Skip to main content

Overview of Arid Desert Conditions, Water Sources, and Desert Plants and Animals

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 299))

Abstract

Deserts have fascinated humans for centuries. They have been focus of even fictional books (Herbert 1965). A desert is a barren landscape where little precipitation occurs (Meigs 1953; Walker 1992; Costa 1995; Mares 1999; Harris 2003; Allaby 2006; Laity 2008; Greenberger 2009). A desert is referred to as an area of land that receives no more than 250 mm of precipitation per year. The amount of evaporation in a desert often greatly exceeds the annual rainfall, which results in a moisture deficit over the course of a year. All deserts are arid or dry. There is little water available for any living nature to survive. Consequently, living conditions are hostile for living nature including plant and animal life.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agam, N. and Berliner, P. R. (2006), “Dew Formation and Water Vapor Adsorption in Semi-Arid Environments – A Review,” J. Arid Environ. 65, 572-590.

    Google Scholar 

  • Alduchov, O. A. and Eskridge, R. E. (1996), “Improved Magnus Form Approximation of Saturation Vapor Pressure,” J. Appl. Meteorol. 35, 601-609.

    Google Scholar 

  • Allaby, M. (2006), Deserts, Chelsea House Publishers, New York, New York.

    Google Scholar 

  • Andrade, D. and Abe, A. (2000), “Water Collection by the Body in a Viperid Snake, Bothrops Moojeni,” Amphibia-Reptilia 21, 485–492.

    Google Scholar 

  • Anonymous (1995), “Discover and Learn about Birds– Desert Birds: How Do Birds Drink Water? Part 1,” https://www.birds.com/desert-birds-how-do-birds-drink-water-part-1/.

  • Anonymous (1996), “DesertUSA,” https://www.desertusa.com/.

  • Anonymous (1999), “Fog, Dew and Snow Harvesting,” in Sourcebook of Alternative Technologies for Freshwater Augumentation in Africa, Stationery Office Books, Norwich, U.K.

    Google Scholar 

  • Anonymous (2016), “Mammals in the Desert,” adventurepublications.net, http://adventurepublications.net/2016/12/28/desert/.

  • Ashton, K. G. and Johnson, J. (1998), “Crotalus Viridis Concolor (Midget Faded Rattlesnake): Drinking from Skin,” Herpetol. Rev. 29, 170.

    Google Scholar 

  • Auffenberg, W. (1963), “A Note on the Drinking Habits of Some Land Tortoises,” Anim. Behav. 11, 72–73.

    Google Scholar 

  • Axelrod, D. I. (1979), Age and Origin of Sonoran Desert Vegetation, California Academy of Sciences, San Francisco, California.

    Google Scholar 

  • Baier, W. (1996), “Studies on Dew Formation under Semi-arid Conditions,” Agric. Meteorol. 3, 103-112.

    Google Scholar 

  • Basu, S., Agarwal, A. K., Mukhopadhyay, A., and Patel, C. (Eds.) (2018), Droplet and Spray Transport: Paradigms and Applications, Springer, New York.

    Google Scholar 

  • Bentley, P. J. and Blumer, W. F. C. (1962), “Uptake of Water by the Lizard, Moloch Horridus,” Nature 194, 699–700.

    Google Scholar 

  • Bhushan, B. (2018), Biomimetics: Bioinspired Hierarchical-Structured Surfaces for Green Science and Technology, third ed., Springer International, Cham, Switzerland.

    Google Scholar 

  • Bhushan, B. (2019), “Bioinspired Water Collection Methods to Supplement Water Supply,” Phil. Trans. R. Soc. A 377, 20190119.

    Google Scholar 

  • Bhushan, B. (2020), “Design of Water Harvesting Towers and Projections for Water Collection from Fog and Condensation,” Phil. Trans. R. Soc. A 378, 20190440.

    Google Scholar 

  • Bredeson, C. (2009), Baby Animals of the Desert, Enslow Publishers, Berkeley Heights, New Jersey.

    Google Scholar 

  • Brown, P. S. and Bhushan, B. (2016), “Bioinspired Materials for Water Supply and Management: Water Collection, Water Purification and Separation of Water from Oil,” Phil. Trans. R. Soc. A 374, 20160135.

    Google Scholar 

  • Cade, T. J. and Maclean, G. L. (1967), “Transport of Water by Adult Sandgrouse to Their Young,” Condor 69, 323–343.

