Skip to main content

Thermal Hysteresis

  • Chapter
  • First Online:
Antifreeze Proteins Volume 2
  • 1427 Accesses

Abstract

Antifreeze (glyco)proteins, AF(G)Ps, are defined by their shared ability to prevent ice crystals from growing in supercooled solutions. They are categorized as being either moderately active or hyperactive. The distinct difference in antifreeze potency between these two categories is accompanied by distinct shapes of the ice crystals that are being stabilized in their presence; moderately active AF(G)Ps cause bipyramidal crystals to develop, a shape that only exposes a single crystal plane to the surrounding solution. In the presence of hyperactive AF(G)Ps, ice crystals express several crystal planes. A number of different factors affect their potency as antifreeze agents, from large organic macromolecules to inorganic ions. This chapter outlines current understanding of the modus operandi of AF(G)Ps. Attempts are made to provide some simple explanations to the antifreeze potency of AF(G)Ps, including their characteristics as moderately active or hyperactive, and how their antifreeze potency is affected by different factors. The different potencies of moderately and hyperactive AF(G)Ps are ascribed to differences in their adsorption habits. Effects of additives or molecular size on their potencies are ascribed to variations in protein solubility, induced by variations in molecular size or evoked by the presence of additives. Experimental proof of concept is discussed in the context of basic solubility theory. Some characteristics of ice-nucleating agents (INAs) in relation to AF(G)Ps and their relevance in cold tolerance is also briefly examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amornwittawat N, Wang S, Duman JG, Wen X (2008) Polycarboxylates enhance beetle antifreeze protein activity. Biochim Biophys Acta 1784:1942–1948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Amornwittawat N, Wang S, Banatlao J, Chung M, Velasco E, Duman JG, Wen X (2009) Effects of polyhydroxy compounds on beetle antifreeze protein activity. Biochim Biophys Acta 1794:341–346

    CAS  PubMed  Google Scholar 

  • Baardsnes J, Kuiper MJ, Davies PL (2003) Antifreeze protein dimer. When two ice binding faces are better than one. J Biol Chem 278:38942–38947

    CAS  PubMed  Google Scholar 

  • Bull HB, Breese K (1974) Surface tension of amino acid solutions: a hydrophobicity scale of amino acid residues. Arch Biochem Biophys 161:665–670

    CAS  PubMed  Google Scholar 

  • Can O, Holland NB (2011) Conjugation of type I antifreeze protein to polyallylamine increases thermal hysteresis activity. Bioconjug Chem 22:2166–2171

    CAS  PubMed  Google Scholar 

  • Can O, Holland NB (2013) Utilizing avidity to improve antifreeze protein activity: a type III antifreeze protein trimer exhibits increased thermal hysteresis activity. Biochemistry 52:8745–8752

    CAS  PubMed  Google Scholar 

  • Caple G, Kerr WL, Burcham TS, Osuga DT, Yeh Y, Feeney RE (1986) Superadditive effects in mixtures of fish antifreeze glycoproteins and polyalcohols or surfactants. J Colloid Interface Sci 111:299–304

    CAS  Google Scholar 

  • Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci 107:5423–5428

    CAS  PubMed  Google Scholar 

  • Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies PL, Braslavsky I (2013) Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci 110:1309–1314

    CAS  PubMed  Google Scholar 

  • Chakraborty S, Jana B (2019) Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight. Phys Chem Chem Phys 21:19298–19310

    CAS  PubMed  Google Scholar 

  • Chalmers B (1964) Principles of solidification. Wiley, New York

    Google Scholar 

  • Chao H, DeLuca CL, Davies PL (1995) Mixing antifreeze protein types changes ice crystal morphology without affecting antifreeze activity. FEBS Lett 357:183–186

    CAS  PubMed  Google Scholar 

  • Chao H, Hodges RS, Kay CM, Gauthier SY, Davies PL (1996) A natural variant of Type I antifreeze protein with four ice-binding repeats is a particularly potent antifreeze. Protein Sci 5:1150–1155

