phospholipid monolayers at the mercury/water interface. J Electroanal Chem 202:253–270

    Article  CAS  Google Scholar 

  16. Brosseau CL, Sheepwash E, Burgess IJ, Cholewa E, Roscoe SG, Lipkowski J (2007) Adsorption of N-decyl-N,N,N-trimethylammonium triflate (DeTATf), a cationic surfactant, on the Au(111) electrode surface. Langmuir 23:1784–1791

    Article  CAS  PubMed  Google Scholar 

  17. Bełtowska-Brzezinska M, Łuczak T, Holze R (1998) On adsorption of monohydric alcohols and diols at sp and sd metal electrodes. Surf Sci 418:281–294

    Article  Google Scholar 

  18. Li JF, Zhang YJ, Rudnev AV, Anema JR, Li SB, Hong WJ, Rajapandiyan P, Lipkowski J, Wandlowski T, Tian ZQ (2015) Electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy: correlating structural information and adsorption processes of pyridine at the Au(hkl) single crystal/solution interface. J Am Chem Soc 137:2400–2408

    Article  CAS  PubMed  Google Scholar 

  19. Golden WG, Kunimatsu K, Seki H (1984) Application of polarization-modulated Fourier transform infrared reflection-absorption spectroscopy to the study of carbon monoxide adsorption and oxidation on a smooth platinum electrode. J Phys Chem 88:1275–1277

    Article  CAS  Google Scholar 

  20. Kunimatsu K, Seki H, Golden WG (1984) Polarization-modulated FTIR spectra of cyanide adsorbed on a silver electrode. Chem Phys Lett 108:195–199

    Article  CAS  Google Scholar 

  21. Lipkowski J, Stolberg L, Yang DF, Pettinger B, Mirwald S, Henglein F, Kolb DM (1994) Molecular adsorption at metal electrodes. Electrochim Acta 39:1045–1056

    Article  CAS  Google Scholar 

  22. Zamlynny V, Zawisza I, Lipkowski J (2003) PM FTIRRAS studies of potential-controlled transformations of a monolayer and a bilayer of 4-pentadecylpyridine a model surfactant adsorbed on a Au(111) electrode surface. Langmuir 19:132–145

    Article  CAS  Google Scholar 

  23. Lipkowski J (2010) Building biomimetic membrane at a gold electrode surface. Phys Chem Chem Phys 12:13874–13887

    Article  CAS  PubMed  Google Scholar 

  24. Casanova-Moreno JR, Bizzotto D (2010) Electrochemistry and in situ fluorescence microscopy of octadecanol layers doped with BODIPY-labeled phospholipid: investigating an adsorbed heterogenous layer. J Electroanal Chem 649:126–135

    Article  CAS  Google Scholar 

  25. Zawisza I, Lipkowski J (2004) Layer by layer characterization of n-octadecanol films on Au(111) electrode surface—an in situ spectroelectrochemical investigation. Langmuir 20:4579–4589

    Article  CAS  PubMed  Google Scholar 

  26. Roberts G (1990) Langmuir–Blodgett Films. Plenum Press, New York

    Book  Google Scholar 

  27. Umemura J, Kamata T, Kawai T, Takenaka T (1990) Quantitative evaluation of molecular orientation in thin Langmuir-Blodgett filmy by FT-IR transmission and reflection absorption spectroscopy. J Phys Chem 94:62–67

    Article  CAS  Google Scholar 

  28. Li N, Zamlynny V, Lipkowski J, Henglein F, Pettinger B (2002) In situ IR reflectance absorption spectroscopy studies of pyridine adsorption at the Au(111) electrode surface. J Electroanal Chem 524-525:43–53

