Skip to main content

Recent Advances in Molecular Approaches for Mining Potential Candidate Genes of Trichoderma for Biofuel

  • Chapter
  • First Online:
Fungal Biotechnology and Bioengineering

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1189 Accesses

Abstract

Trichoderma, a filamentous ascomycete, belonging to order Hypocreales, is well-known for its ability to secrete a number of glycosyl hydrolases and other enzymes. The ability of Trichoderma strains to produce a heterologous group of enzymes contributes to its broad substrate versatility and nutritional shift and makes it a model microbe and industrial cell factory for biofuels and agricultural industries. The multifactorial roles offer tremendous scope, to understand the genomic plasticity of Trichoderma species which can be helpful in investigating its adaptive signatures under various ecological conditions. Recent developments in genomes, transcriptomes, and proteomes coupled to in silico tools have played a vital role in unraveling the industrially relevant enzymes of Trichoderma. Metabolic modeling involving whole-genome stoichiometric tools and integrated transcriptomic and advanced proteomics studies has played a crucial role in exploring the potential applications of Trichoderma. Moreover, synthetic biology, genetic engineering, and genome reshuffling-based approaches offer potential to mine cryptic processes which are otherwise silent in lab conditions. In silico predictions and experimental studies have revealed the role of oxidative enzymes in the degradation of lignocellulose. Still, the physiology and evolution of adaptive strategy of Trichoderma lifestyle are elusive and need considerable efforts. In this book chapter, an attempt has been made to review different approaches for mining genes/proteins for characterizing their role in biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams M, Kelly J, Gocayne J, Dubnick M, Polymeroppoulos M, Xiao H, Merril C, Wu A, Olde B, Moneno R, Kerlavage A, McCrombie R, Venter JC (1991) Complementary DNA sequencing expressed sequence tags and human genome project. Science 252:1651–1656

    CAS  PubMed  Google Scholar 

  • Adav SS, Ravindran A, Chao LT, Tan L, Singh S, Sze SK (2011) Proteomic analysis of pH and strains dependent protein secretion of Trichoderma reesei. J Proteome Res 10(10):4579–4596. https://doi.org/10.1021/pr200416t

    Article  CAS  PubMed  Google Scholar 

  • Adav SS, Chao LT, Sze SK (2013) Protein abundance in multiplexed samples (PAMUS) for quantitation of Trichoderma reesei secretome. J Proteome 83:180–196

    CAS  Google Scholar 

  • Alfano G, Ivey MLL, Cakir C, Bos JIB, Miller SA, Madden LV, Kamoun S, Hoitink HA (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437

    CAS  PubMed  Google Scholar 

  • Andersen MR, Nielsen ML, Nielsen J (2008) Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 4(178):2016

    Google Scholar 

  • Arfarita N, Imai T, Kanno A, Yarimizu T, Xiaofeng S, Jie W, Higuchi T, Akada R (2013) The potential use of Trichoderma viride strain FRP3 in biodegradation of the herbicide glyphosate. Biotechnol Biotechnol Equip 27:3518–3521

    CAS  Google Scholar 

  • Aro N, Pakula T, Penttilä M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29(4):719–739

    CAS  PubMed  Google Scholar 

  • Bae H, Roberts DP, Lim HS, Strem MD, Park SC, Ryu CM et al (2011) Endophytic Trichoderma isolates from tropical environments delay disease onset and induce resistance against Phytophthora capsici in hot pepper using multiple mechanisms. Mol Plant-Microbe Interact 24:336–351. https://doi.org/10.1094/MPMI-09-10-0221

    Article  CAS  PubMed  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224(6):1449–1464.

    Google Scholar 

  • Bianco L, Perrotta G (2015) Methodologies and perspectives of proteomics applied to filamentous fungi: from sample preparation to secretome analysis. Int J Mol Sci 16(3):5803–5829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borin GP, Sanchez CC, De Souza AP, De Santana ES, De Souza AT, Leme AFP et al (2015) Comparative secretome analysis of Trichoderma reesei and Aspergillus niger during growth on sugarcane biomass. PLoS One 10(6):1–20

    Google Scholar 

  • Bouhired S, Weber M, Kempf-Sontag A, Keller NP, Hoffmeister D (2007) Accurate prediction of the Aspergillus nidulans terrequinone gene cluster boundaries using the transcriptional regulator LaeA. Fungal Genet Biol 44:1134–1145