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cohn EJ (1925) The physical chemistry of the proteins. Physiol Rev 5:349–437

    CAS  Google Scholar 

  • Cziko PA, DeVries AL, Evans CW, Cheng C-HC (2014) Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc Natl Acad Sci 111:14583–14588

    CAS  PubMed  Google Scholar 

  • DeLuca CI, Comley R, Davies PL (1998) Antifreeze proteins bind independently to ice. Biophys J 74:1502–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    CAS  PubMed  Google Scholar 

  • DeVries AL (1982) Biological antifreeze agents in Coldwater fishes. Comp Biochem Physiol A 73:627–640

    Google Scholar 

  • Drori R, Davies PL, Braslavsky I (2015) Experimental correlation between thermal hysteresis activity and the distance between antifreeze proteins on an ice surface. RSC Adv 5:7848–7853

    CAS  Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    CAS  PubMed  Google Scholar 

  • Duman JG (2002) The inhibition of ice nucleators by insect antifreeze proteins is enhanced by glycerol and citrate. J Comp Physiol B 172:163–168

    CAS  PubMed  Google Scholar 

  • Duman JG, Bennett V, Sformo T, Hochstrasser R, Barnes BM (2004) Antifreeze proteins in Alaskan insects and spiders. J Insect Physiol 50:259–266

    CAS  PubMed  Google Scholar 

  • Evans PE, Hobbs RS, Goddard SV, Fletcher GL (2007) The importance of dissolved salts to the in vivo efficacy of antifreeze proteins. Comp Biochem Physiol A 148:556–561

    Google Scholar 

  • Felder CE, Prilusky J, Silman I, Sussman JL (2007) A server and database for dipole moments of proteins. Nucleic Acids Res 35:W512–W521. http://dipole.weizmann.ac.il/

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins in teleost fishes. Annu Rev Physiol 63:359–390

    CAS  PubMed  Google Scholar 

  • Friis DS, Kristiansen E, von Solms N, Ramløv H (2014) Antifreeze activity enhancement by site directed mutagenesis on an antifreeze protein from the beetle Rhagium mordax. FEBS Lett 588:1767–1772

    CAS  PubMed  Google Scholar 

  • Garnham CP, Campbell RL, Davies PL (2011a) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci 108:7363–7367

    CAS  PubMed  Google Scholar 

  • Garnham CP, Campbell RL, Walker VK, Davies PL (2011b) Novel dimeric β-helical model of an ice nucleation protein with bridged active sites. BMC Struct Biol 11:36

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gekko K, Timasheff SN (1981) Mechanism of protein stabilization by glycerol: preferential hydration in glycerol-water mixtures. Biochemistry 20:4667–4676

    CAS  PubMed  Google Scholar 

  • Gong HS, Croft K, Driedzic WR, Ewart VK (2011) Chemical chaperoning action of glycerol on the antifreeze protein of rainbow smelt. J Therm Biol 36:78–83

    CAS  Google Scholar 

  • Graether SP, Jia Z (2001) Modeling Pseudomonas syringae ice-nucleation protein as a β-helical protein. Biophys J 80:1169–1173

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graether SP, Kuiper MJ, Gagné SM, Walker VK, Jia Z, Sykes BD, Davies PL (2000) β-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature 406:325–328

    CAS  PubMed  Google Scholar 

  • Graham LA, Davies PL (2005) Glycine-rich antifreeze proteins from snow fleas. Science 310:461

    PubMed  Google Scholar 

  • Grandum S, Yabe A, Nakagomi K, Tanaka M, Takemura F, Kobayashi Y, Frivik P-E (1999) Analysis of ice crystal growth for a crystal surface containing adsorbed antifreeze proteins. J Cryst Growth 205:382–390

    CAS  Google Scholar 

  • Hakim A, Nguyen JB, Basu K, Zhu DF, Thakral D, Davies PL, Isaacs FJ, Modis Y, Meng W (2013) Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem 288:12295–12304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen TN, Baust JG (1988) Serial dilution of Tenebrio molitor haemolymph: analysis of antifreeze activity by differential scanning calorimetry. Cryo-Letters 9:386–391