    Article  CAS  Google Scholar 

  29. Corrsin L, Fax BJ, Lord RC (1953) The vibrational spectra of pyridine and pyridine-d5. J Chem Phys 21:1170–1176

    Article  CAS  Google Scholar 

  30. Brosseau CL, Leitch J, Bin X, Chen M, Roscoe SG, Lipkowski J (2008) Electrochemical and PM-IRRAS a glycolipid-containing biomimetic membrane prepared using Langmuir-Blodgett/Langmuir-Schaefer deposition. Langmuir 24:13058–13067

    Article  CAS  PubMed  Google Scholar 

  31. Garcia-Araez N, Brosseau CL, Rodriguez P, Lipkowski J (2006) Layer-by-layer PM IRRAS characterization of DMPC bilayers deposited on a Au(111) electrode surface. Langmuir 22:10365–10371

    Article  CAS  PubMed  Google Scholar 

  32. Horswell SL, Zamlynny V, Li H-Q, Merrill AR, Lipkowski J (2002) Electrochemical and PM IRRAS studies of potential controlled transformations of phospholipid layers on Au(111) electrodes. Faraday Discuss 121:405–422

    Article  CAS  Google Scholar 

  33. Kycia AH, Wang J, Merrill AR, Lipkowski J (2011) Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer. Langmuir 27:10867–10877

    Article  CAS  PubMed  Google Scholar 

  34. Madrid E, Horswell SL (2013) Effect of headgroup on the physicochemical properties of phospholipid bilayers in electric fields: size matters. Langmuir 29:1695–1708

    Article  CAS  PubMed  Google Scholar 

  35. Madrid E, Horswell SL (2014) Effect of electric field on structure and dynamics of bilayers formed from anionic phospholipids. Electrochim Acta 146:850–860

    Article  CAS  Google Scholar 

  36. Zawisza I, Bin X, Lipkowski J (2004) Spectroelectrochemical studies of bilayers of phospholipids in gel and liquid state on Au(111) electrode surface. Bioelectrochemistry 63:137–147

    Article  CAS  PubMed  Google Scholar 

  37. Zawisza I, Bin X, Lipkowski J (2007) Potential driven structural changes in Langmuir-Blodgett DMPC bilayers determined by in situ spectroelectrochemical PM IRRAS. Langmuir 23:5180–5194

    Article  CAS  PubMed  Google Scholar 

  38. Zawisza I, Lachenwitzer A, Zamlynny V, Horswell SL, Goddard JD, Lipkowski J (2003) Electrochemical and photon polarization modulation infrared reflection absorption spectroscopy study of the electric field driven transformations of a phospholipid bilayer supported at a gold electrode surface. Biophys J 86:4055–4075

    Article  Google Scholar 

  39. Nullmeier M, Koliwer-Brandl H, Kelm S, Zägel P, Koch KW, Brand I (2011) Impact of strong and weak lipid-protein interaction on the structure of a lipid bilayer on a gold electrode surface. ChemPhysChem 12:1066–1079

    Article  CAS  PubMed  Google Scholar 

  40. Matyszewska D, Leitch J, Bilewicz R, Lipkowski J (2008) Polarization modulation infrared reflection-absorption spectroscopy studies of the influence of perfluorinated compounds on the properties of a model biological membrane. Langmuir 24:7408–7412

    Article  CAS  PubMed  Google Scholar 

  41. Laredo T, Dutcher JR, Lipkowski J (2011) Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface. Langmuir 27:10072–10087

    Article  CAS  PubMed  Google Scholar 

  42. Leitch JJ, Brosseau CL, Roscoe SG, Bessonov K, Dutcher JR, Lipkowski J (2013) Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane. Langmuir 29:965–976

    Article  CAS  PubMed  Google Scholar 

  43. Pieta P, Majewska M, Su Z, Grossutti M, Wladyka B, Piejko M, Lipkowski J, Mak P (2016) Physicochemical studies on orientation and conformation of a new bacteriocin BacSp222 in a planar phospholipid bilayer. Langmuir 32:5653–5662