    Google Scholar 

  • Cardwell, M. D. (2006), “Rain-Harvesting in a Wild Population of Crotalus s. Scutulatus (Serpentes: Viperidae),” Herpetol. Rev. 37, 142–144.

    Google Scholar 

  • Clavero, M., Esquivias, J., Qninba, A., Riesco, M., Calzada, J., Ribeiro, F., Fernández, N., and Delibes, M. (2015), “Fish Invading Deserts: Non-Native Species in Arid Moroccan Rivers,” Aquat. Conserv.: Mar. Freshw. Ecosyst. 25, 49–60.

    Google Scholar 

  • Cloudsley-Thompson, J. L. and Chadwick, M. J. (1964), Life in Deserts, G. T. Foulis & Co., London, U. K.

    Google Scholar 

  • Comanns, P. (2018), “Passive Water Collection with the Integument: Mechanisms and Their Biomimetic Potential,” J. Exp. Biol. 221, jeb153130.

    Google Scholar 

  • Comanns, P., Effertz, C., Hischen, F., Staudt, K., Böhme, W., and Baumgartner, W. (2011), “Moisture Harvesting and Water Transport through Specialized Micro-Structures on the Integument of Lizards,” Beilstein J. Nanotechnol. 2, 204–214.

    Google Scholar 

  • Comanns, P., Buchberger, G., Buchbaum, A., Baumgartner, R., Kogler, A., Bauer, S., and Baumgartner, W. (2015), “Directional, Passive Liquid Transport: the Texas Horned Lizard as a Model for a Biomimetic ‘Liquid Diode’,” J. R. Soc. Interface 12, 20150415.

    Google Scholar 

  • Costa, G. (1995), Behavioural Adaptations of Desert Animals, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Degen, A. A., Leeper, A., and Shachak, M. (1992), “The Effect of Slope Direction and Population Density on Water Influx in a Desert Snail, Trochoidea Seetzenii,” Funct. Ecol. 6, 160–166.

    Google Scholar 

  • Ditmars, R. L. (1936), Reptiles of the World, The MacMillan company, New York, New York.

    Google Scholar 

  • Ebner, M., Miranda, T., and Roth-Nebelsick, A. (2011), “Efficient Fog Harvesting by Stipagrostis Sabulicola (Namib Dune Bushman Grass),” J. Arid. Environ. 75, 524–531.

    Google Scholar 

  • Fair, J. W. (1970), “Comparative Rates of Rehydration from Soil in Two Species of Toads, Bufo Boreas and Bufo Punctatus,” Comp. Biochem. Physiol 34, 281–287.

    Google Scholar 

  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., and Hurni, H. (2014), “Fog-Water Collection for Community Use,” Renew. Sust. Energ. Rev. 29, 52–62.

    Google Scholar 

  • Fitzgerald, M. (1983), “A Note on Water Collection by the Bearded Dragon Amphibolurus Vitticeps,” Herpetofauna 14, 93.

    Google Scholar 

  • Gans, C., Merlin, R., and Blumer, W. F. C. (1982), “The Water-Collecting Mechanism of Moloch Horridus Re-Examined,” Amphibia-Reptilia 3, 57–64.

    Google Scholar 

  • Glaudas, X. (2009), “Rain-Harvesting by the Southwestern Speckled Rattlesnake (Crotalus Mitchellii Pyrrhus),” Southwest. Nat. 54, 518–521.

    Google Scholar 

  • Godeau, G., Godeau, R.-P., Orange, F., Szczepanski, C. R., Guittard, F., and Darmanin, T. (2018), “Variation of Goliathus Orientalis (Moser, 1909) Elytra Nanostructurations and Their Impact on Wettability,” Biomimetics. 3, 6.

    Google Scholar 

  • Greenberger, R. (2009), Deserts–The Living Landscape, The Rosen Publishing Group, New York, New York.

    Google Scholar 

  • Gurera, D. and Bhushan, B. (2020), “Passive Water Harvesting by Desert Plants and Animals: Lessons from Nature,” Phil. Trans. R. Soc. A 378, 20190444.

    Google Scholar 

  • Hamilton, W. J., and Seely, M. K. (1976), “Fog Basking by the Namib Desert Beetle, Onymacris Unguicularis,” Nature 262, 284–285.

