Skip to main content

Inhibition of Recrystallization

  • Chapter
  • First Online:
Book cover Antifreeze Proteins Volume 2

Abstract

The growth of ice crystals during a recrystallization process is a threat to many natural organisms living at sub-zero temperatures. Especially freeze-tolerant organisms, which have to cope with the presence of ice crystals in their body cavities, have evolved protection mechanisms that can be attributed to recrystallization inhibition. The following chapter discusses the putative survival strategy of recrystallization inhibition and presents exemplarily species that supposedly produce special molecules in order to stop recrystallization. Furthermore, the fundamental background of recrystallization and recrystallization inhibition is discussed within the context of these organisms and strategies. The effects of antifreeze proteins and also of non-ice binding recrystallization inhibitors are presented. In addition, several experimental methods are shown and discussed regarding possible artefacts. Using these techniques, non-natural recrystallization inhibitors have been found, which are presented in the final part of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham S, Keillor K, Capicciotti CJ, Perley-Robertson GE, Keillor JW, Ben RN (2015) Quantitative analysis of the efficacy and potency of novel small molecule ice recrystallization inhibitors. Cryst Growth Des 15:5034–5039

    Article  CAS  Google Scholar 

  • Alpert PA, Aller JY, Knopf DA (2011) Ice nucleation from aqueous NaCl droplets with and without marine diatoms. Atmos Chem Phys 11:5539–5555

    Article  CAS  Google Scholar 

  • Asimow R (1963) Clustering kinetics in binary alloys. Acta Metall 11:72–73

    Article  CAS  Google Scholar 

  • Bar Dolev M, Braslavsky I, Davies PL (2016) Ice-binding proteins and their function. Annu Rev Biochem 85:515–542

    Article  CAS  PubMed  Google Scholar 

  • Buch JL, Ramløv H (2016) An open source cryostage and software analysis method for detection of antifreeze activity. Cryobiology 72:251–257

    Article  CAS  PubMed  Google Scholar 

  • Budke C (2010) Hemmung der Eisrekristallisation in wässrigen Lösungen durch Antigefrierglykopeptide. Dissertation

    Google Scholar 

  • Budke C, Koop T (2006) Ice recrystallization inhibition and molecular recognition of ice faces by poly(vinyl alcohol). ChemPhysChem 7:2601–2606

    Article  CAS  PubMed  Google Scholar 

  • Budke C, Heggemann C, Koch M, Sewald N, Koop T (2009) Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory. J Phys Chem B 113:2865–2873

    Article  CAS  PubMed  Google Scholar 

  • Budke C, Dreyer A, Jaeger J, Gimpel K, Berkemeier T, Bonin AS, Nagel L, Plattner C, DeVries AL, Sewald N et al (2014) Quantitative efficacy classification of ice recrystallization inhibition agents. Cryst Growth Des 14:4285–4294

    Article  CAS  Google Scholar 

  • Capicciotti CJ, Doshi M, Ben RN (2013) Ice recrystallization inhibitors: from biological antifreezes to small molecules. In: Wilson P (ed) Recent developments in the study of recrystallization. InTech, New York, pp 177–224

    Google Scholar 

  • Capicciotti CJ, Poisson JS, Boddy CN, Ben RN (2015) Modulation of antifreeze activity and the effect upon post-thaw HepG2 cell viability after cryopreservation. Cryobiology 70:79–89

    Article  CAS  PubMed  Google Scholar 

  • Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies PL, Braslavsky I (2013) Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci USA 110:1309–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Cai X, Wu X, Karahara I, Schreiber L, Lin J (2011) Casparian strip development and its potential function in salt tolerance. Plant Signal Behav 6:1499–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Congdon TC, Notman R, Gibson MI (2013) Antifreeze (glyco)protein mimetic behaviour of poly(vinyl alcohol): Detailed structure-ice recrystallisation inhibition activity study. Biomacromolecules 14:1578–1586

    Article  CAS  PubMed  Google Scholar 

  • Cziko PA, DeVries AL, Evans CW, Cheng C-HC (2014) Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc Natl Acad Sci 111:14583–14588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davies PL (2014) Ice-binding proteins: a remarkable diversity of structures for stopping and starting ice growth. Trends Biochem Sci 39:548–555

    Article  CAS  PubMed  Google Scholar 

  • Davies CKL, Nash P, Stevens RN (1980) Precipitation in Ni-Co-AI alloys Part 1 Continuous precipitation. J Mater Sci 15:1521–1532

