Skip to main content

Accelerated Breeding of Plants: Methods and Applications

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 1

Abstract

Agriculture is facing steep challenges of food, nutritional and water security, climate instability, nutrient depletion, high input costs and reduction in cultivable land. Plant breeders need to constantly develop new sustainable varieties with high yields, better quality, high resource-use efficiency, pest/disease resistance and tolerance to abiotic stresses. In the current scenario of climate change and global warming, there is rapid emergence of new races of insect pests and new pathotypes of disease-causing agents. Minor insect pests/pathogens are rapidly emerging as major ones. Heat and drought stresses are becoming serious threats. Under current WTO regime, farmers wish for new superior varieties, suitable not only for local consumption but also for export purposes. The quest for sustainable agriculture can benefit greatly from powerful new technologies that accelerate plant breeding. In the current era of Breeding 4.0 where specific parts in the genome can be targeted, technological advances along with the data revolution greatly improve the capacity of plant. Geneticists and breeders need to develop durable varieties. Innovative techniques such as doubled haploidy, micropropagation, somaclonal variation, embryo culture, marker-assisted selection, marker-assisted background selection, genomic selection, high-throughput genotyping, high-throughput phenotyping, reverse breeding, transgenic breeding, shuttle breeding, speed breeding, genome editing, advanced quantitative genetics technologies and intentional and standardized data management are now increasingly being used to supplement/complement the conventional approaches for accelerating plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abu-Gammie B, Kasem A, Abdelrahem A (2016) Somaclonal variation in bread wheat (Triticum aestivum L.). v. meiotic behavior of some gametoclones and somaclones. Minia J Agric Res Develop 36:91–110

    Google Scholar 

  • Ahmed KZ, Abdelkareem AA (2005) Somaclonal variation in bread wheat (Triticum aestivum L.). II. Field performance of somaclones. Cereal Res Commun 33:485–492

    Article  Google Scholar 

  • Akhtar S, Niaz M, Rahman S, Iqbal MZ, Saeed MA (2015) Comparison of wheat (Triticum aestivum L.) somaclones with their respective parents for salt tolerance. J Agric Res 53(4):523–533

    Google Scholar 

  • Allen AM, Winfield MO, Burridge AJ, Downie RC, Benbow HR, Barker GL, Wilkinson PA, Coghill J, Waterfall C, Davassi A et al (2017) Characterization of a Wheat Breeders’ Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnol J 15:390–401

    Article  CAS  PubMed  Google Scholar 

  • Ambrus H, Darko E, Szabo L, Bakos F, Kiraly Z, Barnabas B (2006) In vitro microspore selection in maize anther culture with oxidative-stress stimulators. Protoplasma 228:87–94

    Article  CAS  PubMed  Google Scholar 

  • Araujo LG, Prabhu AS (2004) Partial resistance to blast in somaclones of rice cultivar CICA-8. Fitopatol Bras 29:394–398

    Article  Google Scholar 

  • Araus JL, Serret MD, Lopes MS (2019) Transgenic solutions to increase yield and stability in wheat: shining hope or flash in the pan? J Exp Bot 70:1419–1424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bains NS, Singh J, Ravi, Gosal SS (1995) Production of wheat haploids through embryo rescue from wheat x maize crosses. Curr Sci 69:621–623

    Google Scholar 

  • Balsalobre TW, da Silva PG, Margarido GR, Gazaffi R, Barreto FZ, Anoni CO, Cardoso-Silva CB, Costa EA, Mancini MC, Hoffmann HP, de Souza AP (2017) GBS-based single dosage markers for linkage and QTL mapping allow gene mining for yield-related traits in sugarcane. BMC Genomics 18:72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Barclay IR (1975) High frequencies of haploid production in wheat (Triticum aestivum) by chromosome elimination. Nature 256:410–411

    Article  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  CAS  PubMed  Google Scholar 

  • Bastien M, Sonah H, Belzile F (2014) Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome 7:1–13

    Article  CAS  Google Scholar 

  • Bauer E, Schmutzer T, Barilar I, Mascher M, Gundlach H, Martis MM, Twardziok SO, Hackauf B, Gordillo A, Wilde P et al (2017) Towards a whole-genome sequence for rye (Secale cereale L.). Plant J 89:853–869

    Article  CAS  PubMed  Google Scholar 

  • Bendig J, Bolten A, Bareth G (2013) UAV-based imaging for multi-temporal, very high resolution crop surface models to monitor crop growth variability. Photogramm Fernerkundung Geoinf 6:551–562

    Article  Google Scholar 

  • Bernardo R (2009) Should maize doubled haploids be induced among F1 or F2 plants? Theor Appl Genet 119:255–262

    Article  CAS  PubMed  Google Scholar 

  • Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D (2008) Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci 105(50):19821–19826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blackmore T, Thomas I, McMahon R, Powell W, Hegarty M (2015) Genetic–geographic correlation revealed across a broad European ecotypic sample of perennial ryegrass (Lolium perenne) using array-based SNP genotyping. Theor Appl Genet 128:1917–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolon Y-T, Haun WJ, Xu WW, Grant D, Stacey MG, Nelson RT, Gerhardt DJ, Jeddeloh JA, Stacey G, Muehlbauer GJ et al (2011) Phenotypic and genomic analyses of a fast neutron mutant population resource in soybean. Plant Physiol 156:240–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brim CA (1966) A modified pedigree method of selection in soybeans. Crop Sci 6:220