    Google Scholar 

  • Hansen TN, DeVries AL, Baust JG (1991) Calorimetric analysis of antifreeze glycoproteins of the polar fish, Dissostichus mawsoni. Biochim Biophys Acta 1079:169–173

    CAS  PubMed  Google Scholar 

  • Haymet ADJ, Ward LG, Harding MM, Knight CA (1998) Valine substituted winter flounder ‘antifreeze’: preservation of ice growth hysteresis. FEBS Lett 430:301–306

    CAS  PubMed  Google Scholar 

  • Haymet ADJ, Ward LG, Harding MM (1999) Winter flounder “antifreeze” proteins: synthesis and ice growth inhibition of analogues that probe the relative importance of hydrophobic and hydrogen-bonding interactions. J Am Chem Soc 121:941–948

    CAS  Google Scholar 

  • Hayward JA, Haymet ADJ (2001) The ice/water interface: molecular dynamics simulations of the basal, prism, 2021 and 2110 interfaces of ice Ih. J Chem Phys 114:3713–3726

    CAS  Google Scholar 

  • Holland NB, Nishimiya Y, Tsuda S, Sönnichsen FD (2008) Two domains of RD3 antifreeze protein diffuse independently. Biochemistry 47:3955–3941

    Google Scholar 

  • Horwath KL, Easton CM, Poggioli GJ Jr, Myers K, Schnorr IL (1996) Tracking the profile of a specific antifreeze protein and its contribution to the thermal hysteresis activity in cold hardy insects. Eur J Entomol 93:419–433

    CAS  Google Scholar 

  • Jia Z, Davies PL (2002) Antifreeze proteins: an unusual receptor-ligand interaction. Trends Biochem Sci 27:101–106

    CAS  PubMed  Google Scholar 

  • Kaushik JK, Bhat R (1998) Thermal stability of proteins in aqueous polyol solutions: role of the surface tension of water in the stabilizing effect of polyols. J Phys Chem B 102:7058–7066

    CAS  Google Scholar 

  • Kerr WL, Burcham TS, Osuga DT, Yeh Y, Feeney RE (1985) Synergistic depression of the freezing temperature in solutions of polyhydroxy compounds and antifreeze glycoproteins. Cryo-Letters 6:107–114

    CAS  Google Scholar 

  • Knight CA, DeVries AL (1988) The prevention of ice crystal growth from water by “antifreeze proteins”. In: Wagner PE, Vali G (eds) Atmospheric aerosols and nucleation. Lecture notes in physics 309. Springer, Berlin

    Google Scholar 

  • Knight CA, DeVries AL (1989) Melting inhibition and superheating of ice by an antifreeze glycopeptide. Science 245:505–507

    CAS  PubMed  Google Scholar 

  • Knight CA, Cheng CC, DeVries AL (1991) Adsorption of α-helical antifreeze peptides on specific ice crystal surface planes. Biophys J 59:409–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Knight CA, Driggers E, DeVries AL (1993) Adsorption to ice of fish antifreeze glycopeptides 7 and 8. Biophys J 64:252–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobashigawa Y, Nishimiya Y, Miura K, Ohgiya S, Miura A, Tsuda S (2005) A part of ice nucleation protein exhibits the ice-binding ability. FEBS Lett 579:1493–1497

    CAS  PubMed  Google Scholar 

  • Kozloff LM, Turner MA, Arellano F, Lute M (1991) Phosphatidylinositol, a phospholipid of ice-nucleating bacteria. J Bacteriol 173:2053–2060

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51:262–280

    CAS  Google Scholar 

  • Kristiansen E, Pedersen SA, Zachariassen KE (2008) Salt-induced enhancement of antifreeze protein activity: a salting-out effect. Cryobiology 57:122–129

    CAS  PubMed  Google Scholar 

  • Landt E (1931) The surface tension of solutions of various sugars. Z Ver Dtsch Zucher-Ind 81:119–124