    Article  CAS  Google Scholar 

  • Deller RC, Congdon T, Sahid MA, Morgan M, Vatish M, Mitchell DA, Notman R, Gibson MI (2013) Ice recrystallisation inhibition by polyols: comparison of molecular and macromolecular inhibitors and role of hydrophobic units. Biomater Sci 1:478

    Article  CAS  PubMed  Google Scholar 

  • Deville S, Viazzi C, Leloup J, Lasalle A, Guizard C, Maire E, Adrien J, Gremillard L (2011) Ice shaping properties, similar to that of antifreeze proteins, of a zirconium acetate complex. PLoS One 6:e26474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deville S, Viazzi C, Guizard C (2012) Ice-structuring mechanism for zirconium acetate. Langmuir 28:14892–14898

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908

    Article  CAS  PubMed  Google Scholar 

  • Doucet CJ, Byass L, Elias L, Worrall D, Smallwood M, Bowles DJ (2000) Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology 40:218–227

    Article  CAS  PubMed  Google Scholar 

  • Dreischmeier K, Budke C, Wiehemeier L, Kottke T, Koop T (2017) Boreal pollen contain ice-nucleating as well as ice-binding ‘antifreeze’ polysaccharides. Sci Rep 7:41890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drori R, Li C, Hu C, Raiteri P, Rohl AL, Ward MD, Kahr B (2016) A supramolecular ice growth inhibitor. J Am Chem Soc 138:13396–13401

    Article  CAS  PubMed  Google Scholar 

  • Duman JG (2015) Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function. J Exp Biol 218:1846–1855

    Article  PubMed  Google Scholar 

  • Eniade A, Purushotham M, Ben RN, Wang JB, Horwath K (2003) A serendipitous discovery of antifreeze protein-specific activity in C-linked antifreeze glycoprotein analogs. Cell Biochem Biophys 38:115–124

    Article  CAS  PubMed  Google Scholar 

  • Gaukel V, Leiter A, Spieß WEL (2014) Synergism of different fish antifreeze proteins and hydrocolloids on recrystallization inhibition of ice in sucrose solutions. J Food Eng 141:44–50

    Article  CAS  Google Scholar 

  • Gillen KT, Douglass DC, Hoch MJR (1972) Self-diffusion in liquid water to −31 °C. J Chem Phys 57:5117–5119

    Article  CAS  Google Scholar 

  • Girlich D, Lüdemann H-D, Buttersack C, Buchholz K (1994) c, T-dependence of the self diffusion in concentrated aqueous sucrose solutions. Zeitschrift für Naturforschung C 49:258–264

    Article  CAS  Google Scholar 

  • Graham LA, Agrawal P, Oleschuk RD, Davies PL (2018) High-capacity ice-recrystallization endpoint assay employing superhydrophobic coatings that is equivalent to the ‘splat’ assay. Cryobiology 81:138–144

    Article  PubMed  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  CAS  PubMed  Google Scholar 

  • Griffith M, Lumb C, Wiseman SB, Wisniewski M, Johnson RW, Marangoni AG (2005) Antifreeze proteins modify the freezing process in planta. Plant Physiol 138:330–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta R, Deswal R (2014) Antifreeze proteins enable plants to survive in freezing conditions. J Biosci 39:931–944

    Article  CAS  PubMed  Google Scholar 

  • Hagiwara T, Hartel RW, Matsukawa S (2006) Relationship between recrystallization rate of ice crystals in sugar solutions and water mobility in freeze-concentrated matrix. Food Biophys 1:74–82

    Article  Google Scholar 

  • Hagiwara T, Sakiyama T, Watanabe H (2009) Estimation of water diffusion coefficients in freeze-concentrated matrices of sugar solutions using molecular dynamics: correlation between estimated diffusion coefficients and measured ice-crystal recrystallization rates. Food Biophys 4:340–346

    Article  Google Scholar 

  • Haleva L, Celik Y, Bar-Dolev M, Pertaya-Braun N, Kaner A, Davies PL, Braslavsky I (2016) Microfluidic cold-finger device for the investigation of ice-binding proteins. Biophys J 111:1143–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H (2014) Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J 281:3576–3590

    Article  CAS  PubMed  Google Scholar 

  • Hardy SC, Voorhees PW (1988) Ostwald ripening in a system with a high volume fraction of coarsening phase. Metall Trans A 19:2713–2721