    Article  Google Scholar 

  • Britt AB, Kuppu S (2016) Cenh3: an emerging player in haploid induction technology. Front Plant Sci 7:357

    Article  PubMed  PubMed Central  Google Scholar 

  • Bus A, Hecht J, Huettel B, Reinhardt R, Stich B (2012) High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genomics 13:281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai C, Zhu G, Zhang T, Guo W (2017) High-density 80 K SNP array is a powerful tool for genotyping G. hirsutum accessions and genome analysis. BMC Genomics 18:654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caroline S (2014) Celebrating 100 years of Dr. Norman Borlaug. CSA News, March–April issue

    Google Scholar 

  • Cavanagh CR, Chao SM, Wang SC, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A et al (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci U S A 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhary HK, Singh S, Sethi GS (2002) Interactive influence of wheat and maize genotypes on haploid induction in winter x spring wheat hybrids. J Genet Breed 56:259–266

    Google Scholar 

  • Chaudhary HK, Sethi GS, Singh S, Pratap A, Sharma S (2005) Efficient haploid induction in wheat by using pollen of Imperata cylindrica. Plant Breed 124:96–98

    Article  Google Scholar 

  • Chaudhary HK, Tayeng T, Kaila V, Rather SA (2013) Enhancing the efficiency of wide hybridization mediated chromosome engineering for high precision crop improvement with special reference to wheat × Imperata cylindrica system. Nucleus 56(1):7–14

    Article  Google Scholar 

  • Chen J, Cui L, Malik AA, Mbira KG, Cheng ZM, Korban SS (2011) In vitro haploid and dihaploid production via unfertilized ovule culture. Plant Cell Tiss Org Cult 104(3):311–319

    Article  Google Scholar 

  • Chen W, Gao Y, Xie W, Gong L, Lu K, Wang W, Li Y, Liu X, Zhang H, Dong H et al (2014) Genome-wide association analyses provide genetic and biochemical insights into natural variation in rice metabolism. Nat Genet 46:714–721

    Article  CAS  PubMed  Google Scholar 

  • Chiurugwi T, Kemp S, Powell W, Hickey LT (2019) Speed breeding orphan crops. Theor Appl Genet 132(3):607–616

    Article  PubMed  Google Scholar 

  • Cho MS, Zapata FJ (1990) Plant regeneration from isolated microspores of Indica rice. Plant Cell Physiol 31:881–885

    Google Scholar 

  • Chung YS, Choi SC, Jun T-H, Kim C (2017) Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic Environ Biotechnol 58(5):425–431

    Article  CAS  Google Scholar 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistue L, Corey A, Filichkina T, Johnson EA et al (2011) Construction and application for QTL analysis of a Restriction Site Associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RT, MacCurdy RB, Jung JK, Shaff JE, McCouch SR, Aneshansley DJ, Kochian LV (2011) Three-dimensional root phenotyping with a novel imaging and software platform. Plant Physiol 156:455–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R et al (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Close TJ, Lucas MR, Muñoz-Amatriain M, Mirebrahim H, Wanamaker S, Barkley NA, Clair SS, Guo YN, Lo S, Huynh BL et al (2015) A new SNP-genotyping resource for cowpea and its deployment for breeding. In: The plant and animal genome conference, San Diego, vol 23, p P0784

    Google Scholar 

  • Coe EH (1959) A line of maize with high haploid frequency. Am Nat 93(873):381–382

    Article  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Biol Sci 363:557–572

    Article  CAS  PubMed  Google Scholar 

  • Comadran J, Kilian B, Russell J, Ramsay L, Stein N, Ganal M, Shaw P, Bayer M, Thomas W, Marshall D et al (2012) Natural variation in a homolog of Antirrhinum centroradialis contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    Article  CAS  PubMed  Google Scholar 

  • Concibido VC, Denny RL, Lange DA, Orf JH, Young ND (1996) RFLP mapping and marker-assisted selection of soybean cyst nematode resistance in PI 209332. Crop Sci 36:1643–1650

    Article  CAS  Google Scholar 

  • Cong L, Ann Ran F, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford J, Brown PJ, Voigt T, Lee DK (2016) Linkage mapping in prairie cordgrass (Spartina pectinata Link) using genotyping-by-sequencing. Mol Breed 36:1–12

    Article  CAS  Google Scholar 

  • Cristo E, Gonzalez MC, Perez AV (2006) Obtaining somaclones derived from rice (Oryza sativa L.) plants through anther culture of hybrids and varieties. Cultivos Trop 27:35–39

    Google Scholar 

  • Crossa J, Beyene Y, Kassa S, Perez P, Hickey JM, Chen C, de los Campos G et al (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 3:1903–1926

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crossa J, Perez-Rodriguez P, Cuevas J et al (2017) Genomic selection in plant breeding: methods, models and perspective. Trends Plant Sci 22(11):961–975

