Skip to main content

Solubility Enhancement Techniques for Natural Product Delivery

  • Chapter
  • First Online:
Sustainable Agriculture Reviews 43

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 43))

Abstract

The products extracted from the natural source are of great importance as they are useful for the treatment of a variety of ailment and thus they are an important source of pharmaceuticals. The major drawbacks with the use of these natural products are their isolation from the source in pure form, the variability in the content of samples, poor aqueous solubility, and decreased oral bioavailability. Poor aqueous solubility of the natural product is the major obstacle involved with the development of any formulation and causes of low bioavailability and thus the delivery of drugs at a sub-optimal level. Poorly soluble components require a high amount of them to be incorporated into the formulation to get the required concentration in the body to elicit a pharmacological effect.

Different strategies are being used for the enhancement of their aqueous solubility of an active product of natural origin. In the current chapter major focus was on particle engineering technologies, dispersions, complexation based technologies, and nanotechnology related aspects were discussed as these already proven their efficiency in terms of solubility improvement and commercialization with synthetic molecules. Nanotechnology offers great advantages for solubility improvement as surface to volume ratio increases. Particle engineering includes particle size reduction that improves their surface area and thus enhances solubility. Complexation using different complexing agent improve solubility as well as stability of natural products. Nanosuspension or Nanocrystals are emerging technologies where, higher dose drugs also can be used with utilizing lesser quantity of stabilizer. Selection of an appropriate method for solubility improving also results in improved bioavailability and a reduction in dosage frequency as well as patient improved compliance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aam BB, Heggset EB, Norberg AL, Sørlie M, Vårum KM, Eijsink VGH (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8(5):1482–1517. https://doi.org/10.3390/md8051482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abe M, Amemura A, Higashi S (1982) Studies on cyclic β-1, 2-glucan obtained from periplasmic space ofRhizobium trifolii cells. Plant Soil 64(3):315–324

    Article  CAS  Google Scholar 

  • Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92(7):1343–1355

    Article  CAS  PubMed  Google Scholar 

  • Aggarwal S, Gupta G, Chaudhary S (2010) Solid dispersion as an eminent strategic approach in solubility enhancement of poorly soluble drugs. Int J Pharm Sci Res 1(8):1–13

    CAS  Google Scholar 

  • Ahire E, Thakkar S, Darshanwad M, Misra M (2018) Parenteral nanosuspensions: a brief review from solubility enhancement to more novel and specific applications. Acta Pharm Sin B 8(5):733–755. https://doi.org/10.1016/j.apsb.2018.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al Shaal L, Shegokar R, Müller RH (2011) Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int J Pharm 420(1):133–140. https://doi.org/10.1016/j.ijpharm.2011.08.018

    Article  CAS  PubMed  Google Scholar 

  • Ansari S, Farha Islam M (2012) Influence of nanotechnology on herbal drugs: a review. J Adv Pharm Technol Res 3(3):142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anwer MK, Al-Mansoor MA, Jamil S, Al-Shdefat R, Ansari MN, Shakeel F (2016) Development and evaluation of PLGA polymer based nanoparticles of quercetin. Int J Biol Macromol 92:213–219

    Article  CAS  PubMed  Google Scholar 

  • Arunachalam A, Karthikeyan M, Konam K, Prasad PH, Sethuraman S, Ashutoshkumar S (2010) Solid dispersions: a review. Current Pharma Res 1(1):82

    Article  Google Scholar 

  • Atanacković M, Poša M, Heinle H, Gojković-Bukarica L, Cvejić J (2009) Solubilization of resveratrol in micellar solutions of different bile acids. Colloids Surf B: Biointerfaces 72(1):148–154. https://doi.org/10.1016/j.colsurfb.2009.03.029

    Article  CAS  PubMed  Google Scholar 

  • Baghel S, Cathcart H, O’Reilly NJ (2016) Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 105(9):2527–2544