    Google Scholar 

  • Harris, N. (2003), Atlas of the World’s Deserts, Taylor and Francis Group, New York, New York.

    Google Scholar 

  • Herbert, F. (1965), Dune, Berkeley Publishing Corp., New York, New York.

    Google Scholar 

  • Hiatt, C., Fernandez, D., and Potter, C. (2012), “Measurements of Fog Water Deposition on the California Central Coast,” Atmospheric Clim. Sci. 02, 525.

    Google Scholar 

  • Hill, A. J., Dawson, T. E., Shelef, O., and Rachmilevitch, S. (2015). “The Role of Dew in Negev Desert Plants,” Oecologia, 178, 317–327.

    Google Scholar 

  • Hischen, F., Reiswich, V., Kupsch, D., Mecquenem, N. D., Riedel, M., Himmelsbach, M., Weth, A., Heiss, E., Armbruster, O., Heitz, J., and Baumgartner, W. (2017), “Adaptive Camouflage: What Can Be Learned from the Wetting Behaviour of the Tropical Flat Bugs Dysodius Lunatus and Dysodius Magnus,” ‎Biol. Open 6, 1209–1218.

    Google Scholar 

  • Hoese, B. (1981), “Morphologie und Funktion des Wasserleitungssystems der terrestrischen Isopoden (Crustacea, Isopoda, Oniscoidea),” Zoomorphology 98, 135–167.

    Google Scholar 

  • Horiguchi, H., Hironaka, M., Meyer-Rochow, V. B., and Hariyama, T. (2007), “Water Uptake via Two Pairs of Specialized Legs in Ligia Exotica (Crustacea, Isopoda),” Biol. Bull. 213, 196–203.

    Google Scholar 

  • Ishii, D., Horiguchi, H., Hirai, Y., Yabu, H., Matsuo, Y., Ijiro, K., Tsujii, K., Shimozawa, T., Hariyama, T., and Shimomura, M. (2013), “Water Transport Mechanism through Open Capillaries Analyzed by Direct Surface Modifications on Biological Surfaces,” Sci. Rep. 3, 3024.

    Google Scholar 

  • Joel, A.-C., Buchberger, G., and Comanns, P. (2017), “Moisture-Harvesting Reptiles: A Review,” in Functional Surfaces in Biology III: Diversity of the Physical Phenomena (S. N. Gorb and E. V. Gorb, eds.), pp. 93–106, Springer International, Cham, Switzerland.

    Google Scholar 

  • Joubert, C. S. W. and Maclean, G. L. (1973), “The Structure of the Water-Holding Feathers of the Namaqua Sandgrouse,” Zoologica Africana 8, 141–152.

    Google Scholar 

  • Ju, J., Bai, H., Zheng, Y., Zhao, T., Fang, R., and Jiang, L. (2012), “A Multi-Structural and Multi-Functional Integrated Fog Collection System in Cactus,” Nat. Commun. 3, 1247.

    Google Scholar 

  • Kidron, G. J. (2005), “Angle and Aspect Dependent Dew and Fog Precipitation in the Negev Desert,” J. Hydrol. 301, 66–74.

    Google Scholar 

  • Kidron, G. J., Herrnstadt, I., Barzilay, E. (2002), “The Role of Dew as a Moisture Source for Sand Microbiotic Crust in the Negev Desert Israel,” J Arid Environ 52, 517–533.

    Google Scholar 

  • Koch, K., Bhushan, B., and Barthlott, W. (2008), “Diversity of Structure, Morphology and Wetting of Plant Surfaces,” Soft Matter 4, 1943–1963.

    Google Scholar 

  • Laity, J. (2008), Deserts and Desert Environments, Wiley–Blackwell Publishing, Hoboken, New Jersey.

    Google Scholar 

  • Lange, O. L., Meyer, A., Ullmann, I., and Zellner, H. (1991), “Microclimate Conditions, Water Content and Photosynthesis of Lichens in the Coastal Fog Zone of the Namib Desert: Measurements in the Fall,” Flora 185, 233–266.

    Google Scholar 

  • Lillywhite, H. B. and Licht, P. (1974), “Movement of Water over Toad Skin: Functional Role of Epidermal Sculpturing,” Copeia 1974, 165–171.

    Google Scholar 

  • Lillywhite, H. B. and Stein, B. R. (1987), “Surface Sculpturing and Water Retention of Elephant Skin,” J. Zool. 211, 727–734.

