Advertisement

Nanotechnology Based Targeting Strategies for the Delivery of Camptothecin

Chapter
Part of the Sustainable Agriculture Reviews book series (SARV, volume 44)

Abstract

Camptothecin is a potent anti-cancer drug which has shown appreciable anti-tumor activity against a broad spectrum of cancers such as breast, ovarian, colon, lung and stomach. The water insolubility property, rapid conversion of its bioactive lactone form to inactive carboxylate form under physiological condition, incidence of drug resistance and the associated off-target side effects due to extended use of campothecin restricts its widespread clinical usage. The development of novel treatment modalities is therefore the demand of era. The last two decades have already evidenced the explosive growth of nanotechnology channeling into plethora of innovations in therapeutic domains, the main dominance being the ability to target the tumor tissues either passively or actively.

This chapter deals in brief with the origin and mode of action of campothecin, the drawbacks associated with the use of the conventional drug (campothecin), the structural modifications carried out to overcome the stability and solubility issues as well as the novel targeted drug delivery platforms (passive and active targeting) that has been explored for the treatment of solid tumors. The structure activity relationship of different campothecin derivatives are elaborately discussed. The mechanism of action of passive and active targeting illustrates the wide applicability of campothecin as an anticancer lead against different solid tumors and cell lines.

Keywords

Camptothecin Nanotherapeutics Topoisomerase – I EPR Stability Solubility Passive targeting Active targeting Solid tumor 

References

  1. Adamovics J, Hutchinson C (1979) Prodrug analogs of the antitumor alkaloid camptothecin. J Med Chem 22(3):310–314.  https://doi.org/10.1021/jm00189a018CrossRefPubMedGoogle Scholar
  2. Arbain D, Putra D, Sargent M (1993) The alkaloids of Ophiorrhiza filistipula. Aust J Chem 46(7):977.  https://doi.org/10.1071/ch9930977CrossRefGoogle Scholar
  3. Arisawa M, Gunasekera S, Cordell G, Farnsworth N (1981) Plant anticancer agents XXI. Constituents of Merrilliodendron megacarpum∗. Planta Med 43(12):404–407.  https://doi.org/10.1055/s-2007-971533CrossRefPubMedGoogle Scholar
  4. Asano T, Watase I, Sudo H, Kitajima M, Takayama H, Aimi N et al (2004) Camptothecin production by in vitro cultures of Ophiorrhiza liukiuensis and O. kuroiwai. Plant Biotechnol 21(4):275–281.  https://doi.org/10.5511/plantbiotechnology.21.275CrossRefGoogle Scholar
  5. Avemann K, Knippers R, Koller T, Sogo J (1988) Camptothecin, a specific inhibitor of type I DNA topoisomerase, induces DNA breakage at replication forks. Mol Cell Biol 8(8):3026–3034.  https://doi.org/10.1128/mcb.8.8.3026CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bahadur KCR, Chandrashekaran V, Cheng B, Chen H, Peña M, Zhang J et al (2014) Redox potential ultrasensitive nanoparticle for the targeted delivery of camptothecin to HER2-positive cancer cells. Mol Pharm 11(6):1897–1905.  https://doi.org/10.1021/mp5000482CrossRefGoogle Scholar
  7. Bates D, Harper S (2002) Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 39(4–5):225–237.  https://doi.org/10.1016/s1537-1891(03)00011-9CrossRefGoogle Scholar