    Article  CAS  PubMed  Google Scholar 

  • Balata GF, Essa EA, Shamardl HA, Zaidan SH, Abourehab MA (2016) Self-emulsifying drug delivery systems as a tool to improve solubility and bioavailability of resveratrol. Drug Des Devel Ther 10:117–128. https://doi.org/10.2147/DDDT.S95905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barras A, Mezzetti A, Richard A, Lazzaroni S, Roux S, Melnyk P, Betbeder D, Monfilliette-Dupont N (2009) Formulation and characterization of polyphenol-loaded lipid nanocapsules. Int J Pharm 379(2):270–277. https://doi.org/10.1016/j.ijpharm.2009.05.054

    Article  CAS  PubMed  Google Scholar 

  • Bhadoriya SS, Mangal A, Madoriya N, Dixit P (2011) Bioavailability and bioactivity enhancement of herbal drugs by “nanotechnology”: a review. J Curr Pharm Res 8:1–7

    Google Scholar 

  • Bhardwaj A, Dwivedi H, Kymonil KM, Pareek A, Upadhyay SC, Tripathi CB, Sara SA (2016) Solubility enhancement of Boswellia serrata Roxb. Ex Colebr. Extract through a self dispersible lipidic formulation approach. Indian J Nat Prod Resour 7(1):9–18

    CAS  Google Scholar 

  • Blagden N, de Matas M, Gavan PT, York P (2007) Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv Drug Deliv Rev 59(7):617–630

    Article  CAS  PubMed  Google Scholar 

  • Borghetti GS, Lula IS, Sinisterra RD, Bassani VL (2009) Quercetin/beta-cyclodextrin solid complexes prepared in aqueous solution followed by spray-drying or by physical mixture. AAPS PharmSciTech 10(1):235–242. https://doi.org/10.1208/s12249-009-9196-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandl M (2001) Liposomes as drug carriers: a technological approach. Biotechnol Annu Rev 7:59–85

    Article  CAS  PubMed  Google Scholar 

  • Breedveld MW, Miller KJ (1994) Cyclic beta-glucans of members of the family Rhizobiaceae. Microbiol Mol Biol Rev 58(2):145–161

    CAS  Google Scholar 

  • Brewster ME, Loftsson T (2007) Cyclodextrins as pharmaceutical solubilizers. Adv Drug Deliv Rev 59(7):645–666. https://doi.org/10.1016/j.addr.2007.05.012

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Zhao Y, Zhou Z (2018) Preparation and physicochemical properties of hesperidin-chitooligosaccharide complex. Shipin Kexue/Food Sci 39(10):14–19

    Google Scholar 

  • Cao R, Li X, Zhou Z, Zhao Z (2019) Synthesis and biophysical analysis of Naringin-Chitooligosaccharide complex. Nat Prod Res:1–7. https://doi.org/10.1080/14786419.2019.1628752

  • Challa R, Ahuja A, Ali J, Khar RK (2005) Cyclodextrins in drug delivery: an updated review. AAPS PharmSciTech 6(2):E329–E357. https://doi.org/10.1208/pt060243

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhary A, Nagaich U, Gulati N, Sharma V, Khosa R, Partapur M (2012) Enhancement of solubilization and bioavailability of poorly soluble drugs by physical and chemical modifications: a recent review. J Adv Pharm Educ Res 2(1):32–67

    Google Scholar 

  • Chawla G, Bansal A (2008) Improved dissolution of a poorly water soluble drug in solid dispersions with polymeric and non-polymeric hydrophilic additives. Acta Pharma 58(3):257–274

    CAS  Google Scholar 

  • Chella N, Shastri NR (2017) Lipid carriers: role and applications in Nano drug delivery. In: Jana S, Jana S (eds) Particulate technology for delivery of therapeutics. Springer, Singapore, pp 253–289

