Skip to main content

Affine Space Fibrations

  • Conference paper
  • First Online:
Book cover Polynomial Rings and Affine Algebraic Geometry (PRAAG 2018)

Abstract

We discuss various aspects of affine space fibrations \(f : X \rightarrow Y\) including the generic fiber, singular fibers and the case with a unipotent group action on X. The generic fiber \(X_\eta \) is a form of \({\mathbb A}^n\) defined over the function field k(Y) of the base variety. Singular fibers in the case where X is a smooth (or normal) surface or a smooth threefold have been studied, but we do not know what they look like even in the case where X is a singular surface. The propagation of properties of a given smooth fiber to nearby fibers will be studied in the equivariant case of Abhyankar-Sathaye Conjecture in dimension three. We also treat the triviality of a form of \({\mathbb A}^n\) if it has a unipotent group action. Treated subjects are classified into the following four themes

  1. 1.

    Singular fibers of \({\mathbb A}^1\)- and \({\mathbb P}^1\)-fibrations,

  2. 2.

    Equivariant Abhyankar-Sathaye Conjecture in dimension three,

  3. 3.

    Forms of \({\mathbb A}^3\) with unipotent group actions,

  4. 4.

    Cancellation problem in dimension three.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The original conjecture asserts that if  \(f : X \rightarrow S\)  is a flat affine morphism of smooth schemes with every fiber isomorphic (over the residue field) to an affine space  \({\mathbb A}^n\)then  f  is locally trivial in the Zariski topology. Taking credit of the conjecture, we call variants of the conjecture the Dolgachev-Weisfeiler problem.

  2. 2.

    In fact, the answer is almost complete if \(n=1\) (see [29, 30]). However, the answer remains partial if \(n=2\). A key result is Sathaye’s theorem [43], and a most general result is found in [27].

  3. 3.

    The latter is a theorem of Daigle-Kaliman [5].

  4. 4.

    Let M be the maximal ideal of \(B:=\varGamma (Y,{\mathcal O}_Y)\) corresponding to the point P. Then \(\widehat{X}\) is the blow-up of X with respect to MA, i.e., \(\widehat{X} \cong \mathrm{Proj}\,_X(\oplus _{n\ge 0}(MA)^n)\). Let \(\tau : \widehat{X} \rightarrow X\) be the canonical morphism. Then \(\tau ^{-1}(C_j)\cong C_j\times E\) for every one-dimensional component \(C_j\) of F. But \(\tau ^{-1}(S_i)\cong S_i\) for every two-dimensional component \(S_i\) of F. We note here that \(S_i\cap C_j=\emptyset \) for all i and j.

  5. 5.

    More precisely, we take a finite Galois extension \(k'/k\) such that \(D\otimes _kk'\) splits into a sum of geometrically irreducible components and consider the Galois group \(\mathrm{Gal}(k'/k)\).

  6. 6.

    The commutativity of a two-dimensional unipotent algebraic group G in the case of characteristic zero (and \(k=\overline{k}\)) follows from the triviality of the adjoint representation of G on the Lie algebra L(G) (see [20] for the general facts). By V. Popov, this is not the case in positive characteristic p since \(G=\left\{ \left( \begin{array}{ccc}1 &{} a &{} b \\ 0 &{} 1 &{}a^p \\ 0 &{} 0 &{} 1 \end{array}\right) ~ \bigg \vert ~ a, b \in k\right\} \) is a two-dimensional non-commutative unipotent group.

  7. 7.

    This means by definition that \(\overline{X}\) is factorial.

  8. 8.

    This implies that the \(G_1\)-orbit \(G_1P\) and \(G_2\)-orbit \(G_2P\) are tangent at P.

  9. 9.