    Article  Google Scholar 

  • He X, Fowler A, Toner M (2006) Water activity and mobility in solutions of glycerol and small molecular weight sugars: implication for cryo- and lyopreservation. J Appl Phys 100:74702

    Article  CAS  Google Scholar 

  • Heggemann C, Budke C, Schomburg B, Majer Z, Wißbrock M, Koop T, Sewald N (2010) Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies. Amino Acids 38:213–222

    Article  CAS  PubMed  Google Scholar 

  • Horibe A, Fukusako S, Yamada M (1996) Surface tension of low-temperature aqueous solutions. Int J Thermophys 17:483–493

    Article  CAS  Google Scholar 

  • Hrubý J, VinÅ¡ V, MareÅ¡ R, Hykl J, Kalová J (2014) Surface tension of supercooled water: no inflection point down to −25 °C. J Phys Chem Lett 5:425–428

    Article  PubMed  CAS  Google Scholar 

  • Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena. Elsevier, Boston

    Google Scholar 

  • Ickes L, Welti A, Hoose C, Lohmann U (2015) Classical nucleation theory of homogeneous freezing of water: thermodynamic and kinetic parameters. Phys Chem Chem Phys 17:5514–5537

    Article  CAS  PubMed  Google Scholar 

  • Inada T, Lu S-S (2004) Thermal hysteresis caused by non-equilibrium antifreeze activity of poly(vinyl alcohol). Chem Phys Lett 394:361–365

    Article  CAS  Google Scholar 

  • Jackman J, Noestheden M, Moffat D, Pezacki JP, Findlay S, Ben RN (2007) Assessing antifreeze activity of AFGP 8 using domain recognition software. Biochem Biophys Res Commun 354:340–344

    Article  CAS  PubMed  Google Scholar 

  • Jayanth CS, Nash P (1989) Factors affecting particle-coarsening kinetics and size distribution. J Mater Sci 24:3041–3052

    Article  CAS  Google Scholar 

  • Kiko R (2010) Acquisition of freeze protection in a sea-ice crustacean through horizontal gene transfer? Polar Biol 33:543–556

    Article  Google Scholar 

  • Kim H, Lee J, Hur Y, Lee C, Park S-H, Koo B-W (2017) Marine antifreeze proteins: structure, function, and application to cryopreservation as a potential cryoprotectant. Mar Drugs 15:27

    Article  PubMed Central  CAS  Google Scholar 

  • Knight CA, Duman JG (1986) Inhibition of recrystallization of ice by insect thermal hysteresis proteins: a possible cryoprotective role. Cryobiology 23:256–262

    Article  CAS  Google Scholar 

  • Knight CA, Hallett J, DeVries AL (1988) Solute effects on ice recrystallization: an assessment technique. Cryobiology 25:55–60

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, Wen DY, Laursen RA (1995) Nonequilibrium antifreeze peptides and the recrystallization of ice. Cryobiology 32:23–34

    Article  CAS  PubMed  Google Scholar 

  • Knopf DA, Alpert PA, Wang B, Aller JY (2010) Stimulation of ice nucleation by marine diatoms. Nat Geosci 4:88–90

    Article  CAS  Google Scholar 

  • Koop T, Murray BJ (2016) A physically constrained classical description of the homogeneous nucleation of ice in water. J Chem Phys 145:211915

    Article  PubMed  CAS  Google Scholar 

  • Koop T, Zobrist B (2009) Parameterizations for ice nucleation in biological and atmospheric systems. Phys Chem Chem Phys 11:10839–10850

    Article  CAS  PubMed  Google Scholar 

  • Larson DJ, Middle L, Vu H, Zhang W, Serianni AS, Duman J, Barnes BM (2014) Wood frog adaptations to overwintering in Alaska: new limits to freezing tolerance. J Exp Biol 217:2193–2200

    Article  PubMed  CAS  Google Scholar 

  • Lauersen KJ, Vanderveer TL, Berger H, Kaluza I, Mussgnug JH, Walker VK, Kruse O (2013) Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 97:9763–9772

    Article  CAS  PubMed  Google Scholar 

  • Leiter A, Rau S, Winger S, Muhle-Goll C, Luy B, Gaukel V (2016) Influence of heating temperature, pressure and pH on recrystallization inhibition activity of antifreeze protein type III. J Food Eng 187:53–61

    Article  CAS  Google Scholar 

  • Lide DR (ed) (2004) CRC handbook of chemistry and physics, 85th edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50