    Chapter  Google Scholar 

  • Chen H, Khemtong C, Yang X, Chang X, Gao J (2011) Nanonization strategies for poorly water-soluble drugs. Drug Discov Today 16(7–8):354–360

    Article  CAS  PubMed  Google Scholar 

  • Chiou WL, Riegelman S (1971) Pharmaceutical applications of solid dispersion systems. J Pharm Sci 60(9):1281–1302

    Article  CAS  PubMed  Google Scholar 

  • Coimbra M, Isacchi B, van Bloois L, Torano JS, Ket A, Wu X, Broere F, Metselaar JM, Rijcken CJ, Storm G (2011) Improving solubility and chemical stability of natural compounds for medicinal use by incorporation into liposomes. Int J Pharm 416(2):433–442

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79

    Article  CAS  PubMed  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta (BBA)-Gen Subj 1830(6):3670–3695

    Article  CAS  Google Scholar 

  • Craig DQM (2002) The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm 231(2):131–144. https://doi.org/10.1016/S0378-5173(01)00891-2

    Article  CAS  PubMed  Google Scholar 

  • Dai L, Wang L, Deng L, Liu J, Lei J, Li D, He J (2014) Novel multiarm polyethylene glycol-dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung cancer. Sci Rep 4:5871–5871. https://doi.org/10.1038/srep05871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dandekar DV, Jayaprakasha G, Patil BS (2008) Hydrotropic extraction of bioactive limonin from sour orange (Citrusaurantium L.) seeds. Food Chem 109(3):515–520

    Article  CAS  Google Scholar 

  • de Lima Petito N, da Silva Dias D, Costa VG, Falcão DQ, de Lima Araujo KG (2016) Increasing solubility of red bell pepper carotenoids by complexation with 2-hydroxypropyl-β-cyclodextrin. Food Chem 208:124–131

    Article  PubMed  CAS  Google Scholar 

  • Del Valle EM (2004) Cyclodextrins and their uses: a review. Process Biochem 39(9):1033–1046

    Article  CAS  Google Scholar 

  • Deng K-Z, Xiong Y, Zhou B, Guan Y-M, Luo Y-M (2013) Chemical constituents from the roots of Ranunculus ternatus and their inhibitory effects on Mycobacterium tuberculosis. Molecules 18(10):11859–11865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhirendra K, Lewis S, Udupa N, Atin K (2009) Solid dispersions: a review. Pak J Pharm Sci 22(2):234–246

    CAS  PubMed  Google Scholar 

  • Dhumal DM, Kothari PR, Kalhapure RS, Akamanchi KG (2015) Self-microemulsifying drug delivery system of curcumin with enhanced solubility and bioavailability using a new semi-synthetic bicephalous heterolipid: in vitro and in vivo evaluation. RSC Adv 5(110):90295–90306. https://doi.org/10.1039/C5RA18112G

    Article  CAS  Google Scholar 

  • Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri MS, Sharifizadeh A, Farhadi M, Yousefi R, Chobert J-M, Haertlé T, Moosavi-Movahedi AA (2011) Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT-food Sci Technol 44(10):2166–2172

    Article  CAS  Google Scholar 

  • Etuk E (2006) A review of medicinal plants with hypotensive or antihypertensive effects. J Med Sci 6(6):894–900

    Article  Google Scholar 

  • Fang YP, Lin YK, Su YH, Fang JY (2011) Tryptanthrin-loaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: the effects of solid lipid/liquid lipid ratios in the inner core. Chem Pharm Bull 59(2):266–271. https://doi.org/10.1248/cpb.59.266

    Article  CAS  Google Scholar 

  • Feeney OM, Crum MF, McEvoy CL, Trevaskis NL, Williams HD, Pouton CW, Charman WN, Bergström CAS, Porter CJH (2016) 50years of oral lipid-based formulations: provenance, progress and future perspectives. Adv Drug Deliv Rev 101:167–194. https://doi.org/10.1016/j.addr.2016.04.007