  8. Berrada M, Serreqi A, Dabbarh F, Owusu A, Gupta A, Lehnert S (2005) A novel non-toxic camptothecin formulation for cancer chemotherapy. Biomaterials 26(14):2115–2120.  https://doi.org/10.1016/j.biomaterials.2004.06.013CrossRefPubMedGoogle Scholar
  9. Bom D, Curran D, Chavan A, Kruszewski S, Zimmer S, Fraley K, Burke T (1999) Novel A, B, E-ring-modified camptothecins displaying high lipophilicity and markedly improved human blood stabilities. J Med Chem 42(16):3018–3022.  https://doi.org/10.1021/jm9902279CrossRefPubMedGoogle Scholar
  10. Bom D, Curran D, Kruszewski S, Zimmer S, Thompson Strode J, Kohlhagen G et al (2000) The novel Silatecan 7-tert-Butyldimethylsilyl-10-hydroxycamptothecin displays high lipophilicity, improved human blood stability, and potent anticancer activity. J Med Chem 43(21):3970–3980.  https://doi.org/10.1021/jm000144oCrossRefPubMedGoogle Scholar
  11. Bray F, Jemal A, Grey N, Ferlay J, Forman D (2012) Global cancer transitions according to the human development index (2008–2030): a population-based study. Lancet Oncol 13(8):790–801.  https://doi.org/10.1016/s1470-2045(12)70211-5CrossRefPubMedGoogle Scholar
  12. Burke T, Munshi C, Mi Z, Jiang Y (1995) The important role of albumin in determining the relative human blood stabilities of the camptothecin anticancer drugs. J Pharm Sci 84(4):518–519.  https://doi.org/10.1002/jps.2600840426CrossRefPubMedGoogle Scholar
  13. Candiani I, Bedeschi A, Cabri W, Zarini F, Visentin G, Capolongo L et al (1997) Synthesis and cytotoxic activity of alkylidene- and alkyl-substituted camptothecins. Bioorg Med Chem Lett 7(7):847–850.  https://doi.org/10.1016/s0960-894x(97)00105-4CrossRefGoogle Scholar
  14. Chen W, Kang S, Lin J, Wang C, Chen R, Yeh C (2015) Targeted tumor theranostics using folate-conjugated and camptothecin-loaded acoustic nanodroplets in a mouse xenograft model. Biomaterials 53:699–708.  https://doi.org/10.1016/j.biomaterials.2015.02.122CrossRefPubMedGoogle Scholar
  15. Çırpanlı Y, Allard E, Passirani C, Bilensoy E, Lemaire L, Çalış S, Benoit J (2011) Antitumoral activity of camptothecin-loaded nanoparticles in 9L rat glioma model. Int J Pharm 403(1–2):201–206.  https://doi.org/10.1016/j.ijpharm.2010.10.015CrossRefPubMedGoogle Scholar
  16. Crow R, Crothers D (1992) Structural modifications of camptothecin and effects on topoisomerase I inhibition. J Med Chem 35(22):4160–4164.  https://doi.org/10.1021/jm00100a022CrossRefPubMedGoogle Scholar
  17. D’Arpa P, Liu L (1995) Cell cycle-specific and transcription-related phosphorylation of mammalian topoisomerase I. Exp Cell Res 217(1):125–131.  https://doi.org/10.1006/excr.1995.1071CrossRefPubMedGoogle Scholar
  18. Dai J, Hallock Y, Cardellina J, Boyd M (1999) 20-O-β-Glucopyranosyl camptothecin from mostueabrunonis: a potential camptothecin pro-drug with improved solubility. J Nat Prod 62(10):1427–1429.  https://doi.org/10.1021/np990100mCrossRefPubMedGoogle Scholar
  19. Dallavalle S, Delsoldato T, Ferrari A, Merlini L, Penco S, Carenini N et al (2000) Novel 7-substituted camptothecins with potent antitumor activity. J Med Chem 43(21):3963–3969.  https://doi.org/10.1021/jm000944zCrossRefPubMedGoogle Scholar
  20. Dallavalle S, Ferrari A, Biasotti B, Merlini L, Penco S, Gallo G et al (2001a) Novel 7-oxyiminomethyl derivatives of camptothecin with potent in vitro and in vivo antitumor activity. J Med Chem 44(20):3264–3274.  https://doi.org/10.1021/jm0108092CrossRefPubMedGoogle Scholar