    Article  Google Scholar 

  • Liu S, Ben RN (2005) C-linked galactosyl serine AFGP analogues as potent recrystallization inhibitors. Org Lett 7:2385–2388

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wang W, Von Moos E, Jackman J, Mealing G, Monette R, Ben RN (2007) In vitro studies of antifreeze glycoprotein (AFGP) and a C-linked AFGP analogue. Biomacromolecules 8:1456–1462

    Article  CAS  PubMed  Google Scholar 

  • Lorv JSH, Rose DR, Glick BR (2014) Bacterial ice crystal controlling proteins. Scientifica (Cairo) 2014:1–20

    Article  Google Scholar 

  • Mangiagalli M, Bar-Dolev M, Tedesco P, Natalello A, Kaleda A, Brocca S, de Pascale D, Pucciarelli S, Miceli C, Bravslavsky I et al (2016) Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria. FEBS J 284:163–177

    Article  PubMed  CAS  Google Scholar 

  • Martin DR, Ablett S, Darke A, Sutton RL, Sahagian M (1999) Diffusion of aqueous sugar solutions as affected by Locust Bean Gum studied by NMR. J Food Sci 64:46–49

    Article  CAS  Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Phys 247:C125–C142

    Article  CAS  Google Scholar 

  • Mizrahy O, Bar-Dolev M, Guy S, Braslavsky I (2013) Inhibition of ice growth and recrystallization by zirconium acetate and zirconium acetate hydroxide. PLoS One 8:e59540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagel L, Plattner C, Budke C, Majer Z, DeVries AL, Berkemeier T, Koop T, Sewald N (2011) Synthesis and characterization of natural and modified antifreeze glycopeptides: glycosylated foldamers. Amino Acids 41:719–732

    Article  CAS  PubMed  Google Scholar 

  • Olijve LLC, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK (2016a) Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci 113:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olijve LLC, Oude Vrielink AS, Voets IK (2016b) A simple and quantitative method to evaluate ice recrystallization kinetics using the circle hough transform algorithm. Cryst Growth Des 16:4190–4195

    Article  CAS  Google Scholar 

  • Ouellet F, Charron J-B (2013) Cold acclimation and freezing tolerance in plants. In: eLS. Wiley, Chichester

    Google Scholar 

  • Peltier R, Brimble MA, Wojnar JM, Williams DE, Evans CW, DeVries AL (2010) Synthesis and antifreeze activity of fish antifreeze glycoproteins and their analogues. Chem Sci 1:538

    Article  CAS  Google Scholar 

  • Pertaya N, Marshall CB, DiPrinzio CL, Wilen L, Thomson ES, Wettlaufer JS, Davies PL, Braslavsky I (2007) Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces. Biophys J 92:3663–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price WS, Ide H, Arata Y (1999) Self-diffusion of supercooled water to 238 K using PGSE NMR diffusion measurements. J Phys Chem A 103:448–450

    Article  CAS  Google Scholar 

  • Pudney PDA, Buckley SL, Sidebottom CM, Twigg SN, Sevilla M-P, Holt CB, Roper D, Telford JH, McArthur AJ, Lillford PJ (2003) The physico-chemical characterization of a boiling stable antifreeze protein from a perennial grass (Lolium perenne). Arch Biochem Biophys 410:238–245

    Article  CAS  PubMed  Google Scholar 

  • Raymond JA (2011) Algal ice-binding proteins change the structure of sea ice. Proc Natl Acad Sci 108:E198–E198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci 74:2589–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Kim HJ (2012) Possible role of horizontal gene transfer in the colonization of sea ice by algae. PLoS One 7:e35968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, Sullivan CW, Devries AL (1994) Release of an ice-active substrance by Antarctic sea ice diatoms. Polar Biol 14:71–75

    Article  Google Scholar 

  • Raymond JA, Fritsen C, Shen K (2007) An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol Ecol 61:214–221

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Hanada Y, Singh SM, Tsuda S (2014) Antifreeze protein activity in Arctic cryoconite bacteria. FEMS Microbiol Lett 351:14–22

    Article  CAS  PubMed  Google Scholar 

  • Smallwood M, Worrall D, Byass L, Elias L, Ashford D, Doucet CJ, Holt C, Telford J, Lillford P, Bowles DJ (1999) Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochem J 340:385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storey KB, Storey JM (2017) Molecular physiology of freeze tolerance in vertebrates. Physiol Rev 97:623–665

