Skip to main content

Differential Calculi on Associative Algebras and Integrable Systems

  • Conference paper
  • First Online:
Book cover Algebraic Structures and Applications (SPAS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 317))

  • 549 Accesses

Abstract

After an introduction to some aspects of bidifferential calculus on associative algebras, we focus on the notion of a “symmetry” of a generalized zero curvature equation and derive Bäcklund and (forward, backward and binary) Darboux transformations from it. We also recall a matrix version of the binary Darboux transformation and, inspired by the so-called Cauchy matrix approach, present an infinite system of equations solved by it. Finally, we sketch recent work on a deformation of the matrix binary Darboux transformation in bidifferential calculus, leading to a treatment of integrable equations with sources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Setting alternatively \(A=0\) and keeping B, corresponds to an exchange of \(\mathrm {d}\) and \(\bar{\mathrm {d}}\) in the following equations.

  2. 2.

    This generalizes the notion of a fundamental 1-form introduced in [31] to bidifferential calculus. In the spirit of [24], it may also be called a “conservation law”. Also see Sect. 16.2.5.

  3. 3.

    Here we depart from the previous scheme since \(\tilde{J}_1 = J_1 + \mathrm {d} ( \phi \, \tilde{\chi }_0)\), where \(J_1 = \bar{D} \tilde{\chi }_0\). \(\tilde{J}_1\) is not annihilated by \(\bar{D}\) if \(\phi \ne 0\).

  4. 4.

    A bidifferential calculus for KdV is recalled in Example 16.2 in Sect. 16.6.

  5. 5.

    F M-H had a very illuminating discussion about all this with Martin Bordemann in June 2000.

  6. 6.

    There is a wrong factor in front of the cubic nonlinearities in (4.5) of [7].

  7. 7.

    We are grateful to Dmitry Demskoi and Maxim Pavlov for informing us about this.

References

  1. Arsie, A., Lorenzoni, P.: \(F\)-manifolds with eventual identities, bidifferential calculus and twisted Lenard-Magri chains. Int. Math. Res. Not. 2013(17), 3931–3976 (2013)

    Google Scholar 

  2. Boutet de Monvel, A., Marchenko, V.: Generalization of the Darboux transform. Mat. Fiz. Anal. Geom. 1, 479–504 (1994)

    Google Scholar 

  3. Brezin, E., Itzykson, C., Zinn-Justin, J., Zuber, J.-B.: Remarks about the existence of nonlocal charges in two-dimensional models. Phys. Lett. B 82, 442–444 (1979)

    Article  Google Scholar 

  4. Camacaro, J.R., Moreno, C.: Conserved currents in Kähler manifolds. In: Ocampo, H., Pariguán, E., Paycha, S. (eds.) Geometric and Topological Methods for Quantum Field Theory, 368–380. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  5. Chavchanidze, G.: Non-Noether symmetries and their influence on phase space geometry. J. Geom. Phys. 48, 190–202 (2003)

    Article  MathSciNet  Google Scholar 

  6. Chavchanidze, G.: Non-Noether symmetries in Hamiltonian dynamical systems. Mem. Diff. Equ. Math. Phys. 36, 81–134 (2005)

    Google Scholar 

  7. Chvartatskyi, O., Dimakis, A., Müller-Hoissen, F.: Self-consistent sources for integrable equations via deformations of binary Darboux transformations. Lett. Math. Phys. 106, 1139–1179 (2016)

    Article  MathSciNet  Google Scholar 

  8. Crampin, M., Sarlet, W.: Bi-quasi-Hamiltonian systems. J. Math. Phys. 43, 2505–2517 (2002)

    Article  MathSciNet  Google Scholar 

  9. Crampin, M., Sarlet, W., Thompson, G.: Bi-differential calculi and bi-Hamiltonian systems. J. Phys. A: Math. Gen. 33, L177–L180 (2000)

    Article  MathSciNet  Google Scholar 

  10. Dimakis, A., Kanning, N., Müller-Hoissen, F.: The non-autonomous chiral model and the Ernst equation of general relativity in the bidifferential calculus framework. SIGMA 7, 118 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Dimakis, A., Müller-Hoissen, F.: Integrable discretizations of chiral models via deformation of the differential calculus. J. Phys. A: Math. Gen. 29, 5007–5018 (1996)

    Article  MathSciNet  Google Scholar 

  12. Dimakis, A., Müller-Hoissen, F.: Noncommutative geometry and integrable models. Lett. Math. Phys. 39, 69–79 (1997)

    Article  MathSciNet  Google Scholar 

  13. Dimakis, A., Müller-Hoissen, F.: Bi-differential calculi and integrable models. J. Phys. A: Math. Gen. 33, 957–974 (2000)

    Article  MathSciNet  Google Scholar 

  14. Dimakis, A., Müller-Hoissen, F.: Bicomplexes and finite Toda lattices. In: Doebner, H.-D., Dobrev, V.K., Hennig, J.-D., Lücke, W. (eds.) Quantum Theory and Symmetries, 545–549. World Scientific, Singapore (2000)

    Google Scholar 

  15. Dimakis, A., Müller-Hoissen, F.: Bicomplexes and integrable models. J. Phys. A: Math. Gen. 33, 6579–6591 (2000)

    Article  MathSciNet  Google Scholar 

  16. Dimakis, A., Müller-Hoissen, F.: The Korteweg-de-Vries equation on a noncommutative space-time. Phys. Lett. A 278, 139–145 (2000)

