Skip to main content

Bioengineering Fungi and Yeast for the Production of Enzymes, Metabolites, and Value-Added Compounds

  • Chapter
  • First Online:

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

Fungi have been used since ancient times in the manufacturing of fermented foods and beverages, and these early applications marked the initial development of biotechnology.

Fungal biotechnology has allowed the commercial production of industrial enzymes, pigments, vitamins, organic acids, lipids, and several antibiotics as well as the development of processes that facilitate the degradation of xenobiotics, the obtention of value-added bioproducts from lignocellulosic biomass, etc.

All these applications and products have been facilitated by the advent of molecular biology, metabolic engineering, omics technologies, and synthetic biology.

From a biotechnological point of view, any improvement in the performance and productivity of a fungal strain requires a minimum level of physiological and genetic manipulations. Recently, gene editing through CRISPR/Cas9 technology has been successfully applied in both yeast and filamentous fungi for several applications.

This chapter summarizes the main molecular strategies for the genetic manipulation of filamentous fungi and yeasts and their latest biotechnological applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrio JL, Demain AL (2003) Fungal biotechnology. Int Microbiol 6(3):191–199

    Article  CAS  PubMed  Google Scholar 

  • Amen T, Kaganovich D (2017) Integrative modules for efficient genome engineering in yeast. Microb Cell 4(6):182–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anyaogu DC, Mortensen UH (2015) Heterologous production of fungal secondary metabolites in Aspergilli. Front Microbiol 6:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Baker SE (2006) Aspergillus niger genomics: past, present and into the future. Med Mycol 44(Supplement_1):S17–S21

    Article  CAS  PubMed  Google Scholar 

  • Balan V (2014) Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnol 2014:463074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barrios-González J, Miranda RU (2010) Biotechnological production and applications of statins. Appl Microbiol Biotechnol 85(4):869–883

    Article  PubMed  CAS  Google Scholar 

  • Brandl J, Andersen MR (2015) Current state of genome-scale modeling in filamentous fungi. Biotechnol Lett 37(6):1131–1139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, McCulloch M, McFarland S, Thompson S, Yaver D, Berry A (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol 97(20):8903–8912

    Article  CAS  PubMed  Google Scholar 

  • Cairns TC, Nai C, Meyer V (2018) How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol Biotechnol 5(1):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Calzado F, Persinoti GF, Terrasan C, Zubieta M, Rubio M, Contesini F, Squina F, Damasio A (2018) Comparative RNA-seq based transcriptomic analysis of Aspergillus nidulans recombinant strains overproducing heterologous glycoside hydrolases. bioRxiv: 241273

    Google Scholar 

  • Chelius MK, Wodzinski RJ (1994) Strain improvement of Aspergillus niger for phytase production. Appl Microbiol Biotechnol 41(1):79–83

    Article  CAS  Google Scholar 

  • Chesini M, Wagner E, Baruque DJ, Vita CE, Cavalitto SF, Ghiringhelli PD, Rojas NL (2018) High level production of a recombinant acid stable exoinulinase from Aspergillus kawachii. Protein Expr Purif 147:29–37

    Article  CAS  PubMed  Google Scholar 

  • da Rosa-Garzon NG, Laure HJ, Rosa JC, Cabral H (2019) Fusarium oxysporum cultured with complex nitrogen sources can degrade agricultural residues: evidence from analysis of secreted enzymes and intracellular proteome. Renew Energy 133:941–950

    Article  CAS  Google Scholar 

  • Daboussi M-J, Capy P (2003) Transposable elements in filamentous fungi. Ann Rev Microbiol 57(1):275–299

    Article  CAS  Google Scholar 

  • Dai Z, Liu Y, Guo J, Huang L, Zhang X (2015) Yeast synthetic biology for high-value metabolites. FEMS Yeast Res 15(1):1–11

    Article  PubMed  CAS  Google Scholar 

  • De Bhowmick G, Sarmah AK, Sen R (2018) Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products. Bioresour Technol 247:1144–1154

    Article  PubMed  CAS  Google Scholar 

  • De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16(9):839

    Article  PubMed  Google Scholar 

  • de Paula RG, Antonieto ACC, Ribeiro LFC, Srivastava N, O’Donovan A, Mishra PK, Gupta VK, Silva RN (2019) Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 37(6):107347