    Article  CAS  PubMed  Google Scholar 

  • Dağüstü N, Bayram G, Sincik M, Bayraktaroglu M (2012) The short breeding cycle protocol effective on diverse genotypes of sunflower (Helianthus annuus L.). Turk J Field Crops 17(2):124–128

    Google Scholar 

  • Davik J, Sargent DJ, Brurberg MB, Lien S, Kent M, Alsheikh M (2015) A ddRAD based linkage map of the cultivated strawberry, Fragaria x ananassa. PLoS One 10:e0137746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Buyser J, Henry Y, Lonnet P, Hertzog P, Hespel A (1986) ‘Florin’: a doubled haploid wheat variety developed by the anther culture method. Plant Breed 98:53–56

    Article  Google Scholar 

  • Deery DM, Rebetzke GJ, Jimenez-Berni JA, James R, Condon AG, Bovill WD, Hutchinson P, Scarrow J, Davy R, Furbank RT (2016) Methodology for high-throughput field phenotyping of canopy temperature using airborne thermography. Front Plant Sci 7:1808

    Article  PubMed  PubMed Central  Google Scholar 

  • Dias PMB, Brunel-Muguet S, Dürr C, Huguet T, Demilly D, Wagner M-H, Teulat-Merah B (2011) QTL analysis of seed germination and pre-emergence growth at extreme temperatures in Medicago truncatula. Theor Appl Genet 122:429–444

    Article  PubMed  Google Scholar 

  • Ding M, Abdelkhalik S, Li H et al (2019) Influence of maize genotypes on wheat haploid embryos production in maize mediated cross system. J Sustain Agric Sci 45:1–9

    CAS  Google Scholar 

  • Dirks R, van Dun K, de Snoo CB et al (2009) Reverse breeding: a novel breeding approach based on engineered meiosis. Plant Biotechnol J 7:837–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eder J, Chalyk S (2002) In vivo haploid induction in maize. Theor Appl Genet 104(4):703–708

    Article  CAS  PubMed  Google Scholar 

  • Elanchezhian R, Mandal AB (2007) Growth analysis of somaclones regenerated from a salt tolerant traditional ‘Pokkali’ rice (Oryza sativa). Indian J Agric Sci 77:184–187

    Google Scholar 

  • Erikkson D, Schienmann J (2016) Reverse breeding ‘Meet the parents’. Crop genetic improvement techniques. Proceedings of the European Science Organization, p 3

    Google Scholar 

  • Escudero M, Eaton DA, Hahn M, Hipp AL (2014) Genotyping-by-sequencing as a tool to infer phylogeny and ancestral hybridization: a case study in Carex (Cyperaceae). Mol Phylogenet Evol 79:359–367

    Article  CAS  PubMed  Google Scholar 

  • Fang S, Yan X, Liao H (2009) 3D reconstruction and dynamic modeling of root architecture in situ and its application to crop phosphorus research. Plant J 60:1096–1108

    Article  CAS  PubMed  Google Scholar 

  • Fehr WR (1987) Principles of cultivar development, vol 1 Theory and technique. Macmillan, New York

    Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Org Cult 104:301–309

    Article  Google Scholar 

  • Fu Y-B, Cheng B, Peterson GW (2014) Genetic diversity analysis of yellow mustard (Sinapis alba L.) germplasm based on genotyping by sequencing. Genet Resour Crop Evol 61:579–594

    Article  CAS  Google Scholar 

  • Ganal MW, Durstewitz G, Polley A, Berard A, Buckler ES, Charcosset A, Clarke JD, Garner E, Hansen M, Joets J et al (2011) A large maize (Zea mays L.) SNP genotyping array: development and germplasm genotyping, and genetic mapping to compare with the B73 reference genome. PLoS One 6:e28334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-llamas C, Martín A, Ballesteros J (2004) Differences among auxin treatments on haploid production in durum wheat × maize crosses. Plant Cell Rep 23:46–49

    Article  PubMed  CAS  Google Scholar 

  • Getahun T, Feyissa T, Gugsa L (2013) Regeneration of plantlets from unpollinated ovary cultures of Ethiopian wheat (Triticum turgidum and Triticum aestivum). Afr J Biotechnol 12(39):5754–5760

    Google Scholar 

  • Ghosh S, Watson A, Hickey LT (2018) Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc 13:944–2963

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sanchez-Leon S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2017) High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J 89:1251–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill R, Kaur N, Sindhu AS, Bharaj TS, Gosal SS (2003) Improved methods for anther and pollen culture in rice. In: Khush GS, Brar DS, Hardy B (eds) Advances in rice genetics. Proceedings of fourth rice genetics symposium, 22–27 Oct 2000. IRRI, Philippines, pp 503–505

    Google Scholar 

  • Gill R, Malhotra PK, Gosal SS (2006) Direct plant regeneration from cultured young leaf segments of sugarcane. Plant Cell Tiss Org Cult 84:227–231

    Article  CAS  Google Scholar 

  • Goddard ME, Hayes BJ (2007) Genomic selection. J Anim Breed Genet 124(6):323–330

    Article  CAS  PubMed  Google Scholar 

  • Gosal SS, Bajaj YPS (1983) Interspecific hybridization between Vigna mungo and Vigna radiata through embryo culture. Euphytica 32:129–137