  21. Dallavalle S, Ferrari A, Merlini L, Penco S, Carenini N, De Cesare M et al (2001b) Novel cytotoxic 7-iminomethyl and 7-aminomethyl derivatives of camptothecin. Bioorg Med Chem Lett 11(3):291–294.  https://doi.org/10.1016/s0960-894x(00)00649-1CrossRefPubMedGoogle Scholar
  22. Dauty E, Remy J, Zuber G, Behr J (2002) Intracellular delivery of nanometric DNA particles via the folate receptor. Bioconjug Chem 13(4):831–839.  https://doi.org/10.1021/bc0255182CrossRefPubMedGoogle Scholar
  23. Dharap S (2003) Molecular targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides. J Control Release 91(1–2):61–73.  https://doi.org/10.1016/s0168-3659(03)00209-8CrossRefPubMedGoogle Scholar
  24. Ferlay J, Shin H, Bray F, Forman D, Mathers C, Parkin D (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917.  https://doi.org/10.1002/ijc.25516CrossRefPubMedGoogle Scholar
  25. Galvin P, Thompson D, Ryan K, McCarthy A, Moore A, Burke C et al (2011) Nanoparticle-based drug delivery: case studies for cancer and cardiovascular applications. Cell Mol Life Sci 69(3):389–404.  https://doi.org/10.1007/s00018-011-0856-6CrossRefPubMedGoogle Scholar
  26. Gaur S, Wang Y, Kretzner L, Chen L, Yen T, Wu X et al (2014) Pharmacodynamic and pharmacogenomic study of the nanoparticle conjugate of camptothecin CRLX101 for the treatment of cancer. Nanomedicine 10(7):1477–1486.  https://doi.org/10.1016/j.nano.2014.04.003CrossRefPubMedGoogle Scholar
  27. Giaccia A (1998) Cancer therapy and tumor physiology. Science 279(5347):10e–15e.  https://doi.org/10.1126/science.279.5347.10eCrossRefGoogle Scholar
  28. Giovanella B, Stehlin J, Wall M, Wani M, Nicholas A, Liu L et al (1989) DNA topoisomerase I–targeted chemotherapy of human colon cancer in xenografts. Science 246(4933):1046–1048.  https://doi.org/10.1126/science.2555920CrossRefPubMedGoogle Scholar
  29. Glück S (2014) Nab -paclitaxel for the treatment of aggressive metastatic breast cancer. Clin Breast Cancer 14(4):221–227.  https://doi.org/10.1016/j.clbc.2014.02.001CrossRefPubMedGoogle Scholar
  30. Govindachari T, Viswanathan N (1972) Alkaloids of Mappia foetida. Phytochemistry 11(12):3529–3531.  https://doi.org/10.1016/s0031-9422(00)89852-0CrossRefGoogle Scholar
  31. Greish K (2007) Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J Drug Target 15(7–8):457–464.  https://doi.org/10.1080/10611860701539584CrossRefPubMedGoogle Scholar
  32. Gunasekera S, Badawi M, Cordell G, Farnsworth N, Chitnis M (1979) Plant anticancer agents X. isolation of camptothecin and 9-methoxycamptothecin from Ervatamia heyneaya. J Nat Prod 42(5):475–477.  https://doi.org/10.1021/np50005a006CrossRefPubMedGoogle Scholar
  33. Heath J, Davis M (2008) Nanotechnology and cancer. Annu Rev Med 59(1):251–265.  https://doi.org/10.1146/annurev.med.59.061506.185523CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hertzberg R, Caranfa M, Hecht S (1989a) On the mechanism of topoisomerase I inhibition by camptothecin: evidence for binding to an enzyme-DNA complex. Biochemistry 28(11):4629–4638.  https://doi.org/10.1021/bi00437a018CrossRefPubMedGoogle Scholar
  35. Hertzberg R, Caranfa M, Holden K, Jakas D, Gallagher G, Mattern M et al (1989b) Modification of the hydroxylactone ring of camptothecin: inhibition of mammalian topoisomerase I and biological activity. J Med Chem 32(3):715–720.  https://doi.org/10.1021/jm00123a038CrossRefPubMedGoogle Scholar
