Exponential Matrices of Size Five-By-Five

Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 319)


In the article, we supply examples of exponential matrices in positive characteristic, and then give an overlapping classification of exponential matrices of size five-by-five in positive characteristic. In characteristic zero, we can easily classify exponential matrices up to equivalence. But, in positive characteristic, we meet difficulties of classifying exponential matrices up to equivalence. At the conference Polynomial Rings and Affine Algebraic Geometry, February 12–16, 2018, Tokyo Metropolitan University, we gave a talk about classifying exponential matrices of size four-by-four in positive characteristic, up to equivalence. So, the article can be regarded as a continuation of the talk.


Matrix theory Modular representation theory 



The author would like to thank the referee for careful reading of the article.


  1. 1.
    Fauntleroy, A.: On Weitzenböck’s theorem in positive characteristic. Proc. Am. Math. Soc. 64(2), 209–213 (1977)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Miyanishi, M.: Curves on Rational and Unirational Surfaces. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 60. Tata Institute of Fundamental Research, Bombay (1978)Google Scholar
  3. 3.
    Seshadri, C.S.: On a theorem of Weitzenböck in invariant theory. J. Math. Kyoto Univ. 1, 403–409 (1961/1962)Google Scholar
  4. 4.
    Tanimoto, R.: An algorithm for computing the kernel of a locally finite iterative higher derivation. J. Pure Appl. Algebra 212(10), 2284–2297 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Tanimoto, R.: Representations of \({\mathbb{G}}_a\) of Codimension Two, Affine Algebraic Geometry, pp. 279–284. World Scientific Publishing, Hackensack (2013)Google Scholar
  6. 6.
    Tanimoto, R.: A note on the Weitzenböck problem in dimension four. Commun. Algebra 46(2), 588–596 (2018)CrossRefGoogle Scholar
  7. 7.
    Tanimoto, R.: Exponential matrices. Linear Algebra Appl. 572, 153–251 (2019)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Tyc, A.: An elementary proof of the Weitzenböck theorem. Colloq. Math. 78(1), 123–132 (1998)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Weitzenböck, R.: Über die invarianten von linearen gruppen. Acta Math. 58(1), 231–293 (1932)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zariski, O.: Interprétations algébrico-géométriques du quatorzième problème de Hilbert. Bull. Sci. Math. 78(2), 155–168 (1954)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Shizuoka UniversityShizuokaJapan

Personalised recommendations