    Article  CAS  PubMed  Google Scholar 

  • Sutton RL, Evans ID, Crilly JF (1994) Modeling ice crystal coarsening in concentrated disperse food systems. J Food Sci 59:1227–1233

    Article  CAS  Google Scholar 

  • Sutton RL, Lips A, Piccirillo G, Sztehlo A (1996) Kinetics of ice recrystallization in aqueous fructose solutions. J Food Sci 61:741–745

    Article  CAS  Google Scholar 

  • Tachibana Y, Matsubara N, Nakajima F, Tsuda T, Tsuda S, Monde K, Nishimura SI (2002) Efficient and versatile synthesis of mucin-like glycoprotein mimics. Tetrahedron 58:10213–10224

    Article  CAS  Google Scholar 

  • Tam RY, Ferreira SS, Czechura P, Chaytor JL, Ben RN (2008) Hydration index – a better parameter for explaining small molecule hydration in inhibition of ice recrystallization. J Am Chem Soc 130:17494–17501

    Article  CAS  PubMed  Google Scholar 

  • Tomczak MM, Marshall CB, Gilbert JA, Davies PL (2003) A facile method for determining ice recrystallization inhibition by antifreeze proteins. Biochem Biophys Res Commun 311:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Trant JF, Biggs RA, Capicciotti CJ, Ben RN (2013) Developing highly active small molecule ice recrystallization inhibitors based upon C-linked antifreeze glycoprotein analogues. RSC Adv 3:26005

    Article  CAS  Google Scholar 

  • Tursman D, Duman JG, Knight CA (1994) Freeze tolerance adaptations in the centipede, Lithobius forficatus. J Exp Zool 268:347–353

    Article  Google Scholar 

  • Van Oss CJ, Giese RF, Wentzek R, Norris J, Chuvilin EM (1992) Surface tension parameters of ice obtained from contact angle data and from positive and negative particle adhesion to advancing freezing fronts. J Adhes Sci Technol 6:503–516

    Article  Google Scholar 

  • Voorhees PW, Glicksman ME (1984) Ostwald ripening during liquid phase sintering – effect of volume fraction on coarsening kinetics. Metal Trans Sect A 15:1081–1088

    Article  Google Scholar 

  • Wagner C (1961) Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für Phys. Chemie 65:581–591

    CAS  Google Scholar 

  • Walters KR, Serianni AS, Sformo T, Barnes BM, Duman JG (2009) A nonprotein thermal hysteresis-producing xylomannan antifreeze in the freeze-tolerant Alaskan beetle Upis ceramboides. Proc Natl Acad Sci USA 106:20210–20215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters KR, Serianni AS, Voituron Y, Sformo T, Barnes BM, Duman JG (2011) A thermal hysteresis-producing xylomannan glycolipid antifreeze associated with cold tolerance is found in diverse taxa. J Comp Physiol B Biochem Syst Environ Physiol 181:631–640

    Article  CAS  Google Scholar 

  • Washburn EW (ed) (1928) International critical tables of numerical data, physics, chemistry and technology, 1st edn. McGraw-Hill, New York

    Google Scholar 

  • Wharton DA, Barrett J, Goodall G, Marshall CJ, Ramløv H (2005) Ice-active proteins from the Antarctic nematode Panagrolaimus davidi. Cryobiology 51:198–207

    Article  CAS  PubMed  Google Scholar 

  • Wharton DA, Wilson PW, Mutch JS, Marshall CJ, Lim M (2007) Recrystallization inhibition assessed by splat cooling and optical recrystallometry. Cryo Letters 28:61–68

    PubMed  Google Scholar 

  • Wu S, Zhu C, He Z, Xue H, Fan Q, Song Y, Francisco JS, Zeng XC, Wang J (2017) Ion-specific ice recrystallization provides a facile approach for the fabrication of porous materials. Nat Commun 8:15154

    Article  PubMed  PubMed Central  Google Scholar 

  • Young FE, Jones FT (1949) Sucrose hydrates. The sucrose-water phase diagram. J Phys Colloid Chem 53:1334–1350

    Article  CAS  Google Scholar 

  • Yu SO, Brown A, Middleton AJ, Tomczak MM, Walker VK, Davies PL (2010) Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis. Cryobiology 61:327–334

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Koop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Budke, C., Koop, T. (2020). Inhibition of Recrystallization. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-41948-6_7

Download citation

Publish with us

Policies and ethics