  36. Householder K, DiPerna D, Chung E, Wohlleb G, Dhruv H, Berens M, Sirianni R (2015) Intravenous delivery of camptothecin-loaded PLGA nanoparticles for the treatment of intracranial glioma. Int J Pharm 479(2):374–380.  https://doi.org/10.1016/j.ijpharm.2015.01.002CrossRefPubMedGoogle Scholar
  37. Jain R, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664.  https://doi.org/10.1038/nrclinonc.2010.139CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jang D, Moon C, Oh E (2016) Improved tumor targeting and antitumor activity of camptothecin loaded solid lipid nanoparticles by pre-injection of blank solid lipid nanoparticles. Biomed Pharmacother 80:162–172.  https://doi.org/10.1016/j.biopha.2016.03.018CrossRefPubMedGoogle Scholar
  39. Jew S, Kim H, Kim M, Roh E, Cho Y, Kim J et al (1996) Synthesis and antitumor activity of 7-substituted 20(RS)-camptothecin analogues. Bioorg Med Chem Lett 6(7):845–848.  https://doi.org/10.1016/0960-894x(96)00131-xCrossRefGoogle Scholar
  40. Jew S, Kim H, Kim M, Roh E, Hong C, Kim J et al (1999) Synthesis and in vitro cytotoxicity of hexacyclic camptothecin analogues. Bioorg Med Chem Lett 9(22):3203–3206.  https://doi.org/10.1016/s0960-894x(99)00555-7CrossRefPubMedGoogle Scholar
  41. Kim D, Ryu D, Lee J, Lee N, Kim Y, Kim J et al (2001) Synthesis and biological evaluation of novel A-ring modified hexacyclic camptothecin analogues. J Med Chem 44(10):1594–1602.  https://doi.org/10.1021/jm000475CrossRefPubMedGoogle Scholar
  42. Kingsbury W, Boehm J, Jakas D, Holden K, Hecht S, Gallagher G et al (1991) Synthesis of water-soluble (aminoalkyl) camptothecin analogs: inhibition of topoisomerase I and antitumor activity. J Med Chem 34(1):98–107.  https://doi.org/10.1021/jm00105a017CrossRefPubMedGoogle Scholar
  43. Knežević N, Lin V (2013) A magnetic mesoporous silica nanoparticle-based drug delivery system for photosensitive cooperative treatment of cancer with a mesopore-capping agent and mesopore-loaded drug. Nanoscale 5(4):1544.  https://doi.org/10.1039/c2nr33417hCrossRefPubMedGoogle Scholar
  44. Kumar G, Fayad A, Nair A (2018) Ophiorrhiza mungos var. angustifolia – estimation of camptothecin and pharmacological screening. Plant Sci Today 5(3):113–120.  https://doi.org/10.14719/pst.2018.5.3.395CrossRefGoogle Scholar
  45. Lackey K, Besterman J, Fletcher W, Leitner P, Morton B, Sternbach D (1995) Rigid analogs of camptothecin as DNA topoisomerase I inhibitors. J Med Chem 38(6):906–911.  https://doi.org/10.1021/jm00006a008CrossRefPubMedGoogle Scholar
  46. Lackey K, Sternbach D, Croom D, Emerson D, Evans M, Leitner P et al (1996) Water soluble inhibitors of topoisomerase I: quaternary salt derivatives of camptothecin. J Med Chem 39(3):713–719.  https://doi.org/10.1021/jm950507yCrossRefPubMedGoogle Scholar
  47. Lammers T, Kiessling F, Hennink W, Storm G (2012) Drug targeting to tumors: principles, pitfalls and (pre-) clinical progress. J Control Release 161(2):175–187.  https://doi.org/10.1016/j.jconrel.2011.09.063CrossRefPubMedGoogle Scholar
  48. Lavergne O, Lesueur-Ginot L, Rodas F, Bigg D (1997) BN 80245: an E-ring modified camptothecin with potent anti-proliferative and topoisomerase I inhibitory activities. Bioorg Med Chem Lett 7(17):2235–2238.  https://doi.org/10.1016/s0960-894x(97)00398-3CrossRefGoogle Scholar
  49. Li Z, Liu Z (2004) Camptothecin accumulation in Camptotheca acuminata seedlings in response to acetylsalicylic acid treatment. Can J Plant Sci 84(3):885–889.  https://doi.org/10.4141/p03-138CrossRefGoogle Scholar