    For a \(G_a\)-action \(\sigma : G_a\times X \rightarrow X\), let \(\varPsi _X:=(\sigma , p_2) : G_a\times X \rightarrow X\times X\) be the graph morphism of \(\sigma \). We say that the action \(\sigma \) is free (resp. proper) if the graph morphism \(\varPsi _X\) is a closed immersion (resp. a proper morphism). Then \(\sigma \) is free (resp. proper) if and only if \(\overline{\sigma }:=\sigma \otimes _k\overline{k}\) is free (resp. proper). By an argument as in subsection 4.4, we have the implications: \(\sigma \) is free \(\Rightarrow \) \(\sigma \) is proper \(\Rightarrow \) \(\sigma \) is fixed-point free. If X is a k-form of \({\mathbb A}^3\), a theorem of Kaliman [22] implies that these three conditions are equivalent. Hence we can use this terminology without confusion.

  10. 10.

    This follows easily from the fact that \(\overline{q} : \overline{X} \rightarrow \overline{Y}\) is an \({\mathbb A}^1\)-bundle. But we would like to make a detour to give an argument which can be applied in case we drop the hypothesis that the action \(\sigma \) is free.

  11. 11.

    The same argument in the proof of Lemma 2.6 works for \(G\cong G_a\times G_a\).

  12. 12.

    The algebraic quotient morphism \(q : X \rightarrow Y=X/\!/G\) splits as a composite \(X {\mathop {\longrightarrow }\limits ^{{q_1}}} Y_1:=X/\!/G_1 {\mathop {\longrightarrow }\limits ^{{q_2}}} Y\). If the G-action is q-tight, \(\overline{X}\) is a G-torsor over \(U:=\overline{q}(\overline{X})\) by Lemma 29. This implies that \(\overline{q}_1 : \overline{X} \rightarrow \overline{Y}_1\) is surjective and a \(G_1\)-torsor. Hence \(\overline{Y}_1\) is the geometric quotient of \(\overline{X}\) by \(G_1\). In particular, the \(G_1\)-action on X is q-tight. Since \(\dim A=4\) and \(A_1=\mathrm{Ker}\,\varDelta \) with an lnd \(\varDelta \) on A associated to the \(G_1\)-action, we need to show that \(A_1\) is finitely generated over k. By Seshadri [47], X is a locally trivial G-principal fiber bundle. Hence there exists an open covering \({\mathcal U}=\{U_i\}_{i\in I}\) with a finite index set I such that \(q^{-1}(U_i) \cong U_i\times G\) which is a G-equivalent isomorphism over \(U_i\). We can take the open sets \(U_i\) of the form \(D(b_i)\) with \(b_i \in B\). Then \(A_1[b_i^{-1}]\cong A[b_i^{-1}]^{G_1} \cong B[b_i^{-1}][t_i]\) since \(G_1\) acts on G and \(G/G_1 \cong G_a\). Hence \(A_1[b_i^{-1}]\) is generated by a single element \(f_i\) over \(B[b_i^{-1}]\). Since the positive powers of \(b_i\) generate the unitary ideal in B, it is then easy to show that \(A_1\) is generated by \(\{f_i\}_{i\in I}\) over B.

References

  1. Bass, H.: Big projective modules are free. Illinois J. Math. 7, 24–31 (1963). https://projecteuclid.org/euclid.ijm/1255637479

  2. Bass, H., Connell, E., Wright, D.: Locally polynomial algebras are symmetric algebras, Invent. Math. 38(3), 279–299 (1976/77). https://doi.org/10.1007/BF01403135

  3. Bonnet, P.: Surjectivity of quotient maps for algebraic \(({\mathbb{C}},+)\)-actions. Transform. Groups 7, 3–14 (2002). https://doi.org/10.1007/BF01253462

    Article  MathSciNet  MATH  Google Scholar 

  4. Daigle, D.: Triangular derivations of \(k[X, Y, Z]\). J. Pure Appl. Algebra 214(7), 1173–1180 (2010). https://doi.org/10.1016/j.jpaa.2009.10.004

    Article  MathSciNet  MATH  Google Scholar 

  5. Daigle, D., Kaliman, Sh: A note on locally nilpotent derivations and variables of \(k[X, Y, Z]\). Canad. Math. Bull. 52(4), 535–543 (2009). https://doi.org/10.4153/CMB-2009-054-5