    Article  CAS  PubMed  Google Scholar 

  44. Brand I, Koch KW (2018) Impact of the protein myristoylation on the structure of a model cell membrane in a protein bound state. Bioelectrochemistry 124:13–21

    Article  CAS  PubMed  Google Scholar 

  45. Brand I, Matyszewska D, Koch KW (2018) Binding of a myristoylated protein to the lipid membrane influenced by interactions with the polar head group region. Langmuir 34:14022–14032

    Article  CAS  PubMed  Google Scholar 

  46. Ahlers M, Stein N, Broch L, Brand I (2013) Study of the potential driven changes in a collagen film self-assembled on a polycrystalline gold electrode surface. J Electroanal Chem 706:140–148

    Article  CAS  Google Scholar 

  47. Kekedy-Nagy L, Ferapontova EE, Brand I (2017) Submolecular structure and orientation of oligonucleotide duplexes tethered to gold electrodes probed by infrared reflection absorption spectroscopy: effect of the electrode potentials. J Phys Chem C 121:1552–1565

    Article  CAS  Google Scholar 

  48. Meiners F, Ahlers M, Brand I, Wittstock G (2015) Impact of temperature and electrical potentials on the stability and structure of collagen adsorbed on the gold electrode. Surf Sci 631:220–228

    Article  CAS  Google Scholar 

  49. Yeagle PL (2005) Lipid structure. In: Yeagle PL (ed) The structure of biological membranes. CRC Press, New York, pp 1–52

    Google Scholar 

  50. Brain AA, McConnel HM (1984) Allogeneic stimulation of cytotoxic T cells by supported planar membranes. Proc Natl Acad Sci USA 81:6159–6163

    Article  Google Scholar 

  51. Cremer PS, Boxer SG (1999) Formation and spreading of lipid bilayers on planar glass supports. J Phys Chem B 103:2554–2559

    Article  CAS  Google Scholar 

  52. Bin X, Zawisza I, Goddard JD, Lipkowski J (2005) Electrochemical and PM-IRRAS studies of potential driven transformations of phospholipid bilayers on a Au (111) electrode surface. Langmuir 21:330–347

    Article  CAS  PubMed  Google Scholar 

  53. Tamm LK, McConnel HM (1985) Supported phospholipid bilayers. Biophys J 47:105–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rossi C, Chopineau J (2007) Biomimetic tethered lipid membranes designed for membrane-protein interaction studies. Eur Biophys J 36:955–965

    Article  CAS  PubMed  Google Scholar 

  55. Richter RP, Berat R, Brisson AR (2006) Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22:3497–3505

    Article  CAS  PubMed  Google Scholar 

  56. Knoll W, Frank CW, Heibel C, Naumann R, Offenhausser A, Ruhe J, Schmidt EK, Shen WW, Sinner A (2000) Functional tethered lipid bilayers. J Biotechnol 74:137–158

    CAS  PubMed  Google Scholar 

  57. Burgess I, Li M, Horswell SL, Szymanski G, Lipkowski J, Majewski J, Satija S (2004) Electric field driven transformations of a supported model biological membrane—an electrochemical and neutron reflectivity study. Biophys J 86:1763–1776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. MacPhail RA, Strauss HL, Snyder RG, Elliger CA (1984) CH stretching modes and the structure of n-alkyl chains. 2. Long all-trans chains. J Phys Chem 88:334–341

    Article  CAS  Google Scholar 

  59. Wong PTT, Chagwedera TE, Mantsch HH (1987) Structural aspects of the effect of pressure on the Raman and infrared spectra of n-hexadecane. J Chem Phys 87:4487–4497

    Article  CAS  Google Scholar 

  60. Snyder RG, Strauss HL, Elliger CA (1982) C-H stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J Phys Chem 86:5145–5150

    Article  CAS  Google Scholar 

  61. Cameron DG, Casal HL, Gudgin EF, Mantsch HH (1980) The gel phase of dipalmitoyl phosphatidylcholine—an infrared characterization of the acyl chain packing. Biochim Biophys Acta 596:463–467