    CAS  PubMed  Google Scholar 

  • Brotman Y, Lisec J, Méret M, Chet I, Willmitzer L, Viterbo A (2012) Transcript and metabolite analysis of the Trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis Thaliana. Microbiology 158:139–146

    CAS  PubMed  Google Scholar 

  • Buée M, Reich M, Murat C, Morin E, Nilsson RH, Uroz S, Martin F (2009) 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol 184:449–456

    PubMed  Google Scholar 

  • Caspeta L, Shoaie S, Agren R, Nookaew I, Nielsen J (2012) Genome-scale metabolic reconstructions of Pichia stipitis and Pichia pastoris and in silico evaluation of their potentials. BMC Syst Biol 6(24):24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo S, Barth D, Arvas M, Pakula TM, Pitkänen E, Blomberg P et al (2016) Whole-genome metabolic model of Trichoderma reesei built by comparative reconstruction. Biotechnol Biofuels 9(1):1–20

    Google Scholar 

  • Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira Junior JR, Abrahao-Neto J, Farah JP, El-Dorry H (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277(16):13983–13988

    CAS  PubMed  Google Scholar 

  • Chang S-L, Chiang Y-M, Yeh H-H, Wu T-K, Wang CCC (2013) Reconstitution of the early steps of gliotoxin biosynthesis in Aspergillus nidulans reveals the role of the monooxygenase GliC. Bioorg Med Chem Lett 23:2155–2157

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Luo Y, Yu H, Sun Y, Wu H, Song S et al (2014) Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources. J Biotechnol 173(1):59–64

    CAS  PubMed  Google Scholar 

  • Cheng P, Liu B, Su Y, Hu Y, Hong Y, Yi X et al (2017) Genomics insights into different cellobiose hydrolysis activities in two Trichoderma hamatum strains. Microb Cell Factories 16(1):1–16

    CAS  Google Scholar 

  • Cherry J, Fidantsef A (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    CAS  PubMed  Google Scholar 

  • Choe L, D’Ascenzo M, Relkin NR, Pappin D, Ross P, Williamson B, Guertin S, Pribil P, Lee KH (2007) 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7(20):3651–3660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cimermancic P, Medema MH, Claesen J, Kurita K, Brown LC, Mavrommatis K, Pati A, Godfrey PA, Koehrsen M, Clardy J, Birren BW (2014) Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158:412–421

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80(1):273–299

    CAS  PubMed  Google Scholar 

  • Crucello A, Sforça DA, Horta MAC, Dos Santos CA, Viana AJC, Beloti LL et al (2015) Analysis of genomic regions of Trichoderma harzianum IOC-3844 related to biomass degradation. PLoS One 10(4):e0122122

    PubMed  PubMed Central  Google Scholar 

  • da Silva AJ, Gómez-Mendoza DP, Junqueira M, Domont GB, Ximenes Ferreira Filho E, de Sousa MV, Ricart CAO (2012) Blue native-PAGE analysis of Trichoderma harzianum secretome reveals cellulases and hemicellulases working as multienzymatic complexes. Proteomics 12(17):2729–2738

    PubMed  Google Scholar 

  • da Silva AJ, Gómez-Mendoza DP, Junqueira M, Domont GB, Queiroz RML, de Sousa MV et al (2015) Secretomic analysis reveals multi-enzymatic complexes in Trichoderma reesei grown in media containing lactose or galactose. Bioenergy Res 8(4):1906–1911

    Google Scholar 

  • David H, Özçelik IC, Hofmann G, Nielsen J (2008) Analysis of Aspergillus nidulans metabolism at the genome-scale. BMC Genomics 9:163

    PubMed  PubMed Central  Google Scholar 

  • De Mojana N, Gómez-Mendoza DP, Fonseca F, Cristina G, Cavalieri N, Guimarães DA et al (2018) Enzyme and microbial technology exploring Trichoderma and Aspergillus secretomes: proteomics approaches for the identification of enzymes of biotechnological interest. Enzyme Microb Technol 109:1–10

    Google Scholar 

  • De Oliveira JMPF, De Graaff LH (2011) Proteomics of industrial fungi: trends and insights for biotechnology. Appl Microbiol Biotechnol 89(2):225–237