    Article  PubMed  CAS  Google Scholar 

  • Demain AL, Adrio JL (2008) Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation. In: Petersen F, Amstutz R (eds) Natural Compounds as Drugs Volume I. Progress in Drug Research, vol 65. Birkhäuser Basel 

    Google Scholar 

  • Den Haan R, Rose SH, Lynd LR, van Zyl WH (2007) Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab Eng 9(1):87–94

    Article  CAS  Google Scholar 

  • Deng H, Gao R, Liao X, Cai Y (2017) CRISPR system in filamentous fungi: current achievements and future directions. Gene 627:212–221

    Article  CAS  PubMed  Google Scholar 

  • Dilworth MV, Piel MS, Bettaney KE, Ma P, Luo J, Sharples D, Poyner DR, Gross SR, Moncoq K, Henderson PJF (2018) Microbial expression systems for membrane proteins. Methods 147:3–39

    Article  CAS  PubMed  Google Scholar 

  • Dimarogona M, Topakas E (2016) Regulation and heterologous expression of lignocellulosic enzymes in Aspergillus. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 171–190

    Google Scholar 

  • Dondelinger E, Aubry N, Ben Chaabane F, Cohen C, Tayeb J, Remond C (2016) Contrasted enzymatic cocktails reveal the importance of cellulases and hemicellulases activity ratios for the hydrolysis of cellulose in presence of xylans. AMB Express 6(1):24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Donohoue PD, Barrangou R, May AP (2018) Advances in industrial biotechnology using CRISPR-Cas systems. Trends Biotechnol 36(2):134–146

    Article  CAS  PubMed  Google Scholar 

  • Du J, Shao Z, Zhao H (2011) Engineering microbial factories for synthesis of value-added products. J Ind Microbiol Biotechnol 38(8):873–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufresne A (2013) Nanocellulose: a new ageless bionanomaterial. Mater Today 16(6):220–227

    Article  CAS  Google Scholar 

  • Duina AA, Miller ME, Keeney JB (2014) Budding yeast for budding geneticists: a primer on the Saccharomyces cerevisiae model system. Genetics 197:33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Imam AA, Du C (2014) Fermentative itaconic acid production. J Biodivers Biopros Dev 1(1):1–8

    Google Scholar 

  • Ellila S, Fonseca L, Uchima C, Cota J, Goldman GH, Saloheimo M, Sacon V, Siika-Aho M (2017) Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol Biofuels 10(1):30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Enkler L, Richer D, Marchand AL, Ferrandon D, Jossinet F (2016) Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system. Sci Rep 6:35766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fávaro LCL, Araújo WL, Azevedo JL, Paccola-Meirelles LD (2005) The biology and potential for genetic research of transposable elements in filamentous fungi. Genet Mol Biol 28(4):804–813

    Article  Google Scholar 

  • Fiedler MRM, Barthel L, Kubisch C, Nai C, Meyer V (2018) Construction of an improved Aspergillus niger platform for enhanced glucoamylase secretion. Microb Cell Factories 17(1):95

    Article  CAS  Google Scholar 

  • Fincham JR (1989) Transformation in fungi. Microbiol Mol Biol Rev 53(1):148–170

    CAS  Google Scholar 

  • Fleißner A, Dersch P (2010) Expression and export: recombinant protein production systems for Aspergillus. Appl Microbiol Biotechnol 87(4):1255–1270

    Article  PubMed  CAS  Google Scholar 

  • Frandsen RJN (2011) A guide to binary vectors and strategies for targeted genome modification in fungi using Agrobacterium tumefaciens-mediated transformation. J Microbiol Methods 87(3):247–262

    Article  CAS  PubMed  Google Scholar 

  • García-Granados R, Lerma-Escalera JA, Morones-Ramírez JR (2019) Metabolic engineering and synthetic biology: synergies, future, and challenges. Front Bioeng Biotechnol 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  • Generoso WC, Schadeweg V, Oreb M, Boles E (2015) Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Curr Opin Biotechnol 33:1–7