    Article  CAS  PubMed  Google Scholar 

  62. Hauser H, Pascher I, Pearson RM, Sundell S (1981) Preferred conformation and molecular packing of phosphatidylethanolamine and phosphatidylcholine. Biochim Biophys Acta 650:21–51

    Article  CAS  PubMed  Google Scholar 

  63. Small DM (1984) Lateral chain packing in lipids and membranes. J Lipid Res 25:1490–1500

    CAS  PubMed  Google Scholar 

  64. Mantsch HH, McEchaney RN (1991) Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy. Chem Phys Lipids 57:213–226

    Article  CAS  PubMed  Google Scholar 

  65. Lewis RNAH, McElhaney RN, Pohle W, Mantsch HH (1994) Components of the carbonyl stretching band in the infrared spectra of hydrated 1,2-diacylglycerolipid bilayer: a reevaluation. Biophys J 67:2367–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Blume A, Hübner W, Messer G (1988) Fourier transform infrared spectroscopy of 13C=O labeled phospholipids hydrogen bonding to carboxyl groups. Biochemistry 27:8239–8249

    Article  CAS  PubMed  Google Scholar 

  67. Lewis RNAH, McElhaney RN (2000) Calorimetric and spectroscopic studies of the thermotropic phase behavior of lipid bilayer model membranes composed of a homologous series of linear saturated phosphatidylserines. Biophys J 79:2043–2055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Pedersen UR, Leidy C, Westh P, Peters GH (2006) The effect of calcium on the properties of charged phospholipid bilayers. Biochim Biophys Acta 1758:573–582

    Article  CAS  PubMed  Google Scholar 

  69. Raetz CRH, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed  Google Scholar 

  70. Nullmeier M, Koliwer-Brandl H, Kelm S, Brand I (2010) Interaction of siglec protein with glycolipids in a lipid bilayer deposited on a gold electrode surface. J Electroanal Chem 649:177–188

    Article  CAS  Google Scholar 

  71. Khairalla B, Juhaniewicz-Debinska J, Sek S, Brand I (2020) The shape of lipid molecules affects potential-driven molecular-scale rearrangements in model cell membranes on electrodes. Bioelectrochemistry 132:107443-1–107443-10

    Google Scholar 

  72. Kycia AH, Su ZF, Brosseau CL, Lipkowski J (2013) In situ PM-IRRAS studies of biomimetic membranes supported at a gold electrode surface. In: Wieckowski A, Korzeniewski C, Braunschweig B (eds) Vibration spectroscopy at electrified interfaces. Willey, Heidelberg, pp 345–417

    Chapter  Google Scholar 

  73. Brand I (2016) Application of polarization modulation infrared reflection absorption spectroscopy under electrochemical control for structural studies of biomimetic assemblies. Z Phys Chem 230:133–183

    Article  CAS  Google Scholar 

  74. Röefzaad M, Klüner T, Brand I (2009) Orientation of the GM1 ganglioside in Langmuir-Blodgett monolayers: a PM IRRAS and computational study. Phys Chem Chem Phys 11:10140–10151

    Article  PubMed  CAS  Google Scholar 

  75. Brand I (2013) Application of infrared spectroscopy for structural analysis of planar lipid bilayers under electrochemical control. In: Iglic A, Kulkarni CV (eds) Advances in planar lipid bilayers and liposomes, vol 18. Academic, New York, pp 21–62

    Google Scholar 

  76. Winterhalter M (1999) On the defect growth after short electric field pulses in planar lipid bilayers. Colloids Surf A Physicochem Eng Asp 149:161–169

    Article  CAS  Google Scholar 

  77. Cantu L, Corti M, Del Favero E, Muller E, Raudino A, Sonnino S (1999) Thermal hysteresis in ganglioside micelles investigated by differential scanning calorimetry and light-scattering. Langmuir 15:4975–4980