    Article  Google Scholar 

  • Gosal SS, Wani SH (2018) Biotechnologies of crop improvement, vol 2: Transgenic approaches. Springer, Switzerland, p 485

    Book  Google Scholar 

  • Gosal SS, Thind KS, Dhaliwal HS (1998) Micropropagation of sugarcane - an efficient protocol for commercial plant production. Crop Improv 25:1–5

    Google Scholar 

  • Goulden CH (1939) Problems in plant selection. In: Burnett RC (ed) Proceedings of the seventh international genetics congress, Edinburgh. Springer, Heidelberg, pp 132–133

    Google Scholar 

  • Grewal DK, Gill R, Gosal SS (2006) Role of cysteine in enhancing androgenesis and regeneration of indica rice (Oryza sativa L.). Plant Growth Regul 49:43–47

    CAS  Google Scholar 

  • Grohmann L, Keilwagen J, Duensing N, Dagand E, Hartung F, Wilhelm R, Bendiek J, Sprink T (2019) Detection and identification of genome editing in plants: challenges and opportunities. Front Plant Sci 10:236

    Article  PubMed  PubMed Central  Google Scholar 

  • Guajardo V, Solis S, Sagredo B, Gainza F, Munoz C, Gasic K, Hinrichsen P (2015) Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS One 10:e0127750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497

    Article  Google Scholar 

  • Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in the pollen grains of Datura in vitro. Nature 212:97–98

    Article  Google Scholar 

  • Hamilton JP, Hansey CN, Whitty BR, Stoffel K, Massa AN, Van Deynze A, De Jong WS, Douches DS, Buell CR (2011) Single nucleotide polymorphism discovery in elite North American potato germplasm. BMC Genomics 12:302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heidmann I, Schade-Kampmann G, Lambalk J, Ottiger M, Di Berardino M (2016) Impedance flow cytometry: a novel technique in pollen analysis. PLoS One 11:e0165531

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hinze LL, Hulse-Kemp AM, Wilson IW, Zhu QH, Llewellyn DJ, Taylor JM, Spriggs A et al (2017) Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63K Array. BMC Plant Biol 17:37

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoekstra S, van Zijderveld MH, Heidekamp E, van der Mark E (1993) Microspore culture of Hordeum vulgare L.: the influence of density and osmolality. Plant Cell Rep 12:661–665

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Kasha KJ (1997) Improvement of isolated microspore culture of wheat (Triticum aestivum L.) through ovary co-culture. Plant Cell Rep 16:520–525

    Article  CAS  Google Scholar 

  • Huang XH, Zhao Y, Wei XH, Li CY, Wang A, Zhao Q, Li WJ et al (2012) Genome-wide association study of flowering time and grain yield traits in a worldwide collection of rice germplasm. Nat Genet 44:32–U53

    Article  CAS  Google Scholar 

  • Huang L, Zhang R, Huang G, Li Y, Melaku G, Zhang S, Chen H, Zhao Y, Zhang J, Zhang Y, Hu F (2018) Developing superior alleles of yield genes in rice by artificial mutagenesis using the CRISPR/Cas9 system. Crop J 6:475–481

    Article  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, Frelichowski J et al (2015) Development of a 63K SNP array for cotton and high-density mapping of intra- and inter-specific populations of Gossypium spp. G3 (Bethesda) 5:1187–1209

    Article  Google Scholar 

  • Hwang EY, Song Q, Jia G, Specht JE, Hyten DL, Costa J, Cregan PB (2014) A genome-wide association study of seed protein and oil content in soybean. BMC Genomics 15:1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kasha KJ, Kao KNM (1970) High frequency of haploid production in barley (Hordeum vulgare L.). Nature 225:874–875

    Article  CAS  PubMed  Google Scholar 

  • Kaur J, Satija CK, Gosal SS (2002) In vitro synthesis of white grained primary hexaploid triticales. Plant Tissue Cult 12:1–9

    Google Scholar 

  • Kermicle JL (1969) Androgenesis conditioned by a mutation in maize. Science 166:1422–1424

    Article  CAS  PubMed  Google Scholar 

  • Khush GS, Virk PS (2002) Rice improvement: past, present and future. In: Kang MS (ed) Crop improvement challenges in the twenty-first century. The Haworth Press, New York, pp 17–42

    Google Scholar 

  • Kumar NVM, Katageri IS, Gowda SA, Adiger S, Yadava SK, Lachagari VBR (2019) 63K SNP chip based linkage mapping and QTL analysis for fibre quality and yield component traits in Gossypium barbadense L. cotton. Euphytica 215:6

    Article  CAS  Google Scholar 

  • Kumari P, Nilanjaya, Singh NK (2018) Reverse breeding: accelerating innovation in plant breeding. J Pharmacogn Phytochem SP1:1811–1813

    Google Scholar 

  • Larkin PJ, Scowcroft WR (1981) Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214

    Article  CAS  PubMed  Google Scholar 

  • Larkin PJ, Li Y, Spindler LH, Tanner GJ, Banks PM (1993) Disease resistance, cell culture and somatic recombination. Acta Hortic 336:341–346

    Article  Google Scholar 

  • Laurie DA, Reymondie S (1991) High frequencies of fertilization and haploid seedling production in crosses between commercial hexaploid wheat varieties and maize. Plant Breed 106:182–189