    PubMed  Google Scholar 

  • Delabona PDS, Farinas CS, da Silva MR, Azzoni SF, Pradella JGDC (2012a) Use of a new Trichoderma harzianum strain isolated from the Amazon rainforest with pretreated sugar cane bagasse for on-site cellulase production. Bioresour Technol 107:517–521

    CAS  Google Scholar 

  • Delabona PDS, Pirota R, Codima C, Tremacoldi C, Rodrigues A, Farinas C (2012b) Using Amazon forest fungi and agricultural residues as a strategy to produce cellulolytic enzymes. Biomass Bioenergy 37:243–250

    CAS  Google Scholar 

  • Deshpande V, Keskar S, Mishra C, Rao M (1986) Direct conversion of cellulose/hemicellulose to ethanol by Neurospora crassa. Enzyme Microb Technol 8:149–152

    CAS  Google Scholar 

  • Divya LM, Prasanth GK, Sadasivan C (2014) Potential of the salt-tolerant laccase-producing strain Trichoderma viride Pers. NFCCI-2745 from an estuary in the bioremediation of phenol-polluted environments. J Basic Microbiol 54:542–547

    CAS  PubMed  Google Scholar 

  • Do Vale LHF, Gómez-Mendoza DP, Kim MS, Pandey A, Ricart CAO, Edivaldo XFF, Sousa MV (2012) Secretome analysis of the fungus Trichoderma harzianum grown on cellulose. Proteomics 12(17):2716–2728

    PubMed  Google Scholar 

  • Dos Santos Castro L, Pedersoli WR, Antoniêto ACC, Steindorff AS, Silva-Rocha R, Martinez-Rossi NM et al (2014) Comparative metabolism of cellulose, sophorose and glucose in Trichoderma reesei using high-throughput genomic and proteomic analyses. Biotechnol Biofuels 7(1):41

    PubMed  PubMed Central  Google Scholar 

  • Druzhinina IS, Chenthamara K, Zhang J, Atanasova L, Yang D, Miao Y et al (2018) Massive lateral transfer of genes encoding plant cell wall-degrading enzymes to the mycoparasitic fungus Trichoderma from its plant-associated hosts. PLoS Genet 14:e1007322

    PubMed  PubMed Central  Google Scholar 

  • Francieli C, Delabona PDS, Voltatodio ML, Mello BL, Farinas CS (2011) Purification, and biochemical and biophysical characterization of cellobiohydrolase I from Trichoderma harzianum IOC 3844. J Microbiol Biotechnol 21(8):808–817

    Google Scholar 

  • Geistlinger J, Zwanzig J, Heckendorff S, Schellenberg I (2015) SSR markers for Trichoderma virens: their evaluation and application to identify and quantify root-endophytic strains. Diversity 7(4):360–384

    CAS  Google Scholar 

  • Gomes HAR, da Silva AJ, Gómez-Mendoza DP, dos Santos Júnior ACM, di Cologna NDM, Almeida RM et al (2017) Identification of multienzymatic complexes in the Clonostachys byssicola secretomes produced in response to different lignocellulosic carbon sources. J Biotechnol 254:51–58

    CAS  PubMed  Google Scholar 

  • Gong C, Maun CM, Tsao GT (1981) Direct fermentation of cellulose to ethanol by a cellulolytic filamentous fungus, Monilia sp. Biotechnol Lett 3:77–82

    CAS  Google Scholar 

  • Gurdon JB, Lane CD, Woodland HR, Marbaix G (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233:177–182

    CAS  PubMed  Google Scholar 

  • Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    CAS  PubMed  Google Scholar 

  • Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulase and hemicellulase production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7:14

    PubMed  PubMed Central  Google Scholar 

  • Halbeisen RE, Gerber AP (2009) Stress-dependent coordination of transcriptome and translatome in yeast. PLoS Biol 7:e1000105

    PubMed  PubMed Central  Google Scholar 

  • Heneghan MN, Yakasai AA, Halo LM, Song Z, Bailey AM, Simpson TJ, Cox RJ, Lazarus CM (2010) First heterologous reconstruction of a complete functional fungal biosynthetic multigene cluster. Chembiochem 11:1508–1512