    Article  CAS  Google Scholar 

  78. Matyszewska D, Bilewicz R, Su ZF, Abbasi F, Leitch JJ, Lipkowski J (2016) PM-IRRAS studies of DMPC bilayer supported on Au(111) electrodes modified with hydrophilic monolayers of thioglucose. Langmuir 32:1791–1798

    Article  CAS  PubMed  Google Scholar 

  79. Su ZF, Jiang YX, Velazquez-Manzanares M, Leitch JJ, Kycia AH, Lipkowski J (2013) Electrochemical and PM-IRRAS studies of floating lipid bilayers assembled at the Au(111) electrode pre-modified with a hydrophilic monolayer. J Electroanal Chem 688:76–85

    Article  CAS  Google Scholar 

  80. Lindstrom AB, Strynar MJ, Libelo EL (2011) Polyfluorinated compounds: past, present, and future. Environ Sci Technol 45:7954–7961

    Article  CAS  PubMed  Google Scholar 

  81. Khandelia H, Ipsen JH, Mouritsen OG (2008) The impact of peptides on lipid membranes. Biochim Biophys Acta 1778:1528–1536

    Article  CAS  PubMed  Google Scholar 

  82. Mouritsen OG, Bloom M (1993) Models of lipid-protein interactions in membranes. Annu Rev Biophys Biomol Struct 22:145–171

    Article  CAS  PubMed  Google Scholar 

  83. Sackmann E (1984) Physical basis of trigger processes and membrane structures. In: Chapman D (ed) Biological membranes, vol 5. Academic, New York, pp 105–143

    Google Scholar 

  84. Fang Y, Hong Y, Webb B, Lahiri J (2006) Applications of biomembranes in drug discovery. MRS Bull 31:541–545

    Article  CAS  Google Scholar 

  85. Tatulian SA (2013) Structural characterization of membrane proteins and peptides by FTIR and ATR-FTIR spectroscopy. In: Kleinschmidt JH (ed) Lipid-protein interactions. Methods and protocols, Methods in molecular biology, vol 974. Springer, New York, pp 177–218

    Chapter  Google Scholar 

  86. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta 1767:1073–1101

    Article  CAS  PubMed  Google Scholar 

  87. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Q Rev Biophys 35:369–430

    Article  CAS  PubMed  Google Scholar 

  88. Byler DM, Susi H (1986) Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers 25:469–487

    Article  CAS  PubMed  Google Scholar 

  89. Susi H, Byler DM (1987) Fourier transform infrared study of proteins with parallel β-chains. Arch Biochem Biophys 258:465–469

    Article  CAS  PubMed  Google Scholar 

  90. Lee DC, Haris PI, Chapman D, Mitchell RC (1990) Determination of protein secondary structure using factor analysis of infrared spectra. Biochemistry 29:9185–9193

    Article  CAS  PubMed  Google Scholar 

  91. Dousseau F, Pezolet M (1990) Determination of the secondary structure content of proteins in aqueous solutions from their amide I and amide III infrared bands. Comparison between classical and partial least-squares methods. Biochemistry 29:8771–8779

    Article  CAS  PubMed  Google Scholar 

  92. Kalnin NN, Baikalov IA, Venyaminov SY (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. III. Estimation of the protein secondary structure. Biopolymers 30:1273–1280

    Article  CAS  PubMed  Google Scholar 

  93. Pribic R, van Stokkum IHM, Chapman D, Haris PI, Blomendal M (1993) Protein secondary structure from Fourier transform infrared and/or circular dichroism spectra. Anal Biochem 214:366–378

    Article  CAS  PubMed  Google Scholar 

  94. Abbasi F, Su ZF, Alvarez-Malmagro J, Leitch JJ, Lipkowski J (2019) Effects of amiloride, an ion channel blocker, on alamethicin pore formation in negatively charged, gold-supported, phospholipid bilayers: a molecular view. Langmuir 35:5060–5068