    Article  Google Scholar 

  • Lee YG, Jeong N, Kim JH, Lee K, Kim KH, Pirani A, Ha BK, Kang ST, Park BS, Moon JK et al (2015) Development, validation and genetic analysis of a large soybean SNP genotyping array. Plant J 81:625–636

    Article  CAS  PubMed  Google Scholar 

  • Li X, Song Y, Century K et al (2001) A fast neutron deletion mutagenesis-based reverse genetics system for plants. Plant J 27(3):235–242

    Article  CAS  PubMed  Google Scholar 

  • Li H, Peng Z, Yang X, Wang W, Fu J, Wang J, Han Y et al (2013) Genome-wide association study dissects the genetic architecture of oil biosynthesis in maize kernels. Nat Genet 45:43–50

    Article  CAS  PubMed  Google Scholar 

  • Li C, Dong Y, Zhao T, Li L, Li C, Yu E, Mei L et al (2016) Genome-wide SNP linkage mapping and QTL analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci 7:1356

    PubMed  PubMed Central  Google Scholar 

  • Liang Z, Chen K, Li T, Zhang Y, Wang Y, Zhao Q, Liu J, Zhang H, Liu C, Ran Y, Gao C (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commum 8:14261

    Article  CAS  Google Scholar 

  • Lin M, Cai S, Wang S, Liu S, Zhang G, Bai G (2015) Genotyping-by-sequencing (GBS) identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theor Appl Genet 128:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Gong J, Xiao X, Zhang Z, Li J, Liu A, Lu Q et al (2018) GWAS analysis and QTL identification of fiber quality traits and yield components in upland cotton using enriched high-density SNP markers. Front Plant Sci 9:1067

    Article  PubMed  PubMed Central  Google Scholar 

  • Livaja M, Unterseer S, Erath W, Lehermeier C, Wieseke R, Plieske J, Polley A, Luerßen H, Wieckhorst S, Mascher M et al (2016) Diversity analysis and genomic prediction of Sclerotinia resistance in sunflower using a new 25 K SNP genotyping array. Theor Appl Genet 129:317–329

    Article  CAS  PubMed  Google Scholar 

  • Lorenz AJ, Chao S, Asoro F (2011) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Mahato A, Chaudhary HK (2015) Relative efficiency of maize and Imperata cylindrica for haploid induction in Triticum durum following chromosome elimination-mediated approach of doubled haploid breeding. Plant Breed 134:379–383

    Article  Google Scholar 

  • Mandal AB, Mondal R, Dutta S, Mukherjee P, Meena K (2016) Genetics of yield and component characters in Pokkali somaclones a tall, traditional, photosensitive cultivar from India. SABRAO J Breed Genet 48(3):266–276

    Google Scholar 

  • Maxam AM, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci U S A 74(2):560–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Wright MH, Tung C-W, Maron LG, Mcnally KL, Fitzgerald M et al (2016) Open access resources for genome-wide association mapping in rice. Nat Commun 7:10532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhatre SG, Sawardekar SV, Paul DM, Gokhale NB (2016) Analysis of callus generated somaclonal variation in proso millet (Panicum miliaceum L.) through molecular markers. J Indian Soc Coast Agric Res 34(1):81–87

    Google Scholar 

  • Miao C, Xiao L, Hua K, Zou C, Zhao Y, Bressan RA, Zhu JK (2018) Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proc Natl Acad Sci U S A 115(23):6058–6063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra R, Rao GJN (2016) In-vitro androgenesis in rice: advantages, constraints and future prospects. Rice Sci 23:57–58

    Article  Google Scholar 

  • Mishra R, Joshi RK, Zhao K (2018) Genome editing in rice: recent advances, challenges, and future implications. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01361

  • Mojica FJ, Díez-Villaseñor C, García-Martínez J, Almendros C (2009) Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology 155:733–740

    Article  CAS  PubMed  Google Scholar 

  • Morgan TH (1911) The origin of five mutations in eye color in Drosophila and their modes of inheritance. Science 33:534–537

    Article  CAS  PubMed  Google Scholar 

  • Moumouni KH, Kountche BA, Jean M, Hash CT, Vigouroux Y, Haussmann BIG, Belzile F (2015) Construction of a genetic map for pearl millet, Pennisetum glaucum (L.) R. Br., using a genotyping-by-sequencing (GBS) approach. Mol Breed 35:1–10

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Gul A, Ahmed J, Mirza JI (2006) A simplified and effective protocol for production of bread wheat haploids (n=3x=21, ABD) with some application areas in wheat improvement. Pak J Bot 38:393–406

    Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51:263–273

    Article  CAS  PubMed  Google Scholar 

  • Musse M, De Franceschi L, Cambert M, Sorin C, Le Caherec F, Burel A, Bouchereau A, Mariette F, Leport L (2013) Structural changes in senescing oilseed rape leaves at tissue and subcellular levels monitored by nuclear magnetic resonance relaxometry through water status. Plant Physiol 163:392–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitsch JP, Nitsch C (1969) Haploid plants from pollen grains. Science 163:85–87