    Article  CAS  PubMed  Google Scholar 

  • Gnugge R, Rudolf F (2017) Saccharomyces cerevisiae Shuttle vectors. Yeast 34(5):205–221

    Article  PubMed  CAS  Google Scholar 

  • Gombert AK, Madeira JV Jr, Cerdan ME, Gonzalez-Siso MI (2016) Kluyveromyces marxianus as a host for heterologous protein synthesis. Appl Microbiol Biotechnol 100(14):6193–6208

    Article  CAS  PubMed  Google Scholar 

  • Gomez S, Fernandez FJ, Vega MC (2016) Heterologous expression of proteins in Aspergillus. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 55–68

    Google Scholar 

  • Goncalves FA, Colen G, Takahashi JA (2014) Yarrowia lipolytica and its multiple applications in the biotechnological industry. Sci World J 2014(476207):476207

    CAS  Google Scholar 

  • Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH (1996) A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res 24(13):2519–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T (2016) Fungal enzymes for bio-products from sustainable and waste biomass. Trends Biochem Sci 41(7):633–645

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Chávez F, Zwahlen R, Bovenberg R, Driessen A (2018) Engineering of the filamentous fungus Penicillium chrysogenum as cell factory for natural products. Front Microbiol 9:2768

    Article  PubMed  PubMed Central  Google Scholar 

  • He L, Feng J, Lu S, Chen Z, Chen C, He Y, Yi X, Xi L (2016) Genetic transformation of fungi. Int J Dev Biol 61(6–7):375–381

    Google Scholar 

  • Heerd D, Tari C, Fernández-Lahore M (2014) Microbial strain improvement for enhanced polygalacturonase production by Aspergillus sojae. Appl Microbiol Biotechnol 98(17):7471–7481

    Article  CAS  PubMed  Google Scholar 

  • Hegde K, Prabhu A, Sarma S, Brar S, Dasu VV, Menon V, Rao M (2016) Potential applications of renewable itaconic acid for the synthesis of 3-methyltetrahydrofuran trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Platform Chem Bioref 38(4):181–200

    Article  Google Scholar 

  • Hihlal E, Braumann I, van den Berg M, Kempken F (2011) Suitability of Vader for transposon-mediated mutagenesis in Aspergillus niger. Appl Environ Microbiol 77(7):2332–2336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillman ET, Readnour LR, Solomon KV (2017) Exploiting the natural product potential of fungi with integrated-omics and synthetic biology approaches. Curr Opin Syst Biol 5:50–56

    Article  Google Scholar 

  • Hsu PD, Lander ES, Zhang F (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell 157(6):1262–1278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idnurm A, Bailey AM, Cairns TC, Elliott CE, Foster GD, Ianiri G, Jeon J (2017) A silver bullet in a golden age of functional genomics: the impact of Agrobacterium-mediated transformation of fungi. Fungal Biol Biotechnol 4(6):6

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang D, Zhu W, Wang Y, Sun C, Zhang K-Q, Yang J (2013) Molecular tools for functional genomics in filamentous fungi: recent advances and new strategies. Biotechnol Adv 31(8):1562–1574

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Guo D, Lu J, Durre P, Dong W, Yan W, Zhang W, Ma J, Jiang M, Xin F (2018) Consolidated bioprocessing of butanol production from xylan by a thermophilic and butanologenic Thermoanaerobacterium sp. M5. Biotechnol Biofuels 11:89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kang HS, Charlop-Powers Z, Brady SF (2016) Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synth Biol 5(9):1002–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katayama T, Tanaka Y, Okabe T, Nakamura H, Fujii W, Kitamoto K, Maruyama J-i (2016) Development of a genome editing technique using the CRISPR/Cas9 system in the industrial filamentous fungus Aspergillus oryzae. Biotechnol Lett 38(4):637–642

    Article  CAS  PubMed  Google Scholar 

  • Katayama T, Nakamura H, Zhang Y, Pascal A, Fujii W, Maruyama J-i (2019) Forced recycling of an AMA1-based genome-editing plasmid allows for efficient multiple gene deletion/integration in the industrial filamentous fungus Aspergillus oryzae. Appl Environ Microbiol 85(3):e01896–e01818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kavscek M, Strazar M, Curk T, Natter K, Petrovic U (2015) Yeast as a cell factory: current state and perspectives. Microb Cell Factories 14(94):94