    CAS  PubMed  Google Scholar 

  • Henry CS, Zinner JF, Cohoon MP, Stevens RL (2009) iBsu1103: a new genome- scale metabolic model of Bacillus subtilis based on SEED annotations. Genome Biol 10(6):69

    Google Scholar 

  • Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Mollé D, Lignon S et al (2008) Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:1–12

    Google Scholar 

  • Herrgard MJ, Swainston N, Dobson P, Dunn WB, Arga KY, Arvas M, Blüthgen N, Borger S, Costenoble R et al (2008) A consensus yeast metabolic network reconstruction obtained from a community approach to systems biology. Nat Biotechnol 26(10):1155–1160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Chen D, Wei YT, Wang QY, Li ZC, Chen Y, Huang RB (2014) Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48. Sci World J 2014:1–8

    Google Scholar 

  • Huang J, Wu R, Chen D, Wang Q, Huang R (2016) Transcriptional profiling of the Trichoderma reesei recombinant strain HJ48 by RNA-seq. J Microbiol Biotechnol 26(7):1242–1251

    CAS  PubMed  Google Scholar 

  • Inada T, Winstall E, Tarun SZ Jr, Yates JR III, Schieltz D, Sachs AB (2002) One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs. RNA 8:948–958

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inglis DO, Binkley J, Skrzypek MS, Arnaud MB, Cerqueira GC, Shah P, Wymore F, Wortman JR, Sherlock G (2013) Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol 13:91

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ingolia NT, Brar GA, Rouskin S, McGeachy AM, Weissman JS (2012) The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat Protoc 7:1534–1550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Issaq HJ, Veenstra TD (2008) Two-dimensional polyacrylamide gel electrophoresis (2D- PAGE): advances and perspectives. BioTechniques 44(5):697–700

    CAS  PubMed  Google Scholar 

  • Jayapal KP, Philp RJ, Kok YJ, Yap MG, Sherman DH, Griffin TJ et al (2008) Uncovering genes with divergent mRNA–protein dynamics in Streptomyces coelicolor. PLoS One 3:e2097

    PubMed  PubMed Central  Google Scholar 

  • Jiao Y, Meyerowitz EM (2010) Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control. Mol Syst Biol 6:419

    PubMed  PubMed Central  Google Scholar 

  • Jumpponen A, Jones KL, Mattox JD, Yaege C (2010) Massively parallel 454-sequencing of fungal communities in Quercus spp. ectomycorrhizas indicates seasonal dynamics in urban and rural sites. Mol Ecol 19:41–53

    PubMed  Google Scholar 

  • Jun H, Guangye H, Daiwen C (2013) Insights into enzyme secretion by filamentous fungi: comparative proteome analysis of Trichoderma reesei grown on different carbon sources. J Proteome 89:191–201

    Google Scholar 

  • Juty N, Ali R, Glont M, Keating S, Rodriguez N, Swat MJ, Wimalaratne SM, Hermjakob H, Le Novère N, Laibe C, Chelliah V (2015) Bio models: content, features, functionality and use. CPT Pharmacometrics Syst Pharmacol 4(2):e3

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karginov FV, Hannon GJ (2013) Remodeling ofAgo2-mRNA interactions upon cellular stress reflects miRNA complementarity and correlates with altered translation rates. Genes Dev 27:1624–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karpievitch YV et al (2010) Liquid chromatography mass spectrometry-based proteomics: biological and technological aspects. Ann Appl Stat 4(4):1797−1823

    Google Scholar 

  • Kealey JT, Liu L, Santi DV, Betlach MC, Barr PJ (1998) Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc Natl Acad Sci U S A 95:505–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • King HA, Gerber AP (2016) Translatome profiling: methods for genome-scale analysis of mRNA translation. Brief Funct Genomics 15:22–31

    CAS  PubMed  Google Scholar 

  • Kludas J, Arvas M, Castillo S, Pakula T, Oja M, Brouard C et al (2016) Machine learning of protein interactions in fungal secretory pathways. PLoS One 11(7):1–20

    Google Scholar 

  • Knox DP (2004) Technological advances and genomics in metazoan parasites. Int J Parasitol 34:139–152

    Google Scholar 

  • Koritzinsky M, Wouters BG (2007) Hypoxia and regulation of messenger RNA translation. Methods Enzymol 435:247–273