    Article  CAS  PubMed  Google Scholar 

  • O’Donoughue LS, Bennett MD (1994) Durum wheat haploid production using maize wide-crossing. Theor Appl Genet 89:559–566

    Article  PubMed  Google Scholar 

  • Obert B, Barnabas B (2004) Colchicine induced embryogenesis in maize. Plant Cell Tiss Org Cult 77:283–285

    Article  CAS  Google Scholar 

  • Ortiz R, Trethowan R, Ortiz Ferrara G et al (2007) High yield potential, shuttle breeding, genetic diversity, and a new international wheat improvement. Euphytica 157(3):365–383

    Article  Google Scholar 

  • Pandey MK, Agarwal G, Kale SM, Clevenger J, Nayak SN, Sriswathi M, Chitikineni A, Chavarro C, Chen X, Upadhyaya HD et al (2017) Development and evaluation of a high density genotyping ‘Axiom_Arachis’ array with 58 K SNPs for accelerating genetics and breeding in groundnut. Sci Rep 7:40577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patial M, Pal D, Thakur A, Bana RS, Patial.S. (2019) Doubled haploidy techniques in wheat (Triticuma estivum L.): an overview. Proc Natl Acad Sci India B Biol Sci 89(1):27–41

    Article  Google Scholar 

  • Poland J, Endelman J, Dawson J, Rutkoski J, Wu SY, Manes Y, Dreisigacker S et al (2012a) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 5:103–113

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012b) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS One 7:e32253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pratap A, Gupta S, Nair RM, Gupta SK, Schafleitner R, Basu PS, Singh CM, Prajapati U, Gupta AK, Nayyar H, Mishra AK, Baek K-H (2019) Using plant phenomics to exploit the gains of genomics. Agronomy 9:126

    Article  Google Scholar 

  • Raina SK, Zapata FJ (1997) Enhanced anther culture efficiency of Indica rice (Oryza sativa L.) through modification of the culture media. Plant Breed 116:305–315

    Article  CAS  Google Scholar 

  • Raja D, Kumar MS, Devi PR, Loganathan S, Ramya K, Kannan N, Subramanian V (2017) Identification of molecular markers associated with genic male sterility in tetraploid cotton (Gossypium hirsutum L.) through bulk segregant analysis using a cotton SNP 63K array. Czech J Genet Plant Breed. https://doi.org/10.17221/25/2017-CJGPB

    Article  CAS  Google Scholar 

  • Rakha MT, Metwally EI, Moustafa SA, Etman AA, Dewir YH (2012) Evaluation of regenerated strains from six Cucurbita interspecific hybrids obtained through anther and ovule in vitro cultures. Aust J Crop Sci 6(1):23–30

    CAS  Google Scholar 

  • Ramesh UM, Methre R, Kumar NVM, Katageri IS, Gowda SA, Adiger S et al (2019) Genome mapping and molecular markers identification for yield, yield component and fibre quality traits in tetraploid cotton. Plant Breed 00:1–17

    Google Scholar 

  • Ravi M, Chan SW (2010) Haploid plants produced by centromere-mediated genome elimination. Nature 464(7288):615–618

    Article  CAS  PubMed  Google Scholar 

  • Robertsen CD, Hjortshøj RL, Janss LL (2019) Genomic selection in cereal breeding. Agronomy 9(2):95

    Article  Google Scholar 

  • Roorkiwal M, Jain A, Kale SM, Doddamani D, Chitikineni A, Thudi M, Varshney RK (2017) Development and evaluation of high-density Axiom® CicerSNP Array for high-resolution genetic mapping and breeding applications in chickpea. Plant Biotechnol J 16:890–901

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rousselle Y, Jones E, Charcosset A, Moreau P, Robbins K, Stich B, Knaak C, Flament P, Karaman Z, Martinant JP et al (2015) Study on essential derivation in maize: III. Selection and evaluation of a panel of single nucleotide polymorphism loci for use in European and North American germplasm. Crop Sci 55:1170–1180

    Article  CAS  Google Scholar 

  • Rutkoski JE, Poland JA, Singh RP, Huerta-Espino J, Bhavani S, Barbier H, Rouse MN et al (2014) Genomic selection for quantitative adult plant stem rust resistance in wheat. Plant Genome 7:1–10

    Article  Google Scholar 

  • Sabry SRS, Moussa AM, Menshawy AM, El-Borhami HS (2005) Regeneration of leaf rust (Puccinia recondita) resistant high-yielding wheat (Triticum aestivum L.) somaclones from embryogenic callus of Sakha 61 cultivar. Bulletin-Faculty of Agriculture, Cairo

    Google Scholar 

  • Sanei M, Pickering R, Kumke K, Nasuda S, Houben A (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci 108(33):498–505

    Article  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarao NK, Gill MS, Gill R, Bharaj TS, Gosal SS (2003) An improved method for pollen culture in rice. Oryza 40:77–79

    Google Scholar 

  • Scaglione D, Fornasiero A, Pinto C, Cattonaro F, Spadotto A, Infante R, Meneses C et al (2015) A RAD-based linkage map of kiwifruit (Actinidia chinensis Pl.) as a tool to improve the genome assembly and to scan the genomic region of the gender determinant for the marker-assisted breeding. Tree Genet Genome 11:115