  50. Liu L, Desai S, Li T, Mao Y, Sun M, Sim S (2006) Mechanism of action of camptothecin. Ann N Y Acad Sci 922(1):1–10.  https://doi.org/10.1111/j.1749-6632.2000.tb07020.xCrossRefGoogle Scholar
  51. Luzzio M, Besterman J, Emerson D, Evans M, Lackey K, Leitner P et al (1995) Synthesis and antitumor activity of novel water soluble derivatives of camptothecin as specific inhibitors of topoisomerase I. J Med Chem 38(3):395–401.  https://doi.org/10.1021/jm00003a001CrossRefPubMedGoogle Scholar
  52. Maeda H (1991) SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Adv Drug Deliv Rev 6(2):181–202.  https://doi.org/10.1016/0169-409x(91)90040-jCrossRefGoogle Scholar
  53. Maeda H, Sawa T, Konno T (2001) Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J Control Release 74(1–3):47–61.  https://doi.org/10.1016/s0168-3659(01)00309-1CrossRefPubMedGoogle Scholar
  54. Malpathak N, Kulkarni A, Patwardhan A, Lele U (2010) Production of camptothecin in cultures of Chonemorpha grandiflora. Pharm Res 2(5):296.  https://doi.org/10.4103/0974-8490.72327CrossRefGoogle Scholar
  55. Mansoori G, Mohazzabi P, McCormack P, Jabbari S et al (2007) Nanotechnology in cancer prevention, detection and treatment: bright future lies ahead. World Rev Sci Technol Sustain Dev 4(2/3):226.  https://doi.org/10.1504/wrstsd.2007.013584CrossRefGoogle Scholar
  56. Martino E, Della Volpe S, Terribile E, Benetti E, Sakaj M, Centamore A et al (2017) The long story of camptothecin: from traditional medicine to drugs. Bioorg Med Chem Lett 27(4):701–707.  https://doi.org/10.1016/j.bmcl.2016.12.085CrossRefPubMedGoogle Scholar
  57. Mross K (2004) A phase I clinical and pharmacokinetic study of the camptothecin glycoconjugate, BAY 38-3441, as a daily infusion in patients with advanced solid tumors. Ann Oncol 15(8):1284–1294.  https://doi.org/10.1093/annonc/mdh313CrossRefPubMedGoogle Scholar
  58. Muller R, Keck C (2004) Challenges and solutions for the delivery of biotech drugs – a review of drug nanocrystal technology and lipid nanoparticles. J Biotechnol 113(1–3):151–170.  https://doi.org/10.1016/j.jbiotec.2004.06.007CrossRefPubMedGoogle Scholar
  59. Muniesa C, Vicente V, Quesada M, Sáez-Atiénzar S, Blesa J, Abasolo I et al (2013) Glutathione-sensitive nanoplatform for monitored intracellular delivery and controlled release of Camptothecin. RSC Adv 3(35):15121.  https://doi.org/10.1039/c3ra41404cCrossRefGoogle Scholar
  60. Nicholas A, Wani M, Manikumar G, Wall M, Kohn K, Pommier Y (1990) Plant antitumor agents. 29. Synthesis and biological activity of ring D and ring E modified analogs of camptothecin. J Med Chem 33(3):972–978.  https://doi.org/10.1021/jm00165a014CrossRefPubMedGoogle Scholar
  61. Ohtsu H, Nakanishi Y, Bastow K, Lee F, Lee K (2003) Antitumor agents 216. Synthesis and evaluation of paclitaxel–camptothecin conjugates as novel cytotoxic agents1. Bioorg Med Chem 11(8):1851–1857.  https://doi.org/10.1016/s0968-0896(03)00040-3CrossRefPubMedGoogle Scholar
  62. Omar R, Bardoogo Y, Corem-Salkmon E, Mizrahi B (2017) Amphiphilic star PEG-Camptothecin conjugates for intracellular targeting. J Control Release 257:76–83.  https://doi.org/10.1016/j.jconrel.2016.09.025CrossRefPubMedGoogle Scholar
  63. Padhi S, Mirza M, Verma D, Khuroo T, Panda A, Talegaonkar S et al (2015) Revisiting the nanoformulation design approach for effective delivery of topotecan in its stable form: an appraisal of its in vitro behavior and tumor amelioration potential. Drug Deliv 23(8):2827–2837.  https://doi.org/10.3109/10717544.2015.1105323CrossRefPubMedGoogle Scholar