    CAS  PubMed  Google Scholar 

  • Li YF, Tsai KJS, Harvey CJB, Li JJ, Ary BE, Berlew EE et al (2016) Comprehensive curation and analysis of fungal biosynthetic gene clusters of published natural products. Fungal Genet Biol 89:18–28

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W-C, Huang C-H, Chen C-L, Chuang Y-C, Tung S-Y, Wang T-F (2017) Trichoderma reesei complete genome sequence, repeat- induced point mutation, and partitioning of CAZyme gene clusters. Biotechnol Biofuels 10(1):170

    PubMed  PubMed Central  Google Scholar 

  • Listgarten J, Emili A (2005) Statistical and computational methods for comparative proteomic profiling using liquid chromatography-tandem mass spectrometry. Mol Cell Proteomics 4(4):419–434

    CAS  PubMed  Google Scholar 

  • Lynd LR, Wyman CE, Gerngross TU (1999) Biocommodity engineering. Biotechnol Prog 15:777–793

    CAS  PubMed  Google Scholar 

  • Mann M, Kelleher NL (2008) Precision proteomics: the case for high resolution and high mass accuracy. Proc Natl Acad Sci U S A 105(47):18132–18138

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mann M, Kulak NA, Nagaraj N, Cox J (2013) The coming age of complete, accurate, and ubiquitous proteomes. Mol Cell 49:583–590

    Google Scholar 

  • Mao X-M, Xu W, Li D, Yin W-B, Chooi Y-H, Li Y-Q, Tang Y, Hu Y (2015) Epigenetic genome mining of an endophytic fungus leads to the pleiotropic biosynthesis of natural products. Angew Chem Int Ed 127:7702–7706

    Google Scholar 

  • Marra R, Ambrosino P, Carbone V, Vinale F, Woo SL, Ruocco M et al (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    CAS  PubMed  Google Scholar 

  • Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW, Baker SE, Grigoriev IV (2011) Sequencing the fungal tree of life. New Phytol 190:818–821

    CAS  PubMed  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE et al (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560

    CAS  PubMed  Google Scholar 

  • Marx IJ, Van Wyk N, Smit S, Jacobson D, Viljoen-Bloom M, Volschenk H (2013) Comparative secretome analysis of Trichoderma asperellum S4F8 and Trichoderma reesei Rut C30 during solid-state fermentation on sugarcane bagasse. Biotechnol Biofuels 6(1):1–13

    Google Scholar 

  • Mattern DJ, Valiante V, Unkles SE, Brakhage AA (2015) Synthetic biology of fungal natural products. Front Microbiol 6:775

    PubMed  PubMed Central  Google Scholar 

  • Medema MH, Fischbach MA (2015) Computational approaches to natural product discovery. Nat Chem Biol 11:639–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach M, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meteignier LV, El Oirdi M, Cohen M, Barff T, Matteau D, Lucier JF et al (2017) Translatome analysis of an NB-LRR immune response identifies important contributors to plant immunity in Arabidopsis. J Exp Bot 68:2333–2344

    CAS  PubMed  Google Scholar 

  • Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    PubMed  Google Scholar 

  • Mukherjee PK, Kenerley CM (2010) Regulation of morphogenesis and biocontrol properties in Trichoderma virens by a VELVET protein, Vel1. Appl Environ Microbiol 76(7):2345–2352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogunmolu FE, Jagadeesha NBK, Kumar R, Kumar P, Gupta D, Yazdani SS (2017) Comparative insights into the saccharification potentials of a relatively unexplored but robust Penicillium funiculosum glycoside hydrolase 7 cellobiohydrolase. Biotechnol Biofuels 10(1):1–17. https://doi.org/10.1186/s13068-017-0752-x

    Article  CAS  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    CAS  PubMed  Google Scholar 

  • Orth JD, Conrad TM, Na J, Lerman JA, Nam H, Feist AM, Palsson BO (2011) A comprehensive genome-scale reconstruction of Escherichia coli metabolism. Mol Syst Biol 7:535

    PubMed  PubMed Central  Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large- scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    PubMed  Google Scholar 

  • Pakula TM, Nygren H, Barth D, Heinonen M, Castillo S, Penttilä M, Arvas M (2016) Genome wide analysis of protein production load in Trichoderma reesei. Biotechnol Biofuels 9(1):1–26

    Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259

    CAS  PubMed  Google Scholar 

  • Payne SH (2015) The utility of protein and mRNA correlation. Trends Biochem Sci 40:1–3

    CAS  PubMed  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP et al (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    PubMed  Google Scholar 

  • Pi B, Yu D, Dai F, Song X, Zhu C, Li H, Yu Y (2015) A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus. PLoS One 10:e0116089

    PubMed  PubMed Central  Google Scholar 

  • Picard F, Loubière P, Girbal L, Cocaign-Bousquet M (2013) The significance of translation regulation in the stress response. BMC Genomics 14:588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piccirillo Ciriaco A, Bjur E, Topisirovic I, Sonenberg N, Larsson O (2014) Translational control of immune responses: from transcripts to translatomes. Nat Immunol 15:503–511

    CAS  PubMed  Google Scholar 

  • Pitkänen E, Jouhten P, Hou J, Syed MF, Blomberg P, Kludas J et al (2014) Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput Biol 10(2):e1003465

    PubMed  PubMed Central  Google Scholar 

  • Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of arabidopsis and some of its properties. Plant Physiol 151(3):1570–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richter L, Wanka F, Boecker S, Storm D, Kurt T, Vural Ö, Süßmuth R, Meyer V (2014) Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol Biotechnol 1:1–13

    Google Scholar 

  • Rogowska-Wrzesinska A, Le Bihan MC, Thaysen-Andersen M, Roepstorff P (2013) 2D gels still have a niche in proteomics. J Proteome 88:4–13

    CAS  Google Scholar 

  • Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    CAS  PubMed  Google Scholar 

  • Sakai K, Kinoshita H, Nihira T (2012) Heterologous expression system in Aspergillus oryzae for fungal biosynthetic gene clusters of secondary metabolites. Appl Microbiol Biotechnol 93:2011–2022

    CAS  PubMed  Google Scholar 

  • Schuster A, Bruno KS, Collett JR, Baker SE, Seiboth B, Kubicek CP, Schmoll M (2012) A versatile toolkit for high throughput functional genomics with Trichoderma reesei. Biotechnol Biofuels 5:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    CAS  PubMed  Google Scholar 

  • Sharma V, Shanmugam V (2012) Purification and characterization of an extracellular 24 kDa chitobiosidase from the mycoparasitic fungus Trichoderma saturnisporum. J Basic Microbiol 52:324–331

    CAS  PubMed  Google Scholar 

  • Sharma V, Bhandari P, Singh B, Bhatacharya A, Shanmugam V (2013) Chitinase expression due to reduction in fusaric acid level in an antagonistic Trichoderma harzianum S17TH. Indian J Microbiol 53(2):214–220

    CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN (2016a) Differential response of extracellular proteases of Trichoderma harzianum against fungal phytopathogens. Curr Microbiol 73:419

    CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Kanwar SS (2016b) Molecular cloning and characterization of ech46 endochitinase from Trichoderma harzianum. Int J Biol Macromol 92:615–624

    CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Kanwar SS (2017a) Elucidation of biocontrol mechanisms of Trichoderma harzianum against different plant fungal pathogens: universal yet host specific response. Int J Biol Macromol 95:72–79

    CAS  PubMed  Google Scholar 

  • Sharma V, Salwan R, Sharma PN, Gulati A (2017b) Integrated translatome and proteome: approach for accurate portraying of widespread multifunctional aspects of Trichoderma. Froniters (August):1–13. https://doi.org/10.3389/fmicb.2017.01602

  • Shi Y, Xiang R, Horváth C, Wilkins JA (2004) The role of liquid chromatography in proteomics. J Chromatogr A 1053(1–2):27–36

    CAS  PubMed  Google Scholar 

  • Shoresh M, Harman GE (2008) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh A, Kumar PKR (1991) Fusarium oxysporum: status in bio- ethanol production. Crit Rev Biotechnol 11:129–147

    CAS  PubMed  Google Scholar 

  • Skory CD, Freer SN, Bothast RJ (1997) Screening for ethanol- producing filamentous fungi. Biotechnol Lett 19:203–206

    CAS  Google Scholar 

  • Spangenberg L, Shigunov P, Abud AP, Cofré AR, Stimamiglio MA, Kuligovski C et al (2013) Polysome profiling shows extensive posttranscriptional regulation during human adipocyte stem cell differentiation into adipocytes. Stem Cell Res 11:902–912