    Article  MathSciNet  MATH  Google Scholar 

  6. Dutta, A.K.: On \({\mathbb{A}}^1\)-bundles of affine morphisms. J. Math. Kyoto Univ. 35(3), 377–385 (1995). https://projecteuclid.org/euclid.kjm/1250518702

  7. Dutta, A.K., Gupta, N., Lahiri, A.: A note on separable \({\mathbb{ A}}^2\) and \({\mathbb{A}}^3\)-forms. preprint

    Google Scholar 

  8. Dubouloz, A.: Hedén, I., Kishimoto, T.: Equivariant extensions of \(G_a\)-torsors over punctured surfaces. arXiv: 1707.08768v1

  9. Dubouloz, A.: The cylinder over the Koras-Russell cubic threefold has a trivial Makar-Limanov invariant. Transform. Groups 14(3), 531–539 (2009). https://doi.org/10.1007/S00031-009-9051-3

    Article  MathSciNet  MATH  Google Scholar 

  10. Dolgachev, I.V., Ju, B.: Weisfeiler, Unipotent group schemes over integral rings. Izv. Akad. Nauk SSSR Ser. Mat. 38, 751–799 (1974)

    Google Scholar 

  11. Fieseler, K.-H.: On complex affine surfaces with \({\mathbb{C}}^+\)-action. Comment. Math. Helv. 69(1), 5–27 (1994). https://doi.org/10.1007/BF02564471

    Article  MathSciNet  MATH  Google Scholar 

  12. Freudenburg, G.: Invariant Theory and Algebraic Transformation Groups, VII. Algebraic theory of locally nilpotent derivations. Encyclopaedia of Mathematical Sciences, 2nd edn, p. xii+319. Springer, Berlin (2017). https://doi.org/10.1007/978-3-662-55350-3

    Chapter  MATH  Google Scholar 

  13. Gurjar, R.V., Koras, M., Masuda, K., Miyanishi, M., Russell, P.: \({\mathbb{A}}^1_*\)-fibrations on affine threefolds. The proceedings of the AAG conference, Osaka, vol. 2013, pp. 62–102. World Scientific (2011). https://doi.org/10.1142/9789814436700_0004

  14. Gurjar, R.V., Masuda, K., Miyanishi, M.: \({\mathbb{A}}^1\)-fibrations on affine threefolds. J. Pure Applied Algebra 216, 296–313 (2012). https://doi.org/10.1016/j.jpaa.2011.06.013

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurjar, R.V., Masuda, K., Miyanishi, M.: Deformations of \({\mathbb{ A}}^1\)-fibrations. Proceedings of “Groups of Automorphisms in Birational and Affine Geometry”, Springer, Levico Terme (Trento), Italy (2012). https://doi.org/10.1007/978-3-319-05681-4_19

  16. Gurjar, R.V., Koras, M., Masuda, K., Miyanishi, M., Russell, P.: Affine threefolds admitting \(G_a\)-actions. Math. Ann. Online first (2018). https://doi.org/10.1007/s00208-017-1622-3

    Article  MATH  Google Scholar 

  17. Gurjar, R.V., Koras, M., Masuda, K., Miyanishi, M., Russell, P.: Triviality of affine space fibrations. preprint

    Google Scholar 

  18. Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, vol. 52, pp. xvi+496. Springer, New York (1977)

    Google Scholar 

  19. Hironaka, H.: Flattening theorem in complex-analytic geometry. Am. J. Math. 97, 503–547 (1975). https://doi.org/10.2307/2373721

    Article  MathSciNet  MATH  Google Scholar 

  20. Humphreys, J.E.: Linear algebraic groups, Graduate Texts in Mathematics, vol. 21, pp. xiv+247. Springer, New York (1975)

    Google Scholar 

  21. Kaliman, Sh: Polynomials with general \({\mathbb{C}}^2\)-fibers are variables. Pacific J. Math. 203(1), 161–190 (2002). https://doi.org/10.2140/pjm.2002.203.161