    Article  CAS  Google Scholar 

  • Kawaguchi H, Hasunuma T, Ogino C, Kondo A (2016) Bioprocessing of bio-based chemicals produced from lignocellulosic feedstocks. Curr Opin Biotechnol 42:30–39

    Article  CAS  PubMed  Google Scholar 

  • Khan AA, Bacha N, Ahmad B, Lutfullah G, Farooq U, Cox RJ (2014) Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites. Asian Pac J Trop Biomed 4(11):859–870

    Article  CAS  Google Scholar 

  • Kim H, Yoo SJ, Kang HA (2015) Yeast synthetic biology for the production of recombinant therapeutic proteins. FEMS Yeast Res 15(1):1–16

    Article  PubMed  CAS  Google Scholar 

  • Konning D, Kolmar H (2018) Beyond antibody engineering: directed evolution of alternative binding scaffolds and enzymes using yeast surface display. Microb Cell Factories 17(1):32

    Article  CAS  Google Scholar 

  • Krappmann S (2007) Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biol Rev 21(1):25–29

    Article  Google Scholar 

  • Kuivanen J, Wang YJ, Richard P (2016) Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9. Microb Cell Factories 15(1):210

    Article  CAS  Google Scholar 

  • Lee SS, Lee JH, Lee I (2013) Strain improvement by overexpression of the laeA gene in Monascus pilosus for the production of monascus-fermented rice. J Microbiol Biotechnol 23(7):959–965

    Article  CAS  PubMed  Google Scholar 

  • Leitão AL, Enguita FJ (2014) Fungal extrolites as a new source for therapeutic compounds and as building blocks for applications in synthetic biology. Microbiol Res 169(9–10):652–665

    Article  PubMed  CAS  Google Scholar 

  • Leynaud-Kieffer LMC, Curran SC, Kim I, Magnuson JK, Gladden JM, Baker SE, Simmons BA (2019) A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable. PLoS One 14(1):e0210243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X-H, Yang H-J, Roy B, Park EY, Jiang L-J, Wang D, Miao Y-G (2010) Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet. Microbiol Res 165(3):190–198

    Article  CAS  PubMed  Google Scholar 

  • Li C, Zhao X, Wang A, Huber GW, Zhang T (2015) Catalytic transformation of lignin for the production of chemicals and fuels. Chem Rev 115(21):11559–11624

    Article  CAS  PubMed  Google Scholar 

  • Li D, Tang Y, Lin J, Cai W (2017) Methods for genetic transformation of filamentous fungi. Microb Cell Factories 16(1):168

    Article  CAS  Google Scholar 

  • Lin L, Sun Z, Li J, Chen Y, Liu Q, Sun W, Tian C (2018) Disruption of gul-1 decreased the culture viscosity and improved protein secretion in the filamentous fungus Neurospora crassa. Microb Cell Factories 17(1):96

    Article  CAS  Google Scholar 

  • Liu Q, Gao R, Li J, Lin L, Zhao J, Sun W, Tian C (2017) Development of a genome-editing CRISPR/Cas9 system in thermophilic fungal Myceliophthora species and its application to hyper-cellulase production strain engineering. Biotechnol Biofuels 10:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu H, Cao W, Ouyang L, Xia J, Huang M, Chu J, Zhuang Y, Zhang S, Noorman H (2017) Comprehensive reconstruction and in silico analysis of Aspergillus niger genome-scale metabolic network model that accounts for 1210 ORFs. Biotechnol Bioeng 114(3):685–695

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  PubMed  Google Scholar 

  • Mans R, Daran JG, Pronk JT (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr Opin Biotechnol 50:47–56

    Article  CAS  PubMed  Google Scholar 

  • Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MHA, Silva-Rocha R (2018) Systems and synthetic biology approaches to engineer fungi for fine chemical production. Front Bioeng Biotechnol 6