    Article  MathSciNet  Google Scholar 

  17. Dimakis, A., Müller-Hoissen, F.: Bicomplexes and Bäcklund transformations. J. Phys. A: Math. Gen. 34, 9163–9194 (2001)

    Article  Google Scholar 

  18. Dimakis, A., Müller-Hoissen, F.: Automorphisms of associative algebras and noncommutative geometry. J. Phys. A: Math. Gen. 37, 2307–2330 (2004)

    Article  MathSciNet  Google Scholar 

  19. Dimakis, A., Müller-Hoissen, F.: Differential calculi on quantum spaces determined by automorphisms. Czech J. Phys. 54, 1235–1241 (2004)

    Article  MathSciNet  Google Scholar 

  20. Dimakis, A., Müller-Hoissen, F.: Bidifferential graded algebras and integrable systems. Discr. Cont. Dyn. Systems Suppl. 2009, 208–219 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Dimakis, A., Müller-Hoissen, F.: Binary Darboux transformations in bidifferential calculus and integrable reductions of vacuum Einstein equations. SIGMA 9, 009 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Dunajski, M.: Solitons, Instantons and Twistors. Oxford Graduate Texts in Mathematics, vol. 19. Oxford University Press, Oxford (2009)

    Google Scholar 

  23. Frölicher, A., Nijenhuis, A.: Theory of vector-valued differential forms. Part I. Derivations in the graded ring of differential forms. Proc. Koninkl. Ned. Acad. Wetensch. Ser. A 59, 338–359 (1956)

    Google Scholar 

  24. Grifone, J., Mehdi, M.: Existence of conservation laws and characterization of recursion operators for completely integrable systems. Trans. AMS 349, 4609–4633 (1997)

    Article  MathSciNet  Google Scholar 

  25. Hartwig, J.T., Larsson, D., Silvestrov, S.D.: Deformations of Lie algebras using \(\sigma \)-derivations. J. Algebr. 295, 314–361 (2006)

    Article  MathSciNet  Google Scholar 

  26. Hietarinta, J., Joshi, N., Nijhoff, F.: Discrete Systems and Integrability. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  27. Kosmann-Schwarzbach, Y., Magri, F.: Poisson-Nijenhuis structures. Ann. Inst. Henri Poincaé Section A 53, 35–81 (1990)

    MathSciNet  MATH  Google Scholar 

  28. Lorenzoni, P.: Flat bidifferential ideals and semi-Hamiltonian PDEs. J. Phys. A: Math. Gen. 39, 13701–13716 (2006)

    Article  MathSciNet  Google Scholar 

  29. Lorenzoni, P., Magri, F.: A cohomological construction of integrable hierarchies of hydrodynamic type. Int. Math. Res. Not. 34, 2087–2100 (2005)

    Article  MathSciNet  Google Scholar 

  30. Magri, F.: Lenard chains for classical integrable systems. Theor. Math. Phys. 137, 1716–1722 (2003)

    Article  MathSciNet  Google Scholar 

  31. Magri, F., Morosi, C.: A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds. Quaderno S 19, 1–176 (1988)

    Google Scholar 

  32. Marchenko, V.A.: Nonlinear equations and operator algebras. Mathematics and Its Applications. Reidel, Dordrecht (1988)

    Book  Google Scholar 

  33. Mason, L.J., Woodhouse, N.M.J.: Integrability, Self-Duality, and Twistor Theory. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  34. Matveev, V.B., Salle, M.A.: Darboux Transformations and Solitons. Springer Series in Nonlinear Dynamics. Springer, Berlin (1991)

    Google Scholar 

  35. Mel’nikov, V.K.: Integration method of the Korteweg-de Vries equation with a self-consistent source. Phys. Lett. A 133, 493–496 (1989)

    Article  MathSciNet  Google Scholar 

  36. Müller-Hoissen, F., Chvartatskyi, O., Toda, K.: Generalized Volterra lattices: binary Darboux transformations and self-consistent sources. J. Geom. Phys. 113, 226–238 (2017)

    Google Scholar 

  37. Rogers, C., Schief, W.K.: Bäcklund and Darboux Transformations. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  38. Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications. Academic Press, New York (1982)

    MATH  Google Scholar 

  39. Sitarz, A.: Finite Hopf algebras and bidifferential structures. Lett. Math. Phys. 51, 205–209 (2000)

    Article  MathSciNet  Google Scholar 

  40. Tondo, G.: Generalized Lenard chains and separation of variables. Quaderni Matematici dell’Università di Trieste 573, 1–27 (2006)

    Google Scholar 

  41. Xu, D.-D., Zhang, D.-J., Zhao, S.-L.: The Sylvester equation and integrable equations: I. The Korteweg-de Vries system and sine-Gordon equation. J. Nonl. Math. Phys. 21, 382–406 (2014)

    Google Scholar 

  42. Zhang, D.-J., Zhao, S.-L.: Solutions of the ABS lattice equations via generalized Cauchy matrix approach. Stud. Appl. Math. 131, 72–103 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkert Müller-Hoissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dimakis, A., Müller-Hoissen, F. (2020). Differential Calculi on Associative Algebras and Integrable Systems. In: Silvestrov, S., Malyarenko, A., Rančić, M. (eds) Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-41850-2_16

Download citation

Publish with us

Policies and ethics