    Article  Google Scholar 

  • Scagliusi SM (2014) Establishing isolated microspore culture to produce doubled haploid plants in Brazilian wheat (Triticum aestivum L.). Aust J Crop Sci 8(6):887–894

    Google Scholar 

  • Scheben A, Batley J, Edwards D (2017) Genotyping-by-sequencing approaches to characterize crop genomes: choosing the right tool for the right application. Plant Biotechnol J 15:149–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senadhira D, Zapata-Arias FJ, Gregoric GB, Alejar MS, de la Cruz HC, Padolina TF, Galvez AM (2002) Development of the first salt-tolerant rice cultivar through Indica/Indica anther culture. Field Crop Res 76:103–110

    Article  Google Scholar 

  • Shariatpanahi ME, Ahmadi B (2016) Isolated microspore culture and its applications in plant breeding and genetics. In: Anis M, Ahmad N (eds) Plant tissue culture: propagation, conservation and crop improvement. https://doi.org/10.1007/978-981-10-1917-3_21

    Chapter  Google Scholar 

  • Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants. Euphytica 89:325–337

    Google Scholar 

  • Sidhu PK, Davies PA (2009) Regeneration of fertile green plants from oat isolated microspore culture. Plant Cell Rep 28:571–577

    Article  CAS  PubMed  Google Scholar 

  • Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S et al (2012) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh N, Jayaswal PK, Panda K, Mandal P, Kumar V, Singh B, Mishra S, Singh Y, Singh R, Rai V et al (2015) Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci Rep 5:11600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Hyten DL, Jia G, Quigley CV, Fickus EW, Nelson RL, Cregan PB (2013) Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One 8:e54985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song C, Li W, Pei X, Liu Y, Ren Z, He K, Zhang F et al (2019) Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. Theor Appl Genet 132:1991–2002

    Article  CAS  PubMed  Google Scholar 

  • Sood S, Dwivedi S (2015) Doubled haploid platform: an accelerated breeding approach for crop improvement. In: Bahadur B, Venkat RM, Sahijram L, Krishnamurthy K (eds) Plant biology and biotechnology. Springer, New Delhi

    Google Scholar 

  • Sood N, Piyush K, Srivastava RK, Gosal SS (2006) Comparative studies on field performance of micropropagated and conventionally propagated sugarcane plants. Plant Tissue Cult Biotechnol 16:25–29

    Article  Google Scholar 

  • Spindel J, Wright M, Chen C, Cobb J, Gage J, Harrington S, Lorieux M et al (2013) Bridging the genotyping gap: using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 126:2699–2716

    Article  CAS  PubMed  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G et al (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite. Tropical rice breeding lines. PLoS Genet 11:e1005350

    Article  PubMed  PubMed Central  Google Scholar 

  • Sturtevant AH (1913) The linear arrangement of six sex-linked factors in Drosophila, as shown by their mode of association. J Exp Zool 14:43–59

    Article  Google Scholar 

  • Symington LS, Gautier J (2011) Double-strand break end resection and repair pathway choice. Annu Rev Genet 45:247–271

    Article  CAS  PubMed  Google Scholar 

  • Tang F, Tao Y, Zhao T, Wang G (2006) In vitro production of haploid and doubled haploid plants from pollinated ovaries of maize (Zea mays). Plant Cell Tiss Org Cult 84:233–237

    Article  Google Scholar 

  • Tanio M, Kato K, Ishikawa N (2006) Effect of shuttle breeding with rapid generation advancement on heading traits of Japanese wheat. Breed Sci 56:311–320

    Article  Google Scholar 

  • Tinker NA, Chao S, Lazo GR, Oliver RE, Huang YF, Poland JA, Jellen EN, Maughan PJ, Kilian A, Jackson EW (2014) A SNP genotyping array for hexaploid oat. Plant Genome 7:3

    Article  CAS  Google Scholar 

  • Tripathy SK, Swain D, Mohapatra PM, Prusti AM, Sahoo B, Panda S, Dash M, Chakma B, Behera SK (2019) Exploring factors affecting anther culture in rice (Oryza sativa L.). J Appl Biol Biotechnol 7(02):87–92

    Article  CAS  Google Scholar 

  • Unterseer S, Bauer E, Haberer G, Seidel M, Knaak C, Ouzunova M, Meitinger T, Strom TM, Fries R, Pausch H et al (2014) A powerful tool for genome analysis in maize: development and evaluation of the high density 600 k SNP genotyping array. BMC Genomics 15:823

    Article  PubMed  PubMed Central  Google Scholar 

  • Verma V, Bains NS, Mangat GS, Nanda GS, Gosal SS, Singh K (1999) Maize genotypes show striking differences for induction and regeneration of haploid wheat embryos in the wheat x maize system. Crop Sci 39:1722–1727

    Article  Google Scholar 

  • Vos PG, Uitdewilligen JG, Voorrips RE, Visser RG, van Eck HJ (2015) Development and analysis of a 20K SNP array for potato (Solanum tuberosum): an insight into the breeding history. Theor Appl Genet 128:2387–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walter A, Liebisch F, Hund A (2015) Plant phenotyping: from bean weighing to image analysis. Plant Methods 11:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Xu Y, Hu Z (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6(4):330–340