    Google Scholar 

  • Matsu-ura T, Baek M, Kwon J, Hong C (2015) Efficient gene editing in Neurospora crassa with CRISPR technology. Fungal Biol Biotechnol 2:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Mattanovich D, Sauer M, Gasser B (2014) Yeast biotechnology: teaching the old dog new tricks. Microb Cell Factories 13(1):34

    Article  CAS  Google Scholar 

  • McKelvey SM, Murphy RA (2011) Biotechnological use of fungal enzymes. Biology and Applications, 179

    Google Scholar 

  • McLean KJ, Hans M, Meijrink B, van Scheppingen WB, Vollebregt A, Tee KL, van der Laan J-M, Leys D, Munro AW, van den Berg MA (2015) Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum. Proc Natl Acad Sci 112(9):2847–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4):522–550

    Article  CAS  Google Scholar 

  • Meyer V (2008) Genetic engineering of filamentous fungi—progress, obstacles and future trends. Biotechnol Adv 26(2):177–185

    Article  CAS  PubMed  Google Scholar 

  • Meyer V, Ram AFJ, Punt PJ (2010) Genetics, genetic manipulation, and approaches to strain improvement of filamentous fungi. In: Manual of industrial microbiology and biotechnology, 3rd edn. American Society of Microbiology, pp 318–329

    Google Scholar 

  • Mohagheghi A, Linger J, Smith H, Yang S, Dowe N, Pienkos PT (2014) Improving xylose utilization by recombinant Zymomonas mobilis strain 8b through adaptation using 2-deoxyglucose. Biotechnol Biofuels 7(1):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohanta TK, Bae H (2015) The diversity of fungal genome. Biol Proced Online 17(1):8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mojsov KD (2016) Aspergillus enzymes for food industries. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 215–222

    Google Scholar 

  • Moser JW, Prielhofer R, Gerner SM, Graf AB, Wilson IB, Mattanovich D, Dragosits M (2017) Implications of evolutionary engineering for growth and recombinant protein production in methanol-based growth media in the yeast Pichia pastoris. Microb Cell Factories 16(1):49

    Article  CAS  Google Scholar 

  • Motoda T, Yamaguchi M, Tsuyama T, Kamei I (2019) Down-regulation of pyruvate decarboxylase gene of white-rot fungus Phlebia sp. MG-60 modify the metabolism of sugars and productivity of extracellular peroxidase activity. J Biosci Bioeng 127(1):66–72

    Article  CAS  PubMed  Google Scholar 

  • Nevalainen KMH (2001) Strain improvement in filamentous fungi-an overview. In: Applied mycology and biotechnology, vol 1. Elsevier, pp 289–304

    Google Scholar 

  • Nielsen JC, Nielsen J (2017) Development of fungal cell factories for the production of secondary metabolites: linking genomics and metabolism. Synth Syst Biotechnol 2(1):5–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH (2015) A CRISPR-Cas9 system for genetic engineering of filamentous Fungi. PLoS One 10(7):e0133085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nødvig CS, Hoof JB, Kogle ME, Jarczynska ZD, Lehmbeck J, Klitgaard DK, Mortensen UH (2018) Efficient oligo nucleotide mediated CRISPR-Cas9 gene editing in Aspergilli. Fungal Genet Biol 115:78–89

    Article  PubMed  CAS  Google Scholar 

  • Nonklang S, Abdel-Banat BMA, Cha-aim K, Moonjai N, Hoshida H, Limtong S, Yamada M, Akada R (2008) High-temperature ethanol fermentation and transformation with linear DNA in the Thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Appl Environ Microbiol 74(24):7514–7521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmedo-Monfil V, Cortés-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation. In: Balbás P, Lorence A (eds) Recombinant gene expression. Methods in Molecular Biology, vol 267. Humana Press

    Google Scholar 

  • Østergaard LH, Olsen HS (2011) Industrial applications of fungal enzymes. In: Industrial applications. Springer, pp 269–290

    Google Scholar 

  • Parekh S, Vinci VA, Strobel RJ (2000) Improvement of microbial strains and fermentation processes. Appl Microbiol Biotechnol 54(3):287–301

    Article  CAS  PubMed  Google Scholar 

  • Park H-S, Jun S-C, Han K-H, Hong S-B, Yu J-H (2017) Diversity, application, and synthetic biology of industrially important Aspergillus fungi. Adv Appl Microbiol (Elsevier) 100:161–202