    Article  MathSciNet  MATH  Google Scholar 

  22. Kaliman, Sh: Free \({\mathbb{C}}^+\)-actions on \({\mathbb{C}}^3\) are translations. Invent. Math. 156(1), 163–173 (2004). https://doi.org/10.1007/s00222-003-0336-1

    Article  MathSciNet  MATH  Google Scholar 

  23. Kaliman, Sh: Proper \(G_a\)-actions on \({\mathbb{C}}^4\) preserving a coordinate. Algebra Number Theory 12(2), 227–258 (2018). https://doi.org/10.2140/ant.2018.12.227

    Article  MathSciNet  MATH  Google Scholar 

  24. Kaliman, Sh, Saveliev, N.: \({\mathbb{C}}^+\)-actions on contractible threefolds. Michigan Math. J. 52(3), 619–625 (2004). https://doi.org/10.1307/mmj/1100623416

    Article  MathSciNet  MATH  Google Scholar 

  25. Kaliman, Sh, Vénéreau, S., Zaidenberg, M.: Simple birational extensions of the polynomial ring \({\mathbb{C}}^{[3]}\). Trans. Am. Math. Soc. 35(2), 509–555 (2004). https://doi.org/10.1090/S0002-9947-03-03398-1

    Article  MATH  Google Scholar 

  26. Kaliman, Sh, Zaidenberg, M.: Vénéreau polynomials and related fiber bundles. J. Pure Appl. Algebra 192(1–3), 275–286 (2004). https://doi.org/10.1016/j.jpaa.2004.01.009

    Article  MathSciNet  MATH  Google Scholar 

  27. Kaliman, Sh., Zaidenberg, M.: Families of affine planes: the existence of a cylinder. Michigan Math. J. 49(2), 353–367 (2001). https://doi.org/10.1307/mmj/1008719778

  28. Kambayashi, T.: On the absence of nontrivial separable forms of the affine plane. J. Algebra 35, 449–456 (1975). https://doi.org/10.1016/0021-8693(75)90058-7

    Article  MathSciNet  MATH  Google Scholar 

  29. Kambayashi, T., Miyanishi, M.: On flat fibrations by the affine line. Illinois J. Math. 22, 662–671 (1978). https://projecteuclid.org/euclid.ijm/1256048473

  30. Kambayashi, T., Wright, D.: Flat families of affine lines are affine-line bundles. Illinois J. Math. 29(4), 672–681 (1985). https://projecteuclid.org/euclid.ijm/1256045502

  31. Kollár, J.: Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3 Folge, vol. 32. Springer (1996). https://doi.org/10.1007/978-3-662-03276-3

  32. Koras, M., Russell, P.: Separable forms of \(G_m\)-actions on \({\mathbb{A}}^3\). Transform. Groups 18(4), 1155–1163 (2013). https://doi.org/10.1007/s00031-013-9242-9

    Article  MathSciNet  MATH  Google Scholar 

  33. Kraft, H., Russell, P.: Families of group actions, generic isotriviality, and linearization. Transform. Groups 19(3), 779–792 (2014). https://doi.org/10.1007/s00031-014-9274-9

    Article  MathSciNet  MATH  Google Scholar 

  34. Lazard, D.: Sur les modules plats. C. R. Acad. Sci. Paris 258, 6313–6316 (1964)

    MathSciNet  MATH  Google Scholar 

  35. Miyanishi, M.: Curves on rational and unirational surfaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay, vol. 60, pp. ii+302. Narosa Publishing House, New Delhi (1978)

    Google Scholar 

  36. Miyanishi, M.: Singularities of normal affine surfaces containing cylinderlike open sets. J. Algebra 68(2), 268–275 (1981). https://doi.org/10.1016/0021-8693(81)90264-7

    Article  MathSciNet  MATH  Google Scholar 

  37. Miyanishi, M.: \(G_a\)-actions and completions. J. Algebra 319, 2845–2854 (2008). https://doi.org/10.1016/j.jalgebra.2007.11.024

