Mathieu-Zhao Spaces and the Jacobian Conjecture

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 319)


In this paper we define the notion of a Mathieu-Zhao space, give various examples of this concept and use the framework of these Mathieu-Zhao spaces to describe a chain of challenging conjectures, all implying the Jacobian Conjecture.


Mathieu subspace Ideal theory Jacobian Conjecture 


  1. 1.
    Bass, H., Connell, E., Wright, D.: The jacobian conjecture: reduction of degree and formal expansion of the inverse. Bull. Am. Math. Soc.(NS) 7, 287–330. [MR 83k:14028]Google Scholar
  2. 2.
    de Bondt, M.: A few remarks on the generalized vanishing conjecture. Arch. Math (Basel) 100(6), 533–538 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    de Bondt, M., van den Essen, A.: A reduction of the jacobian conjecture to the symmetric case. Proc. Am. Math. Soc. 133(8), 2201–2205 (2005). [MR2138860]Google Scholar
  4. 4.
    Derksen, H., van den Essen, A., Zhao, W.: The gaussian moments conjecture and the jacobian conjecture. Israel J. of Math. 219, 917–928 (2017).
  5. 5.
    Duistermaat, J., van der Kallen, W.: Constant terms in powers of a Laurent polynomial. Indag. Math. (N.S.) 9(2), 221–231 (1998)Google Scholar
  6. 6.
    van den Essen, A., Wright, D., Zhao, W.: On the image conjecture. J. Alg. 340(1), 211–224 (2011). See also arXiv:1008.3962 [math.RA]
  7. 7.
    van den Essen, A.: An introduction to Mathieu subspaces. Lectures delivered at the Chern Institute of Mathematics. Tianjin, China (July 2014)Google Scholar
  8. 8.
    van den Essen, A., Zhao, W.: Two results on homogeneous Hessian nilpotent polynomials. J. Pure Appl. Algebra 212(10), 2190–2193 (2008). See also
  9. 9.
    Francoise, J.P., Pakovich, F., Yomdin, Y., Zhao, W.: Moment vanishing problem and positivity: some examples. Bull. des Sci. Math. 135(1), 10–32 (2011). Also available at:
  10. 10.
    Keller, O.H.: Ganze Cremona-Transformationen. Monatsh. Math. Phys. 47, 299–306 (1939)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Mathieu, O.: Some conjectures about invariant theory and their applications. Algèbre Non Commutative, Groupes Quantiques et Invariants (Reims, 1995). Séminaries et Congrès, vol. 2, pp. 263–279 Société Mathématique de France (1997)Google Scholar
  12. 12.
    Yagzhev, A.V.: On Keller’s problem. Siberian Math. J. 21, 747–754 (1980)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhao, W.: Hessian nilpotent polynomials and the Jacobian conjecture. Trans. Am. Math. Soc. 359(1), 294–274 (2007). See also math.CV/0409534Google Scholar
  14. 14.
    Zhao, W.: A vanishing conjecture on differential operators with constant coefficients. Acta Math. Vietnam. 32(3), 259–286 (2007). See also arXiv:0704.1691v2
  15. 15.
    Zhao, W.: Images of commuting differential operators of order one with constant leading coefficients. J. Algebra 324(2), 231–247 (2010). See also arXiv:0902.0210 [math.CV]
  16. 16.
    Zhao, W.: Generalizations of the image conjecture and the Mathieu conjecture. J. Pure Appl. Algebra 214, 1200–1216 (2010). See also arXiv:0902.0212 [math.CV]
  17. 17.
    Zhao, W.: New proofs for the Abhyankar-Gujar inversion formula and equivalence of the Jacobian conjecture and the vanishing conjecture. Proc. AMS 139,(9), 3141–3154 (2011)Google Scholar
  18. 18.
    Zhao, W.: Mathieu subspaces of associative algebras. J. Algebra 350(1), 245–272 (2012). See also arXiv:1005.4260

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Mathematics Astrophysics and Particle PhysicsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations