Skip to main content

Interaction of Antifreeze Proteins with Water

  • Chapter
  • First Online:
Antifreeze Proteins Volume 2

Abstract

Antifreeze proteins and antifreeze glycoproteins (AF(G)Ps) enable the survival of various cold-adapted organisms in freezing and subfreezing habitats by preventing the macroscopic growth of ice crystals. Regardless of their great structural diversity are all AF(G)Ps capable to adhere to growing ice crystals, a quality that is essential for their biological functions. Despite commercial interest and significant scientific breakthroughs has the precise working mechanism of antifreeze proteins not yet been unraveled. In this chapter we highlight the latest state-of-the art experimental and theoretical antifreeze protein research on the solution behavior of AF(G)Ps and their interaction with the solvent. Protein–water interactions are of general interest owing to the importance of protein hydration for the structure, stability, and activity of almost all proteins. We focus in particular on the direct interaction of AF(G)Ps with water and its role in the working mechanism of these unique proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baardsnes J, Kondejewski LH, Hodges RS, Chao H, Kay C, Davies PL (1999) New ice-binding face for type I antifreeze protein. FEBS Lett 463:87–91

    Article  CAS  PubMed  Google Scholar 

  • Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN (2016) Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Sci Rep 6:23619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush CA, Feeney RE (1986) Conformation of the glycotripeptide repeating unit of antifreeze glycoprotein of polar fish as determined from the fully assigned proton n.m.r. spectrum. Int J Pept Protein Res 28:386–397

    Article  CAS  PubMed  Google Scholar 

  • Bush CA, Feeney RE, Osuga DT, Ralapati S, Yeh YIN (1981) Antifreeze glycoprotein. Conformational model based on vacuum ultraviolet circular dichroism data. Int J Pept Protein Res 17:125–129

    Article  CAS  PubMed  Google Scholar 

  • Careri G, Gratton E, Yang PH, Rupley JA (1980) Correlation of IR spectroscopic, heat capacity, diamagnetic susceptibility and enzymatic measurements on lysozyme powder. Nature 284:572–573

    Article  CAS  PubMed  Google Scholar 

  • Celik Y, Graham LA, Mok Y-F, Bar M, Davies PL, Braslavsky I (2010) Superheating of ice crystals in antifreeze protein solutions. Proc Natl Acad Sci 107:5423–5428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies PL, Braslavsky I (2013) Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice to prevent their growth. Proc Natl Acad Sci 110:1309–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty S, Jana B (2017) Conformational and hydration properties modulate ice recognition by type I antifreeze protein and its mutants. Phys Chem Chem Phys 19:11678–11689

    Article  CAS  PubMed  Google Scholar 

  • Chaytor JL, Tokarew JM, Wu LK, Leclère M, Tam RY, Capicciotti CJ, Guolla L, von Moos E, Findlay CS, Allan DS et al (2012) Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology 22:123–133

    Article  CAS  PubMed  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997) Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proc Natl Acad Sci 94:3817–3822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochet N, Widehem P (2000) Ice crystallization by Pseudomonas syringae. Appl Microbiol Biotechnol 54:153–161

    Article  CAS  PubMed  Google Scholar 

  • Conti Nibali V, Havenith M (2014) New insights into the role of water in biological function: studying solvated biomolecules using terahertz absorption spectroscopy in conjunction with molecular dynamics simulations. J Am Chem Soc 136:12800–12807

    Article  CAS  PubMed  Google Scholar 

  • Cziko PA, DeVries AL, Evans CW, Cheng C-HC (2014) Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming. Proc Natl Acad Sci 111:14583–14588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daley ME, Sykes BD (2004) Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance 13C NMR spectroscopy. J Biomol NMR 29:139–150

    Article  CAS  PubMed  Google Scholar 

  • Daley ME, Spyracopoulos L, Jia Z, Davies PL, Sykes BD (2002) Structure and dynamics of a beta-helical antifreeze protein. Biochemistry 41:5515–5525

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL (1971) Glycoproteins as biological antifreeze agents in Antarctic fishes. Science 172:1152–1155

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL, Wohlschlag DE (1969) Freezing resistance in some Antarctic fishes. Science 163:1073–1075

    Article  CAS  PubMed  Google Scholar 

  • DeVries AL, Komatsu SK, Feeney RE (1970) Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J Biol Chem 245:2901–2908

    Article  CAS  PubMed  Google Scholar 

  • Dill KA (1990) Dominant forces in protein folding. Biochemistry 29:7133–7155

    Article  CAS  PubMed  Google Scholar 

  • Dill KA, MacCallum JL (2012) The protein-folding problem, 50 years on. Science 338:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Drori R, Celik Y, Davies PL, Braslavsky I (2014) Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics. J R Soc Interface 11:20140526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duman JG (2001) Antifreeze and ice nucleator proteins in terrestrial arthropods. Annu Rev Physiol 63:327–357

    Article  CAS  PubMed  Google Scholar 

  • Ebbinghaus S, Meister K, Born B, DeVries AL, Gruebele M, Havenith M (2010) Antifreeze glycoprotein activity correlates with long-range protein−water dynamics. J Am Chem Soc 132:12210–12211

    Article  CAS  PubMed  Google Scholar 

  • Ebbinghaus S, Meister K, Prigozhin MB, Devries AL, Havenith M, Dzubiella J, Gruebele M (2012) Functional importance of short-range binding and long-range solvent interactions in helical antifreeze peptides. Biophys J 103:L20–L22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feeney RE, Burcham TS, Yeh Y (1986) Antifreeze glycoproteins from polar fish blood. Annu Rev Biophys Biophys Chem 15:59–78

    Article  CAS  PubMed  Google Scholar 

  • Fletcher GL, Hew CL, Davies PL (2001) Antifreeze proteins of teleost fishes. Annu Rev Physiol 63:359–390

    Article  CAS  PubMed  Google Scholar 

  • Franks F, Morris ER (1978) Blood glycoprotein from antarctic fish possible conformational origin of antifreeze activity. Biochim Biophys Acta Gen Subj 540:346–356

    Article  CAS  Google Scholar 

  • Friis DS, Johnsen JL, Kristiansen E, Westh P, Ramløv H (2014) Low thermodynamic but high kinetic stability of an antifreeze protein from Rhagium mordax. Protein Sci 23:760–768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher KR, Sharp KA (2003a) Analysis of thermal hysteresis protein hydration using the random network model. Biophys Chem 105:195–209

    Article  CAS  PubMed  Google Scholar 

  • Gallagher KR, Sharp KA (2003b) A new angle on heat capacity changes in hydrophobic solvation. J Am Chem Soc 125:9853–9860

    Article  CAS  PubMed  Google Scholar 

  • Garnham CP, Natarajan A, Middleton AJ, Kuiper MJ, Braslavsky I, Davies PL (2010) Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging. Biochemistry 49:9063–9071

    Article  CAS  PubMed  Google Scholar 

  • Garnham CP, Campbell RL, Davies PL (2011) Anchored clathrate waters bind antifreeze proteins to ice. Proc Natl Acad Sci USA 108:7363–7367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier SY, Scotter AJ, Lin F-H, Baardsnes J, Fletcher GL, Davies PL (2008) A re-evaluation of the role of type IV antifreeze protein. Cryobiology 57:292–296

    Article  CAS  PubMed  Google Scholar 

  • Griffith M, Yaish MWF (2004) Antifreeze proteins in overwintering plants: a tale of two activities. Trends Plant Sci 9:399–405

    Article  CAS  PubMed  Google Scholar 

  • Groot CCM, Meister K, DeVries AL, Bakker HJ (2016) Dynamics of the hydration water of antifreeze glycoproteins. J Phys Chem Lett 7:4836–4840

    Article  CAS  PubMed  Google Scholar 

  • Grossman M, Born B, Heyden M, Tworowski D, Fields GB, Sagi I, Havenith M (2011) Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat Struct Mol Biol 18:1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hakim A, Nguyen JB, Basu K, Zhu DF, Thakral D, Davies PL, Isaacs FJ, Modis Y, Meng W (2013) Crystal structure of an insect antifreeze protein and its implications for ice binding. J Biol Chem 288:12295–12304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanada Y, Nishimiya Y, Miura A, Tsuda S, Kondo H (2014) Hyperactive antifreeze protein from an Antarctic sea ice bacterium Colwellia sp. has a compound ice-binding site without repetitive sequences. FEBS J 281:3576–3590

    Article  CAS  PubMed  Google Scholar 

  • Harding MM, Ward LG, Haymet ADJ (1999) Type I ‘antifreeze’ proteins. Eur J Biochem 264:653–665

    Article  CAS  PubMed  Google Scholar 

  • Harding MM, Anderberg PI, Haymet ADJ (2003) ‘Antifreeze’ glycoproteins from polar fish. Eur J Biochem 270:1381–1392

    Article  CAS  PubMed  Google Scholar 

  • Haridas V, Naik S (2013) Natural macromolecular antifreeze agents to synthetic antifreeze agents. RSC Adv 3:14199–14218

    Article  CAS  Google Scholar 

  • Haschemeyer A, Guschlbauer W, DeVries AL (1977) Water binding by antifreeze glycoproteins from Antarctic fish. Nature 269(5623):87–88

    Article  CAS  PubMed  Google Scholar 

  • Hassas-Roudsari M, Goff HD (2012) Ice structuring proteins from plants: Mechanism of action and food application. Food Res Int 46:425–436

    Article  CAS  Google Scholar 

  • Howard EI, Blakeley MP, Haertlein M, Petit-Haertlein I, Mitschler A, Fisher SJ, Cousido-Siah A, Salvay AG, Popov A, Muller-Dieckmann C et al (2011) Neutron structure of type-III antifreeze protein allows the reconstruction of AFP-ice interface. J Mol Recognit 24:724–732

    Article  CAS  PubMed  Google Scholar 

  • Huebinger J, Han H-M, Hofnagel O, Vetter IR, Bastiaens PIH, Grabenbauer M (2016) Direct measurement of water states in cryopreserved cells reveals tolerance toward ice crystallization. Biophys J 110:840–849

    Article  CAS  PubMed  Google Scholar 

  • Jia Z, DeLuca CI, Chao H, Davies PL (1996) Structural basis for the binding of a globular antifreeze protein to ice. Nature 384:285–288

    Article  CAS  PubMed  Google Scholar 

  • Knight CA, DeVries AL (1989) Melting inhibition and superheating of ice by an antifreeze glycopeptide. Science 245:505–507

    Article  CAS  PubMed  Google Scholar 

  • Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S (2012) Ice-binding site of snow mold fungus antifreeze protein deviates from structural regularity and high conservation. Proc Natl Acad Sci 109:9360–9365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koop T, Zobrist B (2009) Parameterizations for ice nucleation in biological and atmospheric systems. Phys Chem Chem Phys 11:10839–10850

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen E, Zachariassen KE (2005) The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51:262–280

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen E, Ramløv H, Højrup P, Pedersen SA, Hagen L, Zachariassen KE (2011) Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor. Insect Biochem Mol Biol 41:109–117

    Article  CAS  PubMed  Google Scholar 

  • Kristiansen E, Wilkens C, Vincents B, Friis D, Lorentzen AB, Jenssen H, Løbner-Olesen A, Ramløv H (2012) Hyperactive antifreeze proteins from longhorn beetles: some structural insights. J Insect Physiol 58:1502–1510

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Park AK, Do H, Park KS, Moh SH, Chi YM, Kim HJ (2012) Structural basis for antifreeze activity of ice-binding protein from Arctic yeast. J Biol Chem 287:11460–11468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leinala EK, Davies PL, Doucet D, Tyshenko MG, Walker VK, Jia Z (2002) A β-helical antifreeze protein isoform with increased activity: structural and functional insights. J Biol Chem 277:33349–33352

    Article  CAS  PubMed  Google Scholar 

  • Levy Y, Onuchic JN (2006) Water mediation in protein folding and molecular recognition. Annu Rev Biophys Biomol Struct 35:389–415

    Article  CAS  PubMed  Google Scholar 

  • Li XM, Trinh KY, Hew CL, Buettner B, Baenziger J, Davies PL (1985) Structure of an antifreeze polypeptide and its precursor from the ocean pout, Macrozoarces americanus. J Biol Chem 260:12904–12909

    Article  CAS  PubMed  Google Scholar 

  • Li N, Kendrick BS, Manning MC, Carpenter JF, Duman JG (1998) Secondary structure of antifreeze proteins from overwintering larvae of the beetle Dendroides canadensis. Arch Biochem Biophys 360:25–32

    Article  CAS  PubMed  Google Scholar 

  • Liou Y-C, Tocilj A, Davies PL, Jia Z (2000) Mimicry of ice structure by surface hydroxyls and water of a β-helix antifreeze protein. Nature 406:322–324

    Article  CAS  PubMed  Google Scholar 

  • Lotze S, Olijve LLC, Voets IK, Bakker HJ (2014) Observation of vibrational energy exchange in a type-III antifreeze protein. J Phys Chem B 118:8962–8971

    Article  CAS  PubMed  Google Scholar 

  • Meister K, Ebbinghaus S, Xu Y, Duman JG, DeVries A, Gruebele M, Leitner DM, Havenith M (2013) Long-range protein–water dynamics in hyperactive insect antifreeze proteins. Proc Natl Acad Sci USA 110:1617–1622

    Article  CAS  PubMed  Google Scholar 

  • Meister K, Duman JG, Xu Y, DeVries AL, Leitner DM, Havenith M (2014a) The role of sulfates on antifreeze protein activity. J Phys Chem B 118:7920–7924

    Article  CAS  PubMed  Google Scholar 

  • Meister K, Strazdaite S, DeVries AL, Lotze S, Olijve LLC, Voets IK, Bakker HJ (2014b) Observation of ice-like water layers at an aqueous protein surface. Proc Natl Acad Sci 111:17732–17736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister K, Lotze S, Olijve LL, DeVries AL, Duman JG, Voets IK, Bakker HJ (2015) Investigation of the ice-binding site of an insect antifreeze protein using sum-frequency generation spectroscopy. J Phys Chem Lett 6:1162–1167

    Article  CAS  PubMed  Google Scholar 

  • Modig K, Qvist J, Marshall CB, Davies PL, Halle B (2010) High water mobility on the ice-binding surface of a hyperactive antifreeze protein. Phys Chem Chem Phys 12:10189–10197

    Article  CAS  PubMed  Google Scholar 

  • Nishimiya Y, Kondo H, Takamichi M, Sugimoto H, Suzuki M, Miura A, Tsuda S (2008) Crystal structure and mutational analysis of Ca2+-independent type II antifreeze protein from longsnout poacher, Brachyopsis rostratus. J Mol Biol 382:734–746

    Article  CAS  PubMed  Google Scholar 

  • Nutt DR, Smith JC (2008) Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. J Am Chem Soc 130:13066–13073

    Article  CAS  PubMed  Google Scholar 

  • Olijve LLC, Sun T, Narayanan T, Jud C, Davies PL, Voets IK (2013) Solution structure of hyperactive type I antifreeze protein. RSC Adv 3:5903–5908

    Article  CAS  Google Scholar 

  • Olijve LLC, Meister K, DeVries AL, Duman JG, Guo S, Bakker HJ, Voets IK (2016) Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins. Proc Natl Acad Sci 113:3740–3745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey R, Usui K, Livingstone RA, Fischer SA, Pfaendtner J, Backus EHG, Nagata Y, Fröhlich-Nowoisky J, Schmüser L, Mauri S et al (2016) Ice-nucleating bacteria control the order and dynamics of interfacial water. Sci Adv 2:e1501630

    Article  PubMed  PubMed Central  Google Scholar 

  • Papoian GA, Ulander J, Eastwood MP, Luthey-Schulten Z, Wolynes PG (2004) Water in protein structure prediction. Proc Natl Acad Sci USA 101:3352–3357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pentelute BL, Gates ZP, Tereshko V, Dashnau JL, Vanderkooi JM, Kossiakoff AA, Kent SBH (2008) X-ray structure of snow flea antifreeze protein determined by racemic crystallization of synthetic protein enantiomers. J Am Chem Soc 130:9695–9701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perfeldt CM, Chua PC, Daraboina N, Friis D, Kristiansen E, Ramløv H, Woodley JM, Kelland MA, von Solms N (2014) Inhibition of gas hydrate nucleation and growth: efficacy of an antifreeze protein from the longhorn beetle Rhagium mordax. Energy Fuel 28:3666–3672

    Article  CAS  Google Scholar 

  • Pertaya N, Marshall CB, DiPrinzio CL, Wilen L, Thomson ES, Wettlaufer JS, Davies PL, Braslavsky I (2007) Fluorescence microscopy evidence for quasi-permanent attachment of antifreeze proteins to ice surfaces. Biophys J 92:3663–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond JA, DeVries AL (1977) Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci USA 74:2589–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp KA (2011) A peek at ice binding by antifreeze proteins. Proc Natl Acad Sci 108:7281–7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp KA (2014) The remarkable hydration of the antifreeze protein maxi: a computational study. J Chem Phys 141:22D510

    Article  PubMed  CAS  Google Scholar 

  • Sharp KA, Vanderkooi JM (2009) Water in the half shell: structure of water, focusing on angular structure and solvation. Acc Chem Res 43:231–239

    Article  CAS  Google Scholar 

  • Sicheri F, Yang DSC (1995) Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375:427–431

    Article  CAS  PubMed  Google Scholar 

  • Smolin N, Daggett V (2008) Formation of ice-like water structure on the surface of an antifreeze protein. J Phys Chem B 112:6193–6202

    Article  CAS  PubMed  Google Scholar 

  • Strom CS, Liu XY, Jia Z (2005) Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism. J Am Chem Soc 127:428–440

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Petersen PB (2017) Solvation shell structure of small molecules and proteins by IR-MCR spectroscopy. J Phys Chem Lett 8:611–614

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Lin F-H, Campbell RL, Allingham JS, Davies PL (2014) An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343:795–798

    Article  CAS  PubMed  Google Scholar 

  • Sun T, Gauthier SY, Campbell RL, Davies PL (2015) Revealing surface waters on an antifreeze protein by fusion protein crystallography combined with molecular dynamic simulations. J Phys Chem B 119:12808–12815

    Article  CAS  PubMed  Google Scholar 

  • Takamichi M, Nishimiya Y, Miura A, Tsuda S (2007) Effect of annealing time of an ice crystal on the activity of type III antifreeze protein. FEBS J 274:6469–6476

    Article  CAS  PubMed  Google Scholar 

  • Thirumalai D, Reddy G, Straub JE (2012) Role of water in protein aggregation and amyloid polymorphism. Acc Chem Res 45:83–92

    Article  CAS  PubMed  Google Scholar 

  • Todde G, Whitman C, Hovmöller S, Laaksonen A (2014) Induced ice melting by the snow flea antifreeze protein from molecular dynamics simulations. J Phys Chem B 118:13527–13534

    Article  CAS  PubMed  Google Scholar 

  • Todde G, Hovmöller S, Laaksonen A (2015) Influence of antifreeze proteins on the ice/water interface. J Phys Chem B 119:3407–3413

    Article  CAS  PubMed  Google Scholar 

  • Tonelli D, Capicciotti CJ, Doshi M, Ben RN (2015) Inhibiting gas hydrate formation using small molecule ice recrystallization inhibitors. RSC Adv 5:21728–21732

    Article  CAS  Google Scholar 

  • Tsvetkova NM, Phillips BL, Krishnan VV, Feeney RE, Fink WH, Crowe JH, Risbud SH, Tablin F, Yeh Y (2002) Dynamics of antifreeze glycoproteins in the presence of ice. Biophys J 82:464–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uda Y, Zepeda S, Kaneko F, Matsuura Y, Furukawa Y (2007) Adsorption-induced conformational changes of antifreeze glycoproteins at the ice/water interface. J Phys Chem B 111:14355–14361

    Article  CAS  PubMed  Google Scholar 

  • Wierzbicki A, Dalal P, Cheatham TE, Knickelbein JE, Haymet A, Madura JD (2007) Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Biophys J 93:1442–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Bäumer A, Meister K, Bischak CG, DeVries AL, Leitner DM, Havenith M (2016) Protein–water dynamics in antifreeze protein III activity. Chem Phys Lett 647:1–6

    Article  CAS  Google Scholar 

  • Yang C, Sharp KA (2004) The mechanism of the type III antifreeze protein action: a computational study. Biophys Chem 109:137–148

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Sharp KA (2005) Hydrophobic tendency of polar group hydration as a major force in type I antifreeze protein recognition. Proteins 59:266–274

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Zhou Y, Liu K, Cheng Y, Liu R, Chen G, Jia Z (2003) Computational study on the function of water within a β-helix antifreeze protein dimer and in the process of ice-protein binding. Biophys J 85:2599–2605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh Y, Feeney RE (1996) Antifreeze proteins: structures and mechanisms of function. Chem Rev 96:601–618

    Article  CAS  PubMed  Google Scholar 

  • Zachariassen KE, DeVries AL, Hunt B, Kristiansen E (2002) Effect of ice fraction and dilution factor on the antifreeze activity in the hemolymph of the cerambycid beetle Rhagium inquisitor. Cryobiology 44:132–141

    Article  CAS  PubMed  Google Scholar 

  • Zelent B, Bryan MA, Sharp KA, Vanderkooi JM (2009) Influence of surface groups of proteins on water studied by freezing/thawing hysteresis and infrared spectroscopy. Biophys Chem 141:222–230

    Article  CAS  PubMed  Google Scholar 

  • Zeng H, Wilson LD, Walker VK, Ripmeester JA (2006) Effect of antifreeze proteins on the nucleation, growth, and the memory effect during tetrahydrofuran clathrate hydrate formation. J Am Chem Soc 128:2844–2850

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konrad Meister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voets, I.K., Meister, K. (2020). Interaction of Antifreeze Proteins with Water. In: Ramløv, H., Friis, D. (eds) Antifreeze Proteins Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-41948-6_5

Download citation

Publish with us

Policies and ethics