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Li Z, Sun M, Guo C, Yu A, Xi Y, Cui J, Lou H, Zhai G (2011) Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv 18(2):131–142. https://doi.org/10.3109/10717544.2010.520353

    Article  CAS  PubMed  Google Scholar 

  • Garg, S. C. (2005). Essential oils as therapeutics. Nat Prod Rad 4(1):18–26

    Google Scholar 

  • Greenwald RB, Gilbert CW, Pendri A, Conover CD, Xia J, Martinez A (1996) Drug delivery systems: water soluble Taxol 2 ‘-poly (ethylene glycol) Ester prodrugs design and in vivo effectiveness. J Med Chem 39(2):424–431

    Article  CAS  PubMed  Google Scholar 

  • Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD (2014) Nanotechnology: an effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 4:S1–S7

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo Z (2017) The modification of natural products for medical use. Acta Pharm Sin B 7(2):119–136

    Article  PubMed  Google Scholar 

  • Haham M, Ish-Shalom S, Nodelman M, Duek I, Segal E, Kustanovich M, Livney YD (2012) Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct 3(7):737–744

    Article  CAS  PubMed  Google Scholar 

  • Hani U, Shivakumar H (2014) Solubility enhancement and delivery systems of curcumin a herbal medicine: a review. Curr Drug Deliv 11(6):792–804

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Gao Y, Zhao J, Zhang J, Li Q, Zhao Z, Liu J (2014) Preparation and optimization of resveratrol nanosuspensions by antisolvent precipitation using box-Behnken design. AAPS PharmSciTech 16(1):118–128. https://doi.org/10.1208/s12249-014-0211-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Patlan D, Solis-Cruz B, Cano-Vega MA, Beyssac E, Garrait G, Hernandez-Velasco X, Lopez-Arellano R, Tellez G, Rivera-Rodriguez GR (2019) Development of chitosan and alginate Nanocapsules to increase the solubility, permeability and stability of Curcumin. J Pharm Innov 14(2):132–140. https://doi.org/10.1007/s12247-018-9341-1

    Article  Google Scholar 

  • Hong J (2011) Role of natural product diversity in chemical biology. Curr Opin Chem Biol 15(3):350–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hörter D, Dressman J (2001) Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Adv Drug Deliv Rev 46(1–3):75–87

    Article  PubMed  Google Scholar 

  • Huang Y, Dai W-G (2014) Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 4(1):18–25. https://doi.org/10.1016/j.apsb.2013.11.001

    Article  PubMed  Google Scholar 

  • Huang L-F, Tong W-QT (2004) Impact of solid state properties on developability assessment of drug candidates. Adv Drug Deliv Rev 56(3):321–334

    Article  CAS  PubMed  Google Scholar 

  • Jahan N, Aslam S, Rahman K, Fazal T, Anwar F, Saher R (2016) Formulation and characterisation of nanosuspension of herbal extracts for enhanced antiradical potential. J Exp Nanosci 11(1):72–80. https://doi.org/10.1080/17458080.2015.1025303

    Article  CAS  Google Scholar 

  • Jain P, Goel A, Sharma S, Parmar M (2010) Solubility enhancement techniques with special emphasis on hydrotrophy. Int J Pharm Professional’s Res 1(1):34–45

    Google Scholar 

  • Jansook P, Ogawa N, Loftsson T (2018) Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. Int J Pharm 535(1):272–284. https://doi.org/10.1016/j.ijpharm.2017.11.018

    Article  CAS  PubMed  Google Scholar 

  • Jawahar N, Meyyanathan S (2012) Polymeric nanoparticles for drug delivery and targeting: a comprehensive review. Int J Health Allied Sci 1(4):217

    Article  Google Scholar 

  • Jeong D, Choi JM, Choi Y, Jeong K, Cho E, Jung S (2013) Complexation of fisetin with novel cyclosophoroase dimer to improve solubility and bioavailability. Carbohydr Polym 97(1):196–202