    Article  CAS  PubMed  Google Scholar 

  95. Su FZ, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J (2018) In situ electrochemical and PM-IRRAS studies of alamethicin ion channel formation in model phospholipid bilayers. J Electroanal Chem 819:251–259

    Article  CAS  Google Scholar 

  96. Su ZF, Leitch JJ, Abbasi F, Fargher RJ, Schwan AL (2018) EIS and PM-IRRAS studies of alamethicin ion channels in a tethered lipid bilayer. J Electroanal Chem 812:213–220

    Article  CAS  Google Scholar 

  97. Fox RO Jr, Richards FM (1982) A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5 A resolution. Nature 300:325–330

    Article  CAS  PubMed  Google Scholar 

  98. Su ZF, Shodiev M, Leitch JJ, Abbasi F, Lipkowski J (2018) Role of transmembrane potential and defects on the permeabilization of lipid bilayers by alamethicin, an ion-channel-forming peptide. Langmuir 34:6249–6260

    Article  CAS  PubMed  Google Scholar 

  99. Marsh D, Müller M, Schmitt FJ (2000) Orientation of the infrared transition moments for an α-helix. Biophys J 78:2499–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Miyazawa T, Blout ER (1961) The infrared spectra of polypeptides in various conformations: amide I and II bands. J Am Chem Soc 83:712–719

    Article  CAS  Google Scholar 

  101. Su ZF, Ho D, Merrill AR, Lipkowski J (2019) In situ electrochemical and PM-IRRAS studies of colicin E1 ion channels in the floating bilayer lipid membrane. Langmuir 35:8452–8459

    CAS  PubMed  Google Scholar 

  102. Zozulya S, Stryer L (1992) Calcium—myristoyl protein switch. Proc Natl Acad Sci USA 89:11569–11573

    Article  CAS  PubMed  Google Scholar 

  103. Flaherty KM, Zozulya S, Stryer L, McKay DB (1993) Three-dimensional structure of recoverin, a calcium sensor in vision. Cell 75:709–716

    Article  CAS  PubMed  Google Scholar 

  104. Ames JB, Ishima R, Tanaka T, Gordon JI, Stryer L, Ikura M (1997) Molecular mechanics of calcium-myristoyl switches. Nature 389:198–202

    Article  CAS  PubMed  Google Scholar 

  105. Tanaka T, Ames JB, Harvey TS, Stryer L, Ikura M (1995) Sequestration of the membrane-targeting myristoyl group of recoverin in the calcium-free state. Nature 376:444–447

    Article  CAS  PubMed  Google Scholar 

  106. Weiergräber OH, Senin II, Philippov PP, Granzin J, Koch KW (2003) Impact of n-terminal myristoylation on the Ca2+-dependent conformational transition in recoverin. J Biol Chem 278:22972–22979

    Article  PubMed  Google Scholar 

  107. Ames JB, Porumb T, Tanaka T, Ikura M, Stryer L (1995) Amino-terminal myristoylation includes cooperative calcium binding to recoverin. J Biol Chem 270:4526–4533

    Article  CAS  PubMed  Google Scholar 

  108. Ames JB, Hamasaki N, Molchanova T (2002) Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state. Biochemistry 41:5776–5787

    Article  CAS  PubMed  Google Scholar 

  109. Desmeules P, Penney SE, Desbat B, Salesse C (2007) Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding of lipid monolayers. Biophys J 93:2069–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Coskun U, Simons K (2011) Cell membranes: the lipid perspective. Structure 19:1543–1548

    Article  CAS  PubMed  Google Scholar 

  111. Simonsson L, Gunnarsson A, Wallin P, Jönsson P, Höök F (2011) Continuous lipid bilayers derived from cell membranes for spatial molecular manipulation. J Am Chem Soc 133:14027–14032