    CAS  Google Scholar 

  • Laursen RA, Wen D, Knight CA (1994) Enantioselective adsorption of the D- and L-forms of an α-helical antifreeze polypeptide to the {2021} planes of ice. J Am Chem Soc 116:12057–12058

    CAS  Google Scholar 

  • Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z (2002) β-Helical antifreeze protein isoform with increased activity. J Biol Chem 277:33349–33352

    CAS  PubMed  Google Scholar 

  • Li N, Andorfer C, Duman JG (1998) Enhancement of insect antifreeze protein activity by solutes of low molecular mass. J Exp Biol 201:2243–2251

    CAS  PubMed  Google Scholar 

  • Liou YC, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature 406:322–324

    CAS  PubMed  Google Scholar 

  • Liu K, Jia Z, Chen G, Tung C, Liu R (2005) Systematic size study of an insect antifreeze protein and its interaction with ice. Biophys J 88:953–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Li H, Pang H, Me J, Mao X (2015) Enhancement effect of solutes of low molecular mass on the insect antifreeze protein ApAFP752 from Anatolica polita. J Therm Anal Calorim 120:307–315

    CAS  Google Scholar 

  • Lu K, Li Y (1998) Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystal. Phys Rev Lett 80:4474–4477

    CAS  Google Scholar 

  • Marshall CB, Tomczak MM, Gauthier SY, Kuiper MJ, Lankin C, Walker VK, Davies PL (2004a) Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity. Biochemistry 43:148–154

    CAS  PubMed  Google Scholar 

  • Marshall CB, Daley ME, Sykes BD, Davies PL (2004b) Enhancing the activity of a β-helical antifreeze protein by the engineered addition of coils. Biochemistry 43:11637–11646

    CAS  PubMed  Google Scholar 

  • Matubayasi N, Nishiyama A (2006) Thermodynamic quantities of surface formation of aqueous electrolyte solutions VI. Comparison with typical nonelectrolytes, sucrose and glucose. J Colloid Interface Sci 298:910–913

    CAS  PubMed  Google Scholar 

  • Melander W, Horváth C (1977) Salt effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys 183:200–215

    CAS  PubMed  Google Scholar 

  • Miura K, Ohgiya S, Hoshino T, Nemoto N, Suetake T, Miura A, Spyracopoulos L, Kondo H, Tsuda S (2001) NMR analysis of Type III antifreeze protein intramolecular dimer. Structural basis for enhanced activity. J Biol Chem 276:1304–1310

    CAS  PubMed  Google Scholar 

  • Mok Y-F, Lin F-H, Graham LA, Celik Y, Braslavsky I, Davies PL (2010) Structural basis for the superior activity of the large isoform of snow flea antifreeze protein. Biochemistry 49:2593–2603

    CAS  PubMed  Google Scholar 

  • Neven LG, Duman JG, Beals JM, Castellino FJ (1986) Overwintering adaptations of the stag beetle, Ceruchus piceus: removal of ice nucleators in winter to promote supercooling. J Comp Physiol B 156:707–716

    CAS  Google Scholar 

  • Neven L, Duman JG, Low MG, Sehl LC, Castellino FJ (1989) Purification and characterization of an insect hemolymph lipoprotein ice nucleator: evidence for the importance of phosphatidylinositol and apolipoprotein in the ice nucleator activity. J Comp Physiol B 159:71–82

    CAS  Google Scholar 

  • Nishimiya Y, Ohgiya S, Tsuda S (2003) Artificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology. J Biol Chem 278:32307–32312

    CAS  PubMed  Google Scholar 

  • Nishimiya Y, Sato R, Takamichi M, Miura A, Tsuda S (2005) Co-operative effect of the isoforms of type III antifreeze protein expressed in Notched-fin eelpout, Zoarces elongatus Kner. FEBS J 272:482–492

    CAS  PubMed  Google Scholar 

  • Olsen TM, Duman JG (1997a) Maintenance of the supercooled state in overwintering pyrochroid beetle larvae, Dendroides canadensis: role of hemolymph ice nucleators and antifreeze proteins. J Comp Physiol B 167:105–113