  64. Padhi S, Kapoor R, Verma D, Panda A, Iqbal Z (2018) Formulation and optimization of topotecan nanoparticles: in vitro characterization, cytotoxicity, cellular uptake and pharmacokinetic outcomes. J Photochem Photobiol B Biol 183:222–232.  https://doi.org/10.1016/j.jphotobiol.2018.04.022CrossRefGoogle Scholar
  65. Pitot H, Knost J, Mahoney M, Kugler J, Krook J, Hatfield A et al (2000) A north central cancer treatment group phase II trial of 9-aminocamptothecin in previously untreated patients with measurable metastatic colorectal carcinoma. Cancer 89(8):1699–1705.  https://doi.org/10.1002/1097-0142(20001015)89:8<1699::aid-cncr8>3.0.co;2-tCrossRefPubMedGoogle Scholar
  66. Rajan R, Varghese S, Kurup R, Gopalakrishnan R, Venkataraman R, Satheeshkumar K, Baby S (2013) Search for Camptothecin-yielding Ophiorrhiza species from southern Western Ghats in India: a HPTLC-densitometry study. Ind Crop Prod 43:472–476.  https://doi.org/10.1016/j.indcrop.2012.07.054CrossRefGoogle Scholar
  67. Ramesha B, Suma H, Senthilkumar U, Priti V, Ravikanth G, Vasudeva R et al (2013) New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicine 20(6):521–527.  https://doi.org/10.1016/j.phymed.2012.12.003CrossRefPubMedGoogle Scholar
  68. Ryan A, Squires S, Strutt H, Evans A, Johnson R (1994) Different fates of camptothecin-induced replication fork-associated double-strand DNA breaks in mammalian cells. Carcinogenesis 15(5):823–828.  https://doi.org/10.1093/carcin/15.5.823CrossRefPubMedGoogle Scholar
  69. Saito K, Sudo H, Yamazaki M, Koseki-Nakamura M, Kitajima M, Takayama H, Aimi N (2001) Feasible production of camptothecin by hairy root culture of Ophiorrhiza pumila. Plant Cell Rep 20(3):267–271.  https://doi.org/10.1007/s002990100320CrossRefGoogle Scholar
  70. Saitoh H, Sparrow D, Shiomi T, Pu R, Nishimoto T, Mohun T, Dasso M (1998) UBC9p and the conjugation of SUMO-1 to RanGAP1 and RanBP2. Curr Biol 8(2):121–124.  https://doi.org/10.1016/s0960-9822(98)70044-2CrossRefPubMedGoogle Scholar
  71. Sawada S, Okajima S, Aiyama R, Nokata K, Furuta T, Yokokura T et al (1991) Synthesis and antitumor activity of 20(S)-Camptothecin derivatives: carbamate-linked, water-soluble derivatives of 7-Ethyl-10-hydroxycamptothecin. Chem Pharm Bull 39(6):1446–1454.  https://doi.org/10.1248/cpb.39.1446CrossRefPubMedGoogle Scholar
  72. Searle M, Williams D (1992) The cost of conformational order: entropy changes in molecular associations. J Am Chem Soc 114(27):10690–10697.  https://doi.org/10.1021/ja00053a002CrossRefGoogle Scholar
  73. Shi J, Wu P, Jiang Z, Wei X (2014) Synthesis and tumor cell growth inhibitory activity of biotinylated annonaceous acetogenins. Eur J Med Chem 71:219–228.  https://doi.org/10.1016/j.ejmech.2013.11.012CrossRefPubMedGoogle Scholar
  74. Sinha R (2006) Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 5(8):1909–1917.  https://doi.org/10.1158/1535-7163.mct-06-0141CrossRefPubMedGoogle Scholar
  75. Subrahmanyam D, Sarma V, Venkateswarlu A, Sastry T, Kulakarni A, Srinivasa Rao D, Krishna Reddy K (1999a) In vitro cytotoxicity of 5-aminosubstituted 20(S)-camptothecins. Part 1. Bioorg Med Chem 7(9):2013–2020.  https://doi.org/10.1016/s0968-0896(99)00130-3CrossRefPubMedGoogle Scholar