    Article  CAS  PubMed  Google Scholar 

  112. Surewicz WK, Leddy JL, Mantsch HH (1990) Structure, stability and receptor interaction of cholera toxin as studied by FTIRS. Biochemistry 29:8106–8111

    Article  CAS  PubMed  Google Scholar 

  113. Fishman PH (1982) Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol 69:85–97

    Article  CAS  PubMed  Google Scholar 

  114. Kelm S (2001) Ligands for siglecs. In: Crocker PR (ed) Mammalian carbohydrate recognition systems, vol 33. Springer, Berlin

    Chapter  Google Scholar 

  115. Crocker PR, Kelm S (1996) Methods for studying the cellular binding properties of lectin-like receptors. In: Herzenberg LA, Weir DM (eds) Weir’s handbook of experimental immunology. Blackwell Science, Cambridge, pp 166.161–166.111

    Google Scholar 

  116. May AP, Robinson RC, Vinson M, Crocker PR, Jones EY (1998) Crystal structure of the N-terminal domain of sialoadhesin in complex with 3′sialyllactose at 1.84 A resolution. Mol Cell 1:719–728

    Google Scholar 

  117. Merritt EA, Sarfaty S, van der Akker F, L’Hoir C, Martial JA, Hol W (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci 3:166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Brunette DM, Tengvall P, Textor M, Thomsen P (2001) Titanium in medicine. Springer, Berlin

    Book  Google Scholar 

  119. Wahlgren M, Arnebrant T (1991) Protein adsorption to solid surfaces. Trends Biotechnol 9:201–208

    Article  CAS  PubMed  Google Scholar 

  120. Desroches MJ, Chaudhary N, Omanovic S (2007) PM-IRRAS investigation of the interaction of serum albumin and fibrinogen with a biomedical-grade stainless steel 316LVM surface. Biomacromolecules 8:2836–2844

    Article  CAS  PubMed  Google Scholar 

  121. Bella J, Berman HM (1996) Crystallographic evidence for Cα-H...O=C hydrogen bonds in a collagen triple helix. J Mol Biol 264:734–742

    Article  CAS  PubMed  Google Scholar 

  122. Bella J, Eaton M, Brodsky B, Berman HM (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. Science 266:75–81

    Article  CAS  PubMed  Google Scholar 

  123. Monti S, Bramanti E, Della Porta V, Onor M, D’Ulivo A, Barone V (2013) Interaction of collagen with chlorosulphonated paraffin tanning agents: Fourier transform infrared spectroscopic analysis and molecular dynamics simulations. Phys Chem Chem Phys 15:14736–14747

    Article  CAS  PubMed  Google Scholar 

  124. Venugopal MG, Ramshaw JAM, Braswell E, Zhu D, Brodsky B (1994) Electrostatic interactions in collagen-like triple helical peptides. Biochemistry 33:7948–7956

    Article  CAS  PubMed  Google Scholar 

  125. Dahl T, Sabasy B, Veis A (1998) Type I collagen-phosphophoryn interactions: specificity of the monomer-monomer binding. J Struct Biol 123:162–168

    Article  CAS  PubMed  Google Scholar 

  126. Brand I, Habecker F, Ahlers M, Klüner T (2015) Structure of collagen adsorbed on a model implant surface resolved by polarization modulation infrared reflection-absorption spectroscopy. Spectrochim Acta Part A 138:261–224

    Article  CAS  Google Scholar 

  127. Bella J, Brodsky B, Berman HM (1995) Hydration structure of a collagen peptide. Structure 3:893–906

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brand, I. (2020). In Situ PM IRRAS Studies of Redox-Inactive Molecular Films Adsorbed on Electrodes. In: Application of Polarization Modulation Infrared Reflection Absorption Spectroscopy in Electrochemistry . Monographs in Electrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-42164-9_3

Download citation

Publish with us

Policies and ethics