    Article  CAS  PubMed  Google Scholar 

  • Jøraholmen MW, Škalko-Basnet N, Acharya G, Basnet P (2015) Resveratrol-loaded liposomes for topical treatment of the vaginal inflammation and infections. Eur J Pharm Sci 79:112–121

    Article  PubMed  CAS  Google Scholar 

  • Kadam Y, Yerramilli U, Bahadur A (2009) Solubilization of poorly water-soluble drug carbamezapine in Pluronic® micelles: effect of molecular characteristics, temperature and added salt on the solubilizing capacity. Colloids Surf B: Biointerfaces 72(1):141–147

    Article  CAS  PubMed  Google Scholar 

  • Kalepu S, Nekkanti V (2015) Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B 5(5):442–453

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanaze FI, Kokkalou E, Niopas I, Barmpalexis P, Georgarakis E, Bikiaris D (2010) Dissolution rate and stability study of flavanone aglycones, naringenin and hesperetin, by drug delivery systems based on polyvinylpyrrolidone (PVP) nanodispersions. Drug Dev Ind Pharm 36(3):292–301. https://doi.org/10.3109/03639040903140589

    Article  CAS  PubMed  Google Scholar 

  • Karadag A, Ozcelik B, Huang Q (2014) Quercetin nanosuspensions produced by high-pressure homogenization. J Agric Food Chem 62(8):1852–1859

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Kaur G (2014) A critical appraisal of solubility enhancement techniques of polyphenols. J Pharm 2014:14. https://doi.org/10.1155/2014/180845

    Article  CAS  Google Scholar 

  • Khadka P, Ro J, Kim H, Kim I, Kim JT, Kim H, Cho JM, Yun G, Lee J (2014) Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 9(6):304–316. https://doi.org/10.1016/j.ajps.2014.05.005

    Article  Google Scholar 

  • Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J (2015a) Enhanced dissolution and bioavailability of grapefruit flavonoid Naringenin by solid dispersion utilizing fourth generation carrier. Drug Dev Ind Pharm 41(5):772–779

    Article  CAS  PubMed  Google Scholar 

  • Khan AW, Kotta S, Ansari SH, Sharma RK, Ali J (2015b) Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv 22(4):552–561. https://doi.org/10.3109/10717544.2013.878003

    Article  CAS  PubMed  Google Scholar 

  • Kim H-M, Kim H-W, Jung S-H (2008) Aqueous solubility enhancement of some flavones by complexation with cyclodextrins. Bull Kor Chem Soc 29(3):590–594

    Article  CAS  Google Scholar 

  • Kim CY, Bordenave N, Ferruzzi MG, Safavy A, Kim KH (2011) Modification of curcumin with polyethylene glycol enhances the delivery of curcumin in preadipocytes and its antiadipogenic property. J Agric Food Chem 59(3):1012–1019. https://doi.org/10.1021/jf103873k

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Shinde VV, Jeong D, Choi Y, Jung S (2019) Solubility enhancement of atrazine by complexation with Cyclosophoraose isolated from rhizobium leguminosarum biovar trifolii TA-1. Polymers 11(3):474

    Article  CAS  PubMed Central  Google Scholar 

  • Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228(4703):1049–1055

    Article  CAS  PubMed  Google Scholar 

  • Kocbek P, Baumgartner S, Kristl J (2006) Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int J Pharm 312(1–2):179–186

    Article  CAS  PubMed  Google Scholar 

  • Koroleva MY, Yurtov EV (2012) Nanoemulsions: the properties, methods of preparation and promising applications. Russ Chem Rev 81(1):21

    Article  CAS  Google Scholar 

  • Krishnaiah YS (2010) Pharmaceutical technologies for enhancing oral bioavailability of poorly soluble drugs. J Bioequiv Availab 2(2):28–36