    Article  CAS  Google Scholar 

  • Paul S, Zhang A, Ludeña Y, Villena GK, Yu F, Sherman DH, Gutiérrez-Correa M (2017) Insights from the genome of a high alkaline cellulase producing Aspergillus fumigatus strain obtained from Peruvian Amazon rainforest. J Biotechnol 251:53–58

    Article  CAS  PubMed  Google Scholar 

  • Peberdy JF (1986) The biology of Penicillium. Biotechnology Series [Biotechnol. Ser.]. 1986

    Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 158(Pt 1):58–68

    Article  CAS  PubMed  Google Scholar 

  • Prielhofer R, Barrero JJ, Steuer S, Gassler T, Zahrl R, Baumann K, Sauer M, Mattanovich D, Gasser B, Marx H (2017) GoldenPiCS: a Golden Gate-derived modular cloning system for applied synthetic biology in the yeast Pichia pastoris. BMC Syst Biol 11(1):123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rantasalo A, Vitikainen M, Paasikallio T, Jäntti J, Landowski CP, Mojzita D (2019) Novel genetic tools that enable highly pure protein production in Trichoderma reesei. Sci Rep 9(1):5032

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reddy GPK, Sridevi A, Kumar KD, Ramanjaneyulu G, Ramya A, Kumari BS, Reddy BR (2017) Strain improvement of aspergillus niger for the enhanced production of cellulase in solid state fermentation. In Microbial Biotechnology. Apple Academic Press, pp 201–218

    Google Scholar 

  • Rivera AL, Magana-Ortiz D, Gomez-Lim M, Fernandez F, Loske AM (2014) Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 11(2):184–203

    Article  PubMed  Google Scholar 

  • Rodicio R, Heinisch JJ (2013) Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 30(5):165–177

    Article  CAS  PubMed  Google Scholar 

  • Rothstein R (1991) [19] targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Meth Enzymol (Elsevier) 194:281–301. %@ 0076-6879

    Article  CAS  Google Scholar 

  • Routledge SJ, Mikaliunaite L, Patel A, Clare M, Cartwright SP, Bawa Z, Wilks MDB, Low F, Hardy D, Rothnie AJ (2016) The synthesis of recombinant membrane proteins in yeast for structural studies. Methods 95:26–37

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Díez B (2002) Strategies for the transformation of filamentous fungi. J Appl Microbiol 92(2):189–195

    Article  PubMed  Google Scholar 

  • Ryan OW, Cate JH (2014) Multiplex engineering of industrial yeast genomes using CRISPRm. Methods Enzymol 546:473–489

    Article  CAS  PubMed  Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2012) Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl Microbiol Biotechnol 93(5):2011–2022

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Sakuradani E, Okuda T, Kikukawa H, Ando A, Kishino S, Izumi Y, Bamba T, Shima J, Ogawa J (2017) Metabolic engineering of oleaginous fungus Mortierella alpina for high production of oleic and linoleic acids. Bioresour Technol 245:1610–1615

    Article  CAS  PubMed  Google Scholar 

  • Salame TM, Ziv C, Hadar Y, Yarden O (2011) RNAi as a potential tool for biotechnological applications in fungi. Appl Microbiol Biotechnol 89(3):501–512

    Article  CAS  PubMed  Google Scholar 

  • Schaepe P, Kwon MJ, Baumann B, Gutschmann B, Jung S, Lenz S, Nitsche B, Paege N, Schuetze T, Cairns TC (2018) Updating genome annotation for the microbial cell factory Aspergillus niger using gene co-expression networks. Nucleic Acids Res 47(2):559–569

    Article  CAS  Google Scholar 

  • Schuster M, Kahmann R (2019) CRISPR-Cas9 genome editing approaches in filamentous fungi and oomycetes. Fungal Genet Biol 130:43–53

    Google Scholar 

  • Schwartz C, Wheeldon I (2018) CRISPR-Cas9-mediated genome editing and transcriptional control in Yarrowia lipolytica. Methods Mol Biol 1772:327–345