    Google Scholar 

  • Olsen TM, Duman JG (1997b) Maintenance of the supercooled state in the gut fluid of overwintering pyrochroid beetle larvae, Dendroides canadensis: role of ice nucleators and antifreeze proteins. J Comp Physiol B 167:114–122

    Google Scholar 

  • Olsen TM, Sass SJ, Li N, Duman JG (1998) Factors contributing to seasonal increases in inoculative freezing resistance in overwintering fire-colored beetle larvae Dendroides canandensis (Pyrochroidae). J Exp Biol 201:1585–1594

    CAS  PubMed  Google Scholar 

  • Pertaya N, Marshall CB, DiPrinzio CL, Wilen L, Thomson ES, Wettlaufer JS, Davies PL, Braslavsky I (2007) Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces. Biophys J 92:3663–3673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertaya N, Marshall CB, Celik Y, Davies PL, Braslavsky I (2008) Direct visualization of spruce budworm antifreeze protein interacting with ice crystals: basal plane affinity confers hyperactivity. Biophys J 95:333–341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poynting JH (1881) Change of state: solid–liquid. Philos Mag 5th series 12:32–48

    Google Scholar 

  • Ramsay JA (1964) The rectal complex of the mealworm Tenebrio molitor L. (Coleoptera, Tenebrionidae). Philos Trans R Soc B 348:279–314

    Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci 74:2589–2593

    CAS  PubMed  Google Scholar 

  • Reynolds JA, Gilbert DB, Tanford C (1974) Empirical correlation between hydrophobic free energy and aqueous cavity surface area. Proc Natl Acad Sci 71:2925–2927

    CAS  PubMed  Google Scholar 

  • Schrag JD, O’Grady SM, DeVries AL (1982) Relationship of amino acid composition and molecular weight of antifreeze glycopeptides to non-colligative freezing point depression. Biochim Biophys Acta 717:322–326

    CAS  PubMed  Google Scholar 

  • Sönnichsen FD, DeLuca CI, Davies PL, Sykes BD (1996) Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure 4:1325–1337

    PubMed  Google Scholar 

  • Sørensen TF, Ramløv H (2001) Variations in antifreeze activity and serum inorganic ions in the eelpout Zoarces viviparus: antifreeze activity in the embryonic state. Comp Biochem Physiol A 30:123–132

    Google Scholar 

  • Stevens CA, Drori R, Zalis S, Braslavsky I, Davies PL (2015) Dendrimer-linked antifreeze proteins have superior activity and thermal recovery. Bioconjug Chem 26:1908–1915

    CAS  PubMed  Google Scholar 

  • Thomson W (1871) On the equilibrium of vapour at a curved surface of liquid. Philos Mag 42:448–452

    Google Scholar 

  • Tolls J, van Dijk J, Verbruggen EJM, Hermens JLM, Loeprecht B, Schüürmann G (2002) Aqueous solubility-molecular size relationships: a mechanistic case study using C10- to C19-alkanes. J Phys Chem A 106:2760–2765

    CAS  Google Scholar 

  • Turnbull D (1950) Kinetics of heterogenous nucleation. J Chem Phys 18:198–203

    CAS  Google Scholar 

  • Uhlig HH (1937) The solubilities of gases and surface tension. J Phys Chem 41:1215–1225

    CAS  Google Scholar 

  • Wang L, Duman JG (2005) Antifreeze proteins of the beetle Dendroides canadensis enhance one another’s activities. Biochemistry 44:10305–10312

    CAS  PubMed  Google Scholar 

  • Wang L, Duman JG (2006) A thaumatin-like protein from larvae of the beetle Dendroides canadensis enhances the activity of antifreeze proteins. Biochemistry 45:1278–1284