    Article  CAS  Google Scholar 

  • Kuche K, Bhargavi N, Dora CP, Jain S (2019) Drug-phospholipid complex—a go through strategy for enhanced Oral bioavailability. AAPS PharmSciTech 20(2):43. https://doi.org/10.1208/s12249-018-1252-4

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bhargava D, Thakkar A, Arora S (2013a) Drug carrier systems for solubility enhancement of BCS class II drugs: a critical review. Crit Rev Ther Drug Carrier Syst 30(3):217–256

    Article  CAS  PubMed  Google Scholar 

  • Kumar SK, Sushma M, Raju PY (2013b) Dissolution enhancement of poorly soluble drugs by using complexation technique-a review. J Pharm Sci Res 5(5):120

    Google Scholar 

  • Kumar R, Singh M, Meena J, Singhvi P, Thiyagarajan D, Saneja A, Panda AK (2019) Hyaluronic acid - dihydroartemisinin conjugate: synthesis, characterization and in vitro evaluation in lung cancer cells. Int J Biol Macromol 133:495–502. https://doi.org/10.1016/j.ijbiomac.2019.04.124

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Yadav SK, Pakade YB, Singh B, Yadav SC (2010a) Development of biodegradable nanoparticles for delivery of quercetin. Colloids Surf B: Biointerfaces 80(2):184–192. https://doi.org/10.1016/j.colsurfb.2010.06.002

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Yadav SK, Yadav SC (2010b) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75(1):1–18

    Article  CAS  PubMed  Google Scholar 

  • Kumari A, Kumar V, Yadav S (2012) Nanotechnology: a tool to enhance therapeutic values of natural plant products. Trends Med Res 7(2):34–42

    Article  CAS  Google Scholar 

  • Kwon SH, Kim SY, Ha KW, Kang MJ, Huh JS, Tae Jong I, Kim YM, Park YM, Kang KH, Lee S, Chang JY, Lee J, Choi YW (2007) Pharmaceutical evaluation of genistein-loaded pluronic micelles for oral delivery. Arch Pharm Res 30(9):1138–1143. https://doi.org/10.1007/bf02980249

    Article  CAS  PubMed  Google Scholar 

  • Lachman L, Lieberman HA, Kanig JL (1976) The theory and practice of industrial pharmacy. Lea & Febiger Philadelphia

    Google Scholar 

  • Lee S, D-h S, H-l P, Choi Y, Jung S (2003) Solubility enhancement of a hydrophobic flavonoid, luteolin by the complexation with cyclosophoraoses isolated from rhizobium meliloti. Antonie Van Leeuwenhoek 84(3):201

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Park H, Seo D, Choi Y, Jung S (2004) Synthesis and characterization of carboxymethylated cyclosophoraose, and its inclusion complexation behavior. Carbohydr Res 339(3):519–527

    Article  CAS  PubMed  Google Scholar 

  • Lee J-S, Hong DY, Kim ES, Lee HG (2017) Improving the water solubility and antimicrobial activity of silymarin by nanoencapsulation. Colloids Surf B: Biointerfaces 154:171–177. https://doi.org/10.1016/j.colsurfb.2017.03.004

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zheng J, Xiao H, McClements DJ (2012) Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocoll 27(2):517–528

    Article  CAS  PubMed  Google Scholar 

  • Li B, Harich K, Wegiel L, Taylor LS, Edgar KJ (2013a) Stability and solubility enhancement of ellagic acid in cellulose ester solid dispersions. Carbohydr Polym 92(2):1443–1450. https://doi.org/10.1016/j.carbpol.2012.10.051

    Article  CAS  PubMed  Google Scholar 

  • Li B, Konecke S, Harich K, Wegiel L, Taylor LS, Edgar KJ (2013b) Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability. Carbohydr Polym 92(2):2033–2040. https://doi.org/10.1016/j.carbpol.2012.11.073

