Advertisement

Tango Structures on Curves in Characteristic 2

Conference paper
  • 279 Downloads
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 319)

Abstract

The (pre-)Tango structure is a certain ample invertible sheaf of exact differential 1-forms on a projective algebraic variety and it implies some typical pathological phenomena in positive characteristic. Moreover, by using the notion of (pre-)Tango structure, we can construct another variety accompanied by similar pathological phenomena. In this article, we explicitly show several interesting and mysterious phenomena on the induced uniruled surfaces from (pre-)Tango structures on curves in characteristic 2.

Keywords

Characteristic 2 Pathological phenomenon Tango structure Non-closed differential form Non-reduced automorphism group scheme 

References

  1. 1.
    Deligne, P., Illusie, L.: Relèvements modulo \(p^2\) et décomposition du complexe de de Rham. Invent. Math. 89, 247–270 (1987)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ganong, R., Russell, P.: The tangent bundle of a ruled surface. Math. Ann. 271, 527–548 (1985)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Kurke, H.: Example of false ruled surfaces. In: Proceedings of Symposium on Algebraic Geometry Kinosaki, pp. 203–223 (1981)Google Scholar
  4. 4.
    Lang, W.E.: Quasi-elliptic surfaces in characteristic three. Ann. Sci. Ecole Norm. Sup. 12(4), 473–500 (1979)Google Scholar
  5. 5.
    Lang, W.E.: Examples of surfaces of general type with vector fields. In: Artin, M., Tate, J. (eds.) Arithmetic and Geometry, vol. II, pp. 167–173. Birkhäuser, Boston (1983)CrossRefGoogle Scholar
  6. 6.
    Mukai, S.: Counterexamples to Kodaira’s vanishing and Yau’s inequality in positive characteristics. Kyoto J. Math. 53(2), 515–532 (2013). Japanese version: In: Proceedings of the Symposium on Algebraic Geometry, Kinosaki, pp. 9–31 (1979)Google Scholar
  7. 7.
    Matsumura, H.: On algebraic groups of birational transformations. Atti Accad. Naz. dei Lincei 34, 151–155 (1963)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Raynaud, M.: Contre-exemple au “Vanishing Theorem” em caractéristique \(p>0\). In: Ramanujan C.P. (ed.) A Tribute. Tata Institute of Fundamental Research Studies in Mathematics, vol. 8, pp. 273–278. Springer, Berlin (1978)Google Scholar
  9. 9.
    Russell, P.: Forms of the affine line and its additive group. Pacific J. Math. 32, 527–539 (1970)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Russell, P.: Factoring the Frobenius morphism of an algebraic surface. In: Algebraic Geometry, Bucharest 1982, Lecture Notes in Math. 1056, vol. 1984, pp. 366–380. Springer, Berlin (1982)Google Scholar
  11. 11.
    Takeda, Y.: Fibrations with moving cuspidal singularities. Nagoya Math. J. 122, 161–179 (1991)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Takeda, Y.: Vector fields and differential forms on generalized Raynaud surfaces. Tôhoku Math. J. 44, 359–364 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Takeda, Y.: Groups of Russell type over a curve. J. Pure Appl. Algebra 128, 93–108 (1998); Corrigendum 148, 317–318 (2000)Google Scholar
  14. 14.
    Takeda, Y.: Pre-Tango structures in characteristic two. Japanese J. Math. 28, 81–86 (2002)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Takeda, Y.: Pre-Tango structures and uniruled varieties. Colloq. Math. 108(2), 193–216 (2007)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Takeda, Y.: Groups of Russell Type and Tango Structures. In: Daigle, D., Ganong, R., Koras, M. (eds.) Affine Algebraic Geometry, The Russell Festschrift, CRM Proceedings and Lecture Notes, vol. 54, pp. 327–334. Centre de Recherches Mathématiques, Montéal, AMS (2011)Google Scholar
  17. 17.
    Takeda, Y., Yokogawa, K.: Pre-Tango structures on curves. Tôhoku Math. J. 54, 227–237 (2002); Errata and addenda 55, 611–614 (2003)Google Scholar
  18. 18.
    Tango, H.: On the behavior of extensions of vector bundles under the Frobenius map. Nagoya Math. J. 48, 73–89 (1972)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsWakayama Medical UniversityWakayamaJapan

Personalised recommendations