    Google Scholar 

  • Liu, C., Xue, Y., Chen, Y., and Zheng, Y. (2015), “Effective Directional Self-Gathering of Drops on Spine of Cactus with Splayed Capillary Arrays,” Sci. Rep. 5, 17757.

    Google Scholar 

  • Louw, G. N. (1972), “The Role of Advective Fog in the Water Economy of Certain Namib Desert Animals,” Symp. Zool. Soc. Lond. 31, 297–314.

    Google Scholar 

  • Louw, G. N. and Seely, M. K. (1980), “Exploitation of Fog Water by a Perennial Namib Dune Grass, Stipagrotis Sabulicola,” S. Afr. J. Sci. 76, 38–39.

    Google Scholar 

  • Malek, E., McCurdy, G., and Giles, B. (1999). “Dew Contribution to the Annual Water Balances in Semi-arid Desert Valleys,” J. Arid Environ. 42, 71-80.

    Google Scholar 

  • Malik, F. T., Clement, R. M., Gethin, D. T., Krawszik, W., and Parker, A. R. (2014), “Nature’s Moisture Harvesters: A Comparative Review,” Bioinspir. Biomim. 9, 031002.

    Google Scholar 

  • Malik, F. T., Clement, R. M., Gethin, D. T., Beysens, D., Cohen, R. E., Krawszik, W., and Parker, A. R. (2015), “Dew Harvesting Efficiency of Four Species of Cacti,” Bioinspir. Biomim. 10, 036005.

    Google Scholar 

  • Mares, M. A. (Ed.) (1999), Encyclopedia of Deserts, University of Oklahoma, Norman, Oklahoma.

    Google Scholar 

  • Martins, A. F., Bennett, N. C., Clavel, S., Groenewald, H., Hensman, S., Hoby, S., Joris, A., Manger, P. R., and Milinkovitch, M. C. (2018), “Locally-Curved Geometry Generates Bending Cracks in the African Elephant Skin,” Nat. Commun. 9, 1–8.

    Google Scholar 

  • McClanahan, L. and Baldwin, R. (1969), “Rate of Water Uptake through the Integument of the Desert Toad, Bufo Punctatus,” Comp. Biochem. Physiol. 28, 381–389.

    Google Scholar 

  • Meigs, P. (1953), “World Distribution of Arid and Semi-Arid Homoclimates,” in Reviews of research on arid zone hydrology, pp. 203–209, United Nations Educational, Scientific, and Cultural Organization, Arid Zone Programme, Paris, France.

    Google Scholar 

  • Meigs, P. (1966), Geography of Coastal Deserts, United Nations Educational, Scientific and Cultural Organization (UNESCO), NS.64/III.33/A, Paris, France.

    Google Scholar 

  • Monteith, J. L. (1963), “Dew: Facts and Fallacies”, in The Water Relations of Plants, Rutter, A. J., and Whitehead, F. H. (eds.), pp. 37 –56, Wiley, New York.

    Google Scholar 

  • Mooney, H. A., Gulmon, S. L., and Weisser, P. J. (1977), “Environmental Adaptations of the Atacaman Desert Cactus Copiapoa Haseltoniana,” Flora 166, 117–124.

    Google Scholar 

  • Moran, M. J., Shapiro, H. N., Boettner, D. D., and Bailey, M. B. (2018), Fundamentals of Engineering Thermodynamics, Ninth ed., Wiley, New York.

    Google Scholar 

  • Murphy, J. A. (2012), Desert Animal Adaptations, Capstone Press, North Mankata, Minnesota.

    Google Scholar 

  • Nobel, P. S. (2003), Environmental Biology of Agaves and Cacti, first ed., Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Norgaard, T. and Dacke, M. (2010), “Fog-Basking Behaviour and Water Collection Efficiency in Namib Desert Darkling Beetles,” Front. Zool. 7, 23.

    Google Scholar 

  • Norgaard, T., Ebner, M., and Dacke, M. (2012), “Animal or Plant: Which Is the Better Fog Water Collector?,” PLoS One 7, e34603.

    Google Scholar 

  • Ogburn, R. M. and Edwards, E. J. (2009), “Anatomical Variation in Cactaceae and Relatives: Trait Lability and Evolutionary Innovation,” Am. J. Bot. 96, 391–408.