    Article  Google Scholar 

  • Wang B, Zhu L, Zhao B, Zhao Y, Xie Y, Zheng Z, Li Y, Sun J, Wang H (2019a) Development of a haploid-inducer mediated genome editing system for accelerating maize breeding. Mol Plant 12:597–602

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Jin W, Wang K (2019b) Centromere histone H3-and phospholipase-mediated haploid induction in plants. Plant Methods 15:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:1–14

    Article  CAS  Google Scholar 

  • Watson A, Ghosh S, Matthew J et al (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29

    Article  PubMed  Google Scholar 

  • Weber DF (2014) Today’s use of haploids in corn plant breeding. In: Sparks DL (ed) Advances in agronomy, 123rd edn. Academic, Burlington, pp 123–144

    Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G et al (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Li L, Dong X, Jin W, Melchinger AE, Chen S (2013) Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J Exp Bot 64(4):1083–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang H, Tao Y, Zheng Z, Shao D, Li Z, Sweetingham MW, Buirchell BJ et al (2013) Rapid development of molecular markers by next-generation sequencing linked to a gene conferring phomopsis stem blight disease resistance for marker-assisted selection in lupin (Lupinus angustifolius L.) breeding. Theor Appl Genet 126:511–522

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Jian J, Li X, Renshaw D, Clements J, Sweetingham MW, Tan C et al (2015) Application of whole genome re-sequencing data in the development of diagnostic DNA markers tightly linked to a disease-resistance locus for marker-assisted selection in lupin (Lupinus angustifolius). BMC Genomics 16:660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yao Y, Zhang P, Liu H, Lu Z, Yan G (2017) A fully in vitro protocol towards large scale production of recombinant inbred lines in wheat (Triticum aestivum L.). Plant Cell Tiss Org Cult 128:655–661

    Article  CAS  Google Scholar 

  • Yendrek CR, Tomaz T, Montes CM, Cao Y, Morse AM, Brown PJ, McIntyre LM, Leakey ADB, Ainsworth EA (2017) High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance. Plant Physiol 173:614–626

    Article  CAS  PubMed  Google Scholar 

  • Yu C, Zhang Y, Yao S, Wei Y (2014a) A PCR based protocol for detecting indel mutations induced by TALENs and CRISPR/Cas9 in zebrafish. PLoS One 9(6):e98282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu H, Xie W, Li J, Zhou F, Zhang Q (2014b) A whole-genome SNP array (RICE6K) for genomic breeding in rice. Plant Biotechnol J 12:28–37

    Article  CAS  PubMed  Google Scholar 

  • Zhahg-Yi Y, Hong-Ru K, Zhahg-Jin W, Li-Zheng Y, Zeng-Qian C (2008) High quality and blast resistance DH lines via anther culture. Southwest China J Agrl Sci 21:75–79

    Google Scholar 

  • Zhang H, Zhang J, Wei P, Zhang B, Gou F, Feng Z, Mao Y, Yang L, Zhang H, Xu N, Zhu JK (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C (2016) Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun 7:12617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Bai Y, Wu G, Zou S, Chen Y, Gao C, Tang D (2017) Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat. Plant J. https://doi.org/10.1111/tpj.13599

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A, Bustamante C, McCouch SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS One 5:e10780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Wei-Xiao M, Ji-Liang Y, Hu-Yan M (2004) In vitro selection of NaCl-tolerant variants of maize and analysis of salt tolerance. J Henan Agric Univ 38:139–143

    CAS  Google Scholar 

  • Zheng Z, Wang H, Chen G, Yan G, Liu C (2013) A procedure allowing up to eight generations of wheat and nine generations of barley per annum. Euphytica 191:311–316

    Article  Google Scholar 

  • Zhou C, Yang HY (1981) Embryogenesis in unfertilized embryo seed of rice. Acta Bot Sin 23:176–180

    Google Scholar 

  • Zhou X, Xia Y, Ren X, Chen Y, Huang L, Huang S, Liao B et al (2014) Construction of a SNP-based genetic linkage map in cultivated peanut based on large scale marker development using next-generation double-digest restriction-site-associated DNA sequencing (ddRADseq). BMC Genomics 15:351

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu QH, Yuan Y, Stiller W, Jia Y, Wang P, Pan Z, Du X et al (2018) Genetic dissection of the fuzzless seed trait in Gossypium Barbadense. J Exp Bot 69(5):997–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou G, Zhai G, Feng Q, Yan S, Wang A, Zhao Q, Shao J et al (2012) Identification of QTLs for eight agronomically important traits using an ultrahigh-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot 63:5451–5462

    Article  CAS  PubMed  Google Scholar 

  • Zou T, Su HN, Wu Q et al (2018) Haploid induction via unfertilized ovary culture in watermelon. Plant Cell Tiss Org Cult 135:179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gosal, S.S., Pathak, D., Wani, S.H., Vij, S., Pathak, M. (2020). Accelerated Breeding of Plants: Methods and Applications. In: Gosal, S., Wani, S. (eds) Accelerated Plant Breeding, Volume 1. Springer, Cham. https://doi.org/10.1007/978-3-030-41866-3_1

Download citation

Publish with us

Policies and ethics