    CAS  PubMed  Google Scholar 

  • Wang S, Amornwittawat N, Banatlao J, Chung M, Kao Y, Wen X (2009a) Hofmeister effects of common monovalent salts on the beetle antifreeze protein activity. J Phys Chem B 113:13891–13894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Amornwittawat N, Juwita V, Kao Y, Duman JG, Pascal TA, Goddard WA, Wen X (2009b) Arginine, a key residue for the enhancing ability of an antifreeze protein of the beetle Dendroides canadensis. Biochemistry 48:9696–9703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Washburn EW (1929) International critical tables of numerical data, physics, chemistry and technology, vol 4. McGraw-Hill, New York

    Google Scholar 

  • Wen D, Laursen RA (1992) A model for binding of an antifreeze polypeptide to ice. Biophys J 63:1659–1662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen X, Wang S, Amornwittawat N, Houghton EA, Sacco MA (2011) Interaction of reduced nicotinamide adenine dinucleotide with an antifreeze protein from Dendroides canadensis: mechanistic implication of antifreeze activity enhancement. J Mol Recognit 24:1025–1032

    PubMed  PubMed Central  Google Scholar 

  • Westh HP, Ramløv H, Wilson PW, DeVries AL (1997) Vapor pressure of aqueous antifreeze glycopeptide solutions. Cryo-Letters 18:277–282

    CAS  Google Scholar 

  • Wilson PW (1993) Explaining thermal hysteresis by the Kelvin effect. Cryo-Letters 14:31–36

    Google Scholar 

  • Wilson PW, Beaglehole D, DeVries AL (1993) Antifreeze glycopeptide adsorption on single crystal ice surfaces using ellipsometry. Biophys J 64:1878–1884

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wöhrmann APA (1996) Antifreeze glycopeptides and peptides in Antarctic fish species from the Weddell Sea and the Lazarev Sea. Mar Ecol Prog Ser 130:47–59

    Google Scholar 

  • Wu DW, Duman JG (1991) Activation of antifreeze proteins from larvae of the beetle Dendroides canadensis. J Comp Physiol B 161:279–283

    CAS  Google Scholar 

  • Wu DW, Duman JG, Xu L (1991) Enhancement of antifreeze protein activity by antibodies. Biochim Biophys Acta 1076:416–420

    CAS  PubMed  Google Scholar 

  • Xu H, Griffith M, Patten CL, Glick BR (1998) Isolation and characterization of an antifreeze protein with ice nucleation activity from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 44:64–73

    CAS  Google Scholar 

  • Yang DSC, Sax M, Chakrabartty A, Hew CL (1988) Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333:232–237

    CAS  PubMed  Google Scholar 

  • Yeung KL, Wolf EE, Duman JG (1991) A scanning tunneling microscopy study of an insect lipoprotein ice nucleator. J Vac Sci Technol B 9:1197–1201

    CAS  Google Scholar 

  • Zachariassen KE, Hammel HT (1976) Nucleating agents in the haemolymph of insects tolerant to freezing. Nature 262:285–287

    CAS  PubMed  Google Scholar 

  • Zachariassen KE, Husby JA (1982) Antifreeze effect of thermal hysteresis agents protects highly supercooled insects. Nature 298:865–867

    Google Scholar 

  • Zachariassen KE, DeVries AL, Hunt B, Kristiansen E (2002) Effect of ice fraction and dilution factor on the antifreeze activity in the hemolymph of the cerambycid beetle Rhagium inquisitor. Cryobiology 44:132–141

    CAS  PubMed  Google Scholar 

  • Zanetti-Polzi L, Biswas AD, Del Galdo S, Barone V, Daidone I (2019) Hydration shell of antifreeze proteins: unveiling the role of non-ice-binding surfaces. J Phys Chem B 123:6474–6480

    CAS  PubMed  Google Scholar 

  • Zepeda S, Yokoyama E, Uda Y, Katagiri C, Furukawa Y (2008) In situ observation of antifreeze glycoprotein kinetics at the ice interface reveals a two-step reversible adsorption mechanism. Cryst Growth Des 8:3666–3672

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlend Kristiansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kristiansen, E. (2020). Thermal Hysteresis. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-41948-6_6

Download citation

Publish with us

Policies and ethics