    Google Scholar 

  • Pan, Z., Pitt, W. G., Zhang, Y., Wu, N., Tao, Y., and Truscott, T. T. (2016), “The Upside-down Water Collection System of Syntrichia Caninervis,” Nat. Plants 2, 16076.

    Google Scholar 

  • Parker, A. R. and Lawrence, C. R. (2001), “Water Capture by a Desert Beetle,” Nature 414, 33–34.

    Google Scholar 

  • Peterson, C. C. (1998), “Rain-Harvesting Behavior by a Free-Ranging Desert Horned Lizard (Phrynosoma Platyrhinos),” Southwest. Nat. 43, 391–394.

    Google Scholar 

  • Pianka, E. R. and Parker, W. S. (1975), “Ecology of Horned Lizards: A Review with Special Reference to Phrynosoma Platyrhinos,” Copeia 1975, 141–162.

    Google Scholar 

  • Pruppacher, H. R. and Klett, J. D. (2010), Microphysics of Clouds and Precipitation, second ed., Springer, New York.

    Google Scholar 

  • Reiter, R., Höftberger, M., Allan Green, T. G., and Türk, R. (2008), “Photosynthesis of Lichens from Lichen-Dominated Communities in the Alpine/Nival Belt of the Alps – II: Laboratory and Field Measurements of CO2 Exchange and Water Relations,” Flora 203, 34–46.

    Google Scholar 

  • Repp, R. A. and Schuett, G. W. (2008), “Western Diamond-Backed Rattlesnakes, Crotalus Atrox (Serpentes: Viperidae), Gain Water by Harvesting and Drinking Rain, Sleet, and Snow,” Southwest. Nat. 53, 108–114.

    Google Scholar 

  • Robinson, D. A. and Hughes, M. D. (1978), “Observations on the Natural History of Peringuey’s Adder, Bitis Peringueyi (Boulenger) (Reptilia: Viperidae),” Annls. Transv. Mus. 31, 189–193.

    Google Scholar 

  • Roth-Nebelsick, A., Ebner, M., Miranda, T., Gottschalk, V., Voigt, D., Gorb, S., Stegmaier, T., Sarsour, J., Linke, M., and Konrad, W. (2012), “Leaf Surface Structures Enable the Endemic Namib Desert Grass Stipagrostis Sabulicola to Irrigate Itself with Fog Water,” J. R. Soc. Interface 9, 1965–1974.

    Google Scholar 

  • Schill, R., Barthlott, W., and Ehler, N. (1973), “Cactus Spines under the Electron Scanning Microscope,” Cact. Succ. J. 45, 175–185.

    Google Scholar 

  • Schwenk, K. and Greene, H. W. (1987), “Water Collection and Drinking in Phrynocephalus Helioscopus: A Possible Condensation Mechanism,” J. Herpetol. 21, 134–139.

    Google Scholar 

  • Seely, M. K. (1979), “Irregular Fog as a Water Source for Desert Dune Beetles,” Oecologia 42, 213–227.

    Google Scholar 

  • Seely, M. K., de Vos, M. P., and Louw, G. N. (1977), “Fog Inhibition, Satellite Fauna and Unusual Leaf Structure in a Namib Desert Dune Plant Trianthema Hereroensis,” S. Afr. J. Sci. 73, 169–172.

    Google Scholar 

  • Shanyengana, E. S., Henschel, J. R., Seely, M. K., and Sanderson, R. D. (2002), “Exploring Fog as a Supplementary Water Source in Namibia,” Atmospheric Res. 64, 251–259.

    Google Scholar 

  • Sherbrooke, W. C. (1990), “Rain-Harvesting in the Lizard, Phrynosoma Cornutum: Behavior and Integumental Morphology,” J. Herpetol. 24, 302–308.

    Google Scholar 

  • Sherbrooke, W. C. (1993), “Rain-Drinking Behaviors of the Australian Thorny Devil (Sauria: Agamidae),” J. Herpetol. 27, 270–275.

    Google Scholar 

  • Sherbrooke, W. C. (2002), “Phrynosoma Modestum (Round-Tailed Horned Lizard) Rain-Harvest Drinking Behavior,” Herpetol. Rev. 33, 310–312.

    Google Scholar 

  • Sherbrooke, W. C. (2004), “Integumental Water Movement and Rate of Water Ingestion during Rain Harvesting in the Texas Horned Lizard, Phrynosoma Cornutum,” Amphibia-Reptilia 25, 29–39.