  76. Subrahmanyam D, Venkateswarlu A, Rao K, Sastry T, Vandana G, Kumar S (1999b) Novel C-ring analogues of 20(S)-camptothecin-part-2: synthesis and cytotoxicity of 5-C-substituted 20(S)-camptothecin analogues. Bioorg Med Chem Lett 9(12):1633–1638.  https://doi.org/10.1016/s0960-894x(99)00268-1CrossRefPubMedGoogle Scholar
  77. Subrahmanyam D, Sarma V, Venkateswarlu A, Sastry T, Srinivas A, Krishna C et al (2000) Novel C-ring analogues of 20(S)-camptothecin. Part 3: synthesis and their in vitro cytotoxicity of A-, B- and C-ring analogues. Bioorg Med Chem Lett 10(4):369–371.  https://doi.org/10.1016/s0960-894x(00)00005-6CrossRefPubMedGoogle Scholar
  78. Sugasawa T, Toyoda T, Uchida N, Yamaguchi K (1976) Experiments on the synthesis of dl-camptothecin. 4. Synthesis and antileukemic activity of dl-camptothecin analogues. J Med Chem 19(5):675–679.  https://doi.org/10.1021/jm00227a019CrossRefPubMedGoogle Scholar
  79. Sugimori M, Ejima A, Ohsuki S, Uoto K, Mitsui I, Matsumoto K et al (1994) Antitumor agents. VII. Synthesis and antitumor activity of novel Hexacyclic Camptothecin analogs. J Med Chem 37(19):3033–3039.  https://doi.org/10.1021/jm00045a007CrossRefPubMedGoogle Scholar
  80. Sugimori M, Ejima A, Ohsuki S, Uoto K, Mitsui I, Kawato Y et al (1998) Synthesis and antitumor activity of ring A- and F-modified hexacyclic camptothecin analogues. J Med Chem 41(13):2308–2318.  https://doi.org/10.1021/jm970765q
  81. Takayama H, Watanabe A, Hosokawa M, Chiba K, Satoh T, Aimi N (1998) Synthesis of a new class of camptothecin derivatives, the long-chain fatty acid esters of 10-hydroxycamptothecin, as a potent prodrug candidate, and their in vitro metabolic conversion by carboxylesterases. Bioorg Med Chem Lett 8(5):415–418.  https://doi.org/10.1016/s0960-894x(98)00039-0CrossRefPubMedGoogle Scholar
  82. Tang D, Song F, Chen C, Wang X, Wang Y (2013) A pH-responsive chitosan-b-poly (p-dioxanone) nanocarrier: formation and efficient antitumor drug delivery. Nanotechnology 24(14):145101.  https://doi.org/10.1088/0957-4484/24/14/145101CrossRefPubMedGoogle Scholar
  83. Uehling D, Nanthakumar S, Croom D, Emerson D, Leitner P, Luzzio M et al (1995) Synthesis, topoisomerase I inhibitory activity, and in vivo evaluation of 11-azacamptothecin analogs. J Med Chem 38(7):1106–1118.  https://doi.org/10.1021/jm00007a008CrossRefPubMedGoogle Scholar
  84. Verschraegen C, Gupta E, Loyer E, Kavanagh J, Kudelka A, Freedman R et al (1999) A phase II clinical and pharmacological study of oral 9-nitrocamptothecin in patients with refractory epithelial ovarian, tubal or peritoneal cancer. Anti-Cancer Drugs 10(4):375–384.  https://doi.org/10.1097/00001813-199904000-00005CrossRefPubMedGoogle Scholar
  85. Wall M, Wani M, Cook C, Palmer K, McPhail A, Sim G (1966) Plant antitumor agents. I. the isolation and structure of Camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata. J Am Chem Soc 88(16):3888–3890.  https://doi.org/10.1021/ja00968a057CrossRefGoogle Scholar
  86. Wall M, Wani M, Natschke S, Nicholas A (1986) Plant antitumor agents. Isolation of 11-hydroxycamptothecin from Camptotheca acuminata Decne: total synthesis and biological activity. J Med Chem 29(8):1553–1555.  https://doi.org/10.1021/jm00158a044CrossRefPubMedGoogle Scholar
  87. Wani M, Ronman P, Lindley J, Wall M (1980a) ChemInform abstract: plant antitumor agents. 18. Synthesis and biological activity of camptothecin and analogs. Chemischer Informationsdienst 11(38).  https://doi.org/10.1002/chin.198038307