    Article  MathSciNet  MATH  Google Scholar 

  38. Miyanishi, M.: Open Algebraic Surfaces, CRM Monograph series, vol. 12. American Mathematical Soc (2001)

    Google Scholar 

  39. Miyanishi, M.: Normal Affine Subalgebras of a Polynomial Ring, Algebraic and Topological Theories (Kinosaki, 1984), 37–51. Kinokuniya, Tokyo (1986)

    Google Scholar 

  40. Nagata, M.: A treatise on the fourteenth problem of Hilbert. Mem. Sci. Kyoto Univ. 30, 57–70 (1956). https://projecteuclid.org/euclid.kjm/1250777137

  41. Popov, V.L.: Around the Abhyankar-Sathaye conjecture, Doc. Math. 2015, Extra volume: Alexander S. Merkurjev’s sixtieth birthday, 513–528

    Google Scholar 

  42. Sakai, F.: Classification of normal surfaces, Algebraic geometry, Bowdoin, 1985 Part 1. Proceedings of Symposia in Pure Mathematics, vol. 46, pp. 451–465. American Mathematical Society, Providence, RI (1987)

    Google Scholar 

  43. Sathaye, A.: Polynomial ring in two variables over a DVR: a criterion. Invent. Math. 74(1), 159–168 (1983). https://doi.org/10.1007/BF01388536

    Article  MathSciNet  MATH  Google Scholar 

  44. Sathaye, A.: On linear planes. Proc. Am. Math. Soc. 56, 1–7 (1976). https://doi.org/10.1090/S0002-9939-1976-0409472-6

    Article  MathSciNet  MATH  Google Scholar 

  45. Seidenberg, A.: The hyperplane sections of normal varieties. Trans. Am. Math. Soc. 69, 357–386 (1950). https://doi.org/10.2307/1990364

    Article  MathSciNet  MATH  Google Scholar 

  46. Seidenberg, A.: Derivations and integral closure. Pacific J. Math. 16, 167–171 (1966). https://projecteuclid.org/euclid.pjm/1102995095

  47. Seshadri, C.S.: Quotient spaces modulo reductive algebraic groups. Ann. Math. 95, 511–556 (1972). https://doi.org/10.2307/1970870

    Article  MathSciNet  MATH  Google Scholar 

  48. Suzuki, M.: Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace \({\mathbb{C}}^2\). J. Math. Soc. Japan 26, 241–257 (1974). https://projecteuclid.org/euclid.jmsj/1240435278

  49. Zaidenberg, M.: Isotrivial families of curves on affine surfaces and characterization of the affine plane. Izv. Akad. Nauk SSSR Ser. Mat. 51(3), 534–567, 688 (1987); Translation in Math. USSR-Izv. 30(3), 503–532 (1988). https://doi.org/10.1070/IM1988v030n03ABEH001027

  50. Zariski, O.: Interprétations algébrico-géométriques du quatorzième problème de Hilbert. Bull. Sci. Math. 78(2), 155–168 (1954)

    Google Scholar 

  51. Xiao, G.: \(\pi _1\) of elliptic and hyperelliptic surfaces. Internat. J. Math. 2, 599–615 (1991). https://doi.org/10.1142/S0129167X91000338

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The present article is based on the materials prepared for a research to be conducted as a Rip program 2018 in the period August 5 to September 1, 2018 at the Mathematisches Forschungsinstitute Oberwolfach (MFO). We are very much grateful to MFO for the hospitality and the nice research environment. The first author would like to thank the Department of Atomic Energy of the Government of India for Dr. Raja Ramanna Fellowship during this work. The second author is supported by Grant-in-Aid for Scientific Research (C), No. 15K04831, JSPS, and the third author is supported by Grant-in-Aid for Scientific Research (C), No. 16K05115, JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendra V. Gurjar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurjar, R.V., Masuda, K., Miyanishi, M. (2020). Affine Space Fibrations. In: Kuroda, S., Onoda, N., Freudenburg, G. (eds) Polynomial Rings and Affine Algebraic Geometry. PRAAG 2018. Springer Proceedings in Mathematics & Statistics, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-030-42136-6_6

Download citation

Publish with us

Policies and ethics