    Google Scholar 

  • Shoemaker, V. H., Balding, D., Ruibal, R., and McClanahan, L. L. (1972), “Uricotelism and Low Evaporative Water Loss in a South American Frog,” Science 175, 1018–1020.

    Google Scholar 

  • Sigsbee, R. A. (1969), Nucleation, Marcel Dekker, New York.

    Google Scholar 

  • Silberglied, R. and Aiello, A. (1980), “Camouflage by Integumentary Wetting in Bark Bugs,” Science 207, 773–775.

    Google Scholar 

  • Simmons, R. E., Griffin, M., Griffin, R. E., Marais, E., and Kolberg, H. (1998), “Endemism in Namibia: Patterns, Processes and Predictions,” Biodivers. Conserv. 7, 513–530.

    Google Scholar 

  • Toledo, R. C. and Jared, C. (1993), “Cutaneous Adaptations to Water Balance in Amphibians,” Comp. Biochem. Physiol A 105, 593–608.

    Google Scholar 

  • Tracy, C. R., Laurence, N., and Christian, K. A. (2011), “Condensation onto the Skin as a Means for Water Gain by Tree Frogs in Tropical Australia,” Am. Nat. 178, 553–558.

    Google Scholar 

  • United Nations Environment Programme (1999), Sourcebook of Alternative Technologies for Freshwater Augmentation in Some Countries in Asia, Stationery Office Books, Norwich, UK.

    Google Scholar 

  • Unmack, P. J. (2001), “Fish Persistence and Fluvial Geomorphology in Central Australia,” J. Arid Environ. 49, 653–669.

    Google Scholar 

  • Van Damme, P. (1991), “Plant Ecology of the Namib Desert,” Afrika Focus 7, 355–400.

    Google Scholar 

  • van Rheede van Oudtshoorn, K. and van Rooyen, M. W. (1999), Dispersal Biology of Desert Plants, Springer-Verlag, Berlin, Germany.

    Google Scholar 

  • Veselý‎, M. and Modrý‎, D. (2002), “Rain-Harvesting Behavior in Agamid Lizards (Trapelus),” J. Herpetol. 36, 311–314.

    Google Scholar 

  • Vesilind, P. J. (2003), “Atacama Desert,” National Geographic, http://ngm.nationalgeographic.com/features/world/south-america/chile/atacama-text.

  • Von Hase, A., Cowling, R. M., and Ellis, A. G. (2006), “Petal Movement in Cape Wildflowers Protects Pollen from Exposure to Moisture,” Plant Ecol. 184, 75–87.

    Google Scholar 

  • Walker, A. S. (1992), Desert: Geology and Resources, U. S. Geological Survey, Denver Colorado.

    Google Scholar 

  • Withers, P. (1993), “Cutaneous Water Acquisition by the Thorny Devil (Moloch Horridus: Agamidae),” J. Herpetol. 27, 265–270.

    Google Scholar 

  • Xue, Y., Wang, T., Shi, W., Sun, L., and Zheng, Y. (2014), “Water Collection Abilities of Green Bristlegrass Bristle,” RSC Adv. 4, 40837–40840.

    Google Scholar 

  • Yenmiş, M., Ayaz, D., Sherbrooke, W. C., and Veselý, M. (2016), “A Comparative Behavioural and Structural Study of Rain-Harvesting and Non-Rain-Harvesting Agamid Lizards of Anatolia (Turkey),” Zoomorphology 135, 137–148.

    Google Scholar 

  • Yetman, D. (2007), The Great Cacti: Ethnobotany and Biogeography, The University of Arizona press, Tuscon, Arizona.

    Google Scholar 

  • Yom-Tov, Y. (1971), “The Biology of Two Desert Snails Trochoidea (Xerocrassa) Seetzeni and Sphincterochila Boissieri,” Isr. J. Ecol. Evol. 20, 231–248.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bharat Bhushan .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhushan, B. (2020). Overview of Arid Desert Conditions, Water Sources, and Desert Plants and Animals. In: Bioinspired Water Harvesting, Purification, and Oil-Water Separation. Springer Series in Materials Science, vol 299. Springer, Cham. https://doi.org/10.1007/978-3-030-42132-8_2

Download citation

Publish with us

Policies and ethics