  88. Wani M, Ronman P, Lindley J, Wall M (1980b) Plant antitumor agents. Synthesis and biological activity of camptothecin analogs. J Med Chem 23(5):554–560.  https://doi.org/10.1021/jm00179a016CrossRefPubMedGoogle Scholar
  89. Wani M, Nicholas A, Wall M (1986) Plant antitumor agents. Synthesis and antileukemic activity of camptothecin analogs. J Med Chem 29(11):2358–2363.  https://doi.org/10.1021/jm00161a035CrossRefPubMedGoogle Scholar
  90. Wani M, Nicholas A, Wall M (1987a) Plant antitumor agents. Resolution of a key tricyclic synthon, 5′(RS)-1,5-dioxo-5′-hydroxy-2′H,5′H,6′H-6′-oxopyrano[3′,4′-f].DELTA.6,8-tetrahydroindolizine: total synthesis and antitumor activity of 20(S)- and 20(R)-camptothecin. J Med Chem 30(12):2317–2319.  https://doi.org/10.1021/jm00395a024CrossRefPubMedGoogle Scholar
  91. Wani M, Nicholas A, Manikumar G, Wall M (1987b) Plant antitumor agents. Total synthesis and antileukemic activity of ring substituted camptothecin analogs. Structure-activity correlations. J Med Chem 30(10):1774–1779.  https://doi.org/10.1021/jm00393a016CrossRefPubMedGoogle Scholar
  92. Wu J, Liu L (1997) Processing of topoisomerase I cleavable complexes into DNA damage by transcription. Nucleic Acids Res 25(21):4181–4186.  https://doi.org/10.1093/nar/25.21.4181CrossRefPubMedPubMedCentralGoogle Scholar
  93. Yamauchi T (2011) Camptothecin induces DNA strand breaks and is cytotoxic in stimulated normal lymphocytes. Oncol Rep 25(2):347.  https://doi.org/10.3892/or.2010.1100CrossRefPubMedGoogle Scholar
  94. Ya-ut P, Chareonsap P, Sukrong S (2011) Micropropagation and hairy root culture of Ophiorrhiza alata craib for camptothecin production. Biotechnol Lett 33(12):2519–2526.  https://doi.org/10.1007/s10529-011-0717-2CrossRefPubMedGoogle Scholar
  95. Yellepeddi V, Vangara K, Palakurthi S (2013) Poly (amido) amine (PAMAM) dendrimer–cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells. J Nanopart Res 15(9):1897.  https://doi.org/10.1007/s11051-013-1897-6CrossRefGoogle Scholar
  96. Zhang S (2017) Cancer therapy with co-delivery of Camptothecin. J Drug Deliv Ther 7(3).  https://doi.org/10.22270/jddt.v7i3.1450
  97. Zhou B, Hoch J, Johnson R, Mattern M, Eng W, Ma J et al (2000) Use of COMPARE analysis to discover new natural product drugs: isolation of Camptothecin and 9-methoxycamptothecin from a new source. J Nat Prod 63(9):1273–1276.  https://doi.org/10.1021/np000058rCrossRefPubMedGoogle Scholar
  98. Zhou Z, Piao Y, Hao L, Wang G, Zhou Z, Shen Y (2019) Acidity-responsive shell-sheddable camptothecin-based nanofibers for carrier-free cancer drug delivery. Nanoscale 11(34):15907–15916.  https://doi.org/10.1039/c9nr03872hCrossRefPubMedGoogle Scholar
  99. Zi C, Yang L, Xu F, Dong F, Ma R, Li Y et al (2019) Synthesis and antitumor activity of biotinylated camptothecin derivatives as potent cytotoxic agents. Bioorg Med Chem Lett 29(2):234–237.  https://doi.org/10.1016/j.bmcl.2018.11.049CrossRefPubMedGoogle Scholar
  100. Zunino F, Dallavalle S, Laccabue D, Beretta G, Merlini L, Pratesi G (2002) Current status and perspectives in the development of Camptothecins. Curr Pharm Des 8(27):2505–2520.  https://doi.org/10.2174/1381612023392801CrossRefPubMedGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.KIIT Technology Business IncubatorKIIT Deemed to be UniversityBhubaneswarIndia
  2. 2.School of Pharmaceutical SciencesSiksha ‘O’ Anusandhan Deemed to be UniversityBhubaneswarIndia

Personalised recommendations