    Article  CAS  PubMed  Google Scholar 

  • Sewalt V, Shanahan D, Gregg L, La Marta J, Carrillo R (2016) The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Ind Biotechnol 12(5):295–302

    Article  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Meth Enzymol (Elsevier) 350:3–41. %@ 0076-6879

    Article  CAS  Google Scholar 

  • Shi T-Q, Liu G-N, Ji R-Y, Shi K, Song P, Ren L-J, Huang H, Ji X-J (2017) CRISPR/Cas9-based genome editing of the filamentous fungi: the state of the art. Appl Microbiol Biotechnol 101(20):7435–7443

    Article  CAS  PubMed  Google Scholar 

  • Shida Y, Furukawa T, Ogasawara W (2016) Deciphering the molecular mechanisms behind cellulase production in Trichoderma reesei, the hyper-cellulolytic filamentous fungus. Biosci Biotechnol Biochem 80(9):1712–1729

    Article  CAS  PubMed  Google Scholar 

  • Sikorski RS, Hieter P (1989) A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122(1):19–27. %@ 0016-6731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soukup AA, Keller NP, Wiemann P (2016) Enhancing nonribosomal peptide biosynthesis in filamentous fungi. In: Nonribosomal peptide and polyketide biosynthesis. Springer, pp 149–160

    Google Scholar 

  • Stovicek V, Holkenbrink C, Borodina I (2017) CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res 17(5)

    Google Scholar 

  • Su X, Schmitz G, Zhang M, Mackie RI, Cann IKO (2012) Heterologous gene expression in filamentous fungi. Adv Appl Microbiol (Elsevier) 81:1–61

    Article  CAS  Google Scholar 

  • Tabañag IDF, Chu I-M, Wei Y-H, Tsai S-L (2018) Ethanol production from hemicellulose by a consortium of different genetically-modified sacharomyces cerevisiae. J Taiwan Inst Chem Eng 89:15–25

    Article  CAS  Google Scholar 

  • Tanaka T, Kondo A (2015) Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology. FEMS Yeast Res 15(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Teotia P, Kumar M, Varma A, Kumar V (2016) Molecular tools for strain improvement in Aspergillus. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 119–124

    Google Scholar 

  • Tong Z, Zheng X, Tong Y, Shi Y-C, Sun J (2019) Systems metabolic engineering for citric acid production by Aspergillus niger in the post-genomic era. Microb Cell Factories 18(1):28

    Article  Google Scholar 

  • Turgeon BG, Condon B, Liu J, Zhang N (2010) Protoplast transformation of filamentous fungi. In: Molecular and cell biology methods for fungi. Humana Press, pp 3–19

    Google Scholar 

  • van Dijck PWM, Selten GCM, Hempenius RA (2003) On the safety of a new generation of DSM Aspergillus niger enzyme production strains. Regul Toxicol Pharmacol 38(1):27–35

    Article  PubMed  CAS  Google Scholar 

  • Vicente Muñoz I, Sarrocco S, Malfatti L, Baroncelli R, Vannacci G (2019) CRISPR-Cas for fungal genome editing: a new tool for the management of plant diseases. Front Plant Sci 10:135

    Article  Google Scholar 

  • Vickers CE, Williams TC, Peng B, Cherry J (2017) Recent advances in synthetic biology for engineering isoprenoid production in yeast. Curr Opin Chem Biol 40:47–56

    Article  CAS  PubMed  Google Scholar 

  • Vieira Gomes AM, Souza Carmo T, Silva Carvalho L, Mendonca Bahia F, Parachin NS (2018) Comparison of yeasts as hosts for recombinant protein production. Microorganisms 6(2):pii: E38

    Article  CAS  Google Scholar 

  • Vos AM, Lugones LG, Wösten HAB (2015) REMI in Molecular Fungal Biology. In Genetic Transformation Systems in Fungi, vol 1. Springer, Cham, pp 273–287

    Google Scholar 

  • Vu VH, Pham TA, Kim K (2010) Improvement of a fungal strain by repeated and sequential mutagenesis and optimization of solid-state fermentation for the hyper-production of raw-starch-digesting enzyme. J Microbiol Biotechnol 20(4):718–726