    CAS  PubMed  Google Scholar 

  • Spriggs KA, Bushell M, Willis AE (2010) Translational regulation of gene expression during conditions of cell stress. Mol Cell 40:228–237

    CAS  PubMed  Google Scholar 

  • Stevenson DM, Weimer PJ (2002) Isolation and characterization of a Trichoderma strain capable of fermenting cellulose to ethanol. Appl Microbiol Biotechnol 59(6):721–726

    CAS  PubMed  Google Scholar 

  • Terman SA (1970) Relative effect of transcription-level and translation-level control of protein synthesis during early development of the sea urchin. Proc Natl Acad Sci U S A 65:985–992

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas JD, Johannes GJ (2007) Identification of mRNAs that continue to associate with polysomes during hypoxia. RNA 13:1116–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Throckmorton K, Wiemann P, Keller NP (2015) Evolution of chemical diversity in a group of non- reduced polyketide gene clusters: using phylogenetics to inform the search for novel fungal natural products. Toxins (Basel) 7:3572–3607

    CAS  PubMed Central  Google Scholar 

  • Tian Q, Stepaniants SB, Mao M, Mao M, Weng L, Feetham MC et al (2004) Integrated genomic and proteomic analyses of gene expression in mammalian cells. Mol Cell Proteomics 3:960–969

    CAS  PubMed  Google Scholar 

  • Tsang A (2014) Fungal genomics. Brief Funct Genomics 13(6):421–423

    PubMed  Google Scholar 

  • Unkles SE, Valiante V, Mattern DJ, Brakhage AA (2014) Synthetic biology tools for bioprospecting of natural products in eukaryotes. Chem Biol 21:502–508

    CAS  PubMed  Google Scholar 

  • Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13:227–232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vongsangnak W, Olsen P, Hansen K, Krogsgaard S, Nielsen J (2008) Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics 9:245

    PubMed  PubMed Central  Google Scholar 

  • Weiland F, Zammit CM, Reith F, Peter H (2014) www.electrophoresis-journal.com (page 1). Electrophoresis: 1–40

  • Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41:301–313

    CAS  PubMed  Google Scholar 

  • Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996a) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (N Y) 14(1):61–65

    CAS  Google Scholar 

  • Wilkins MR, Sanchez JC, Gooley AA, Appel RD, Humphery-Smith I, Hochstrasser DF, Williams KL (1996b) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13(1):19–50

    CAS  PubMed  Google Scholar 

  • Wu WW, Wang G, Baek SJ, Shen R-F (2005) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5(3):651–658

    Google Scholar 

  • Yanguez E, Castro-Sanz AB, Fernandez-Bautista N, Oliveros JC, Castellano MM (2013) Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress. PLoS One 8:e71425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yin W-B, Chooi YH, Smith AR, Cacho RA, Hu Y, White TC, Tang Y (2013) Discovery of cryptic polyketide metabolites from dermatophytes using heterologous expression in Aspergillus nidulans. ACS Synth Biol 2:629–634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zafra G, Moreno-Montano A, Absalon AE, Cortes-Espinosa DV (2015) Degradation of polycyclic aromatic hydrocarbons in soil by a tolerant strain of Trichoderma asperellum. Environ Sci Pollut Res 22:1034–1042

    CAS  Google Scholar 

  • Zhang Y, Fonslow BR, Shan B, Baek MC, Yates JR (2013) Protein analysis by shotgun/bottom-up proteomics. Chem Rev 113(4):2343–2394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zupanic A, Meplan C, Grellscheid SN, Mathers JC, Kirkwood TB, Hesketh JE et al (2013) Detecting translational regulation by change point analysis of ribosome profiling data sets. RNA 20:1507–1518

    Google Scholar 

Download references

Acknowledgment

Authors are thankful to SEED division, DST, and GOI for the award of the project under Scheme for Young Scientists and Technologists (SP/YO/125/2017).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Salwan, R., Sharma, A., Sharma, V. (2020). Recent Advances in Molecular Approaches for Mining Potential Candidate Genes of Trichoderma for Biofuel. In: Hesham, AL., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V. (eds) Fungal Biotechnology and Bioengineering. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-41870-0_6

Download citation

Publish with us

Policies and ethics