    Google Scholar 

  • Wakai S, Yoshie T, Asai-Nakashima N, Yamada R, Ogino C, Tsutsumi H, Hata Y, Kondo A (2014) L-lactic acid production from starch by simultaneous saccharification and fermentation in a genetically engineered Aspergillus oryzae pure culture. Bioresour Technol 173:376–383

    Article  CAS  PubMed  Google Scholar 

  • Wakai S, Arazoe T, Ogino C, Kondo A (2017) Future insights in fungal metabolic engineering. Bioresour Technol 245:1314–1326

    Article  CAS  PubMed  Google Scholar 

  • Walker GM (1998) Yeast physiology and biotechnology. John Wiley 10 & Sons, Chichester

    Google Scholar 

  • Walter JM, Chandran SS, Horwitz AA (2016) CRISPR-Cas-Assisted Multiplexing (CAM): simple same-day multi-locus engineering in yeast. J Cell Physiol 231(12):2563–2569

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Huang M, Nielsen J (2017a) Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr Opin Biotechnol 48:77–84

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Chen H, Tang X, Zhang H, Chen W, Chen YQ (2017b) Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol 101(22):8063–8075

    Article  CAS  PubMed  Google Scholar 

  • Weber J, Valiante V, Nodvig CS, Mattern DJ, Slotkowski RA, Mortensen UH, Brakhage AA (2017) Functional reconstitution of a fungal natural product gene cluster by advanced genome editing. ACS Synth Biol 6(1):62–68

    Article  CAS  PubMed  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16(1):31–44

    Article  CAS  PubMed  Google Scholar 

  • Wen F, Sun J, Zhao H (2010) Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76(4):1251–1260

    Article  CAS  PubMed  Google Scholar 

  • Weninger A, Hatzl AM, Schmid C, Vogl T, Glieder A (2016) Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris. J Biotechnol 235:139–149

    Article  CAS  PubMed  Google Scholar 

  • Xiao H, Zhong J-J (2016) Production of useful terpenoids by higher-fungus cell factory and synthetic biology approaches. Trends Biotechnol 34(3):242–255

    Article  CAS  PubMed  Google Scholar 

  • Yadav D, Tanveer A, Malviya N, Yadav S (2018) Overview and principles of bioengineering: the drivers of omics technologies. In: Omics technologies and bio-engineering. Academic Press, pp 3–23

    Google Scholar 

  • Yang L, Lübeck M, Ahring BK, Lübeck PS (2016) Enhanced succinic acid production in Aspergillus saccharolyticus by heterologous expression of fumarate reductase from Trypanosoma brucei. Appl Microbiol Biotechnol 100(4):1799–1809

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Lübeck M, Lübeck PS (2017) Aspergillus as a versatile cell factory for organic acid production. Fungal Biol Rev 31(1):33–49

    Article  Google Scholar 

  • Zhang F, Zhao X, Bai F (2018a) Improvement of cellulase production in Trichoderma reesei Rut-C30 by overexpression of a novel regulatory gene Trvib-1. Bioresour Technol 247:676–683

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang G, Wang W, Wei D (2018b) Enhanced cellulase production in Trichoderma reesei RUT C30 via constitution of minimal transcriptional activators. Microb Cell Factories 17(1):75

    Article  CAS  Google Scholar 

  • Zhang Y, Ouyang L, Nan Y, Chu J (2019) Efficient gene deletion and replacement in Aspergillus niger by modified in vivo CRISPR/Cas9 systems. Bioresour Bioprocess 6(1):4

    Article  Google Scholar 

  • Zhao C, Chen S, Fang H (2018) Consolidated bioprocessing of lignocellulosic biomass to itaconic acid by metabolically engineering Neurospora crassa. Appl Microbiol Biotechnol 102(22):9577–9584

    Article  CAS  PubMed  Google Scholar 

  • Ziemons S, Koutsantas K, Becker K, Dahlmann T, Kück U (2017) Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes. BMC Biotechnol 17(1):16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gretty K. Villena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villena, G.K., Kitazono, A.A., Hernández-Macedo, M. . (2020). Bioengineering Fungi and Yeast for the Production of Enzymes, Metabolites, and Value-Added Compounds. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_9

Download citation

Publish with us

Policies and ethics