    Article  CAS  PubMed  Google Scholar 

  • Li B, Konecke S, Wegiel LA, Taylor LS, Edgar KJ (2013c) Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices. Carbohydr Polym 98(1):1108–1116. https://doi.org/10.1016/j.carbpol.2013.07.017

    Article  CAS  PubMed  Google Scholar 

  • Li W, Zhan P, De Clercq E, Lou H, Liu X (2013d) Current drug research on PEGylation with small molecular agents. Prog Polym Sci 38(3):421–444. https://doi.org/10.1016/j.progpolymsci.2012.07.006

    Article  CAS  Google Scholar 

  • Li L, Liu Y, Xue Y, Zhu J, Wang X, Dong Y (2017) Preparation of a ferulic acid-phospholipid complex to improve solubility, dissolution, and B16F10 cellular melanogenesis inhibition activity. Chem Cent J 11(1):26–26. https://doi.org/10.1186/s13065-017-0254-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 23(1–3):3–25

    Article  CAS  Google Scholar 

  • Lodhi G, Kim Y-S, Hwang J-W, Kim S-K, Jeon Y-J, Je J-Y, Ahn C-B, Moon S-H, Jeon B-T, Park P-J (2014) Chitooligosaccharide and its derivatives: preparation and biological applications. Biomed Res Int 2014:13. https://doi.org/10.1155/2014/654913

    Article  CAS  Google Scholar 

  • Loftsson T (2017) Drug solubilization by complexation. Int J Pharm 531(1):276–280. https://doi.org/10.1016/j.ijpharm.2017.08.087

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Brewster ME (1996) Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci 85(10):1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Duchene D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329(1):1–11. https://doi.org/10.1016/j.ijpharm.2006.10.044

    Article  CAS  PubMed  Google Scholar 

  • Loftsson T, Jarho P, Másson M, Järvinen T (2005) Cyclodextrins in drug delivery. Expert Opin Drug Deliv 2(2):335–351. https://doi.org/10.1517/17425247.2.1.335

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Qiu Q, Luo X, Liu X, Sun J, Wang C, Lin X, Deng Y, Song Y (2019) Phyto-phospholipid complexes (phytosomes): a novel strategy to improve the bioavailability of active constituents. Asian J Pharm Sci 14(3):265–274. https://doi.org/10.1016/j.ajps.2018.05.011

    Article  PubMed  Google Scholar 

  • Mangal A, Bhadoriya SS, Joshi S, Agrawal G, Gupta A, Mandoria N (2011) Extraction of herbal drugs by using hydrotropy solublization phenomenon. Drugs 5:24. ​Pharm. App Sci., 2012; 2(1):63–74

    Google Scholar 

  • Martin A (1993) Physical pharmacy: physical chemical principles in the pharmaceutical sciences. BI Waverly. Pvt Ltd.

    Google Scholar 

  • McClements D, Decker E, Weiss J (2007) Emulsion-based delivery systems for lipophilic bioactive components. J Food Sci 72(8):R109–R124

    Article  CAS  PubMed  Google Scholar 

  • Md S, Kit B, Jagdish S, David D, Pandey M, Chatterjee L (2018) Development and in vitro evaluation of a Zerumbone loaded Nanosuspension drug delivery system. Crystals 8(7):286. https://doi.org/10.3390/cryst8070286

    Article  CAS  Google Scholar 

  • Mehnert W, Mäder K (2012) Solid lipid nanoparticles: Production, characterization and applications. Adv Drug Deliv Rev 64:83–101. https://doi.org/10.1016/j.addr.2012.09.021

    Article  Google Scholar 

  • Merisko-Liversidge E, Liversidge GG, Cooper ER (2003) Nanosizing: a formulation approach for poorly-water-soluble compounds. Eur J Pharm Sci 18(2):113–120

    Article  CAS  PubMed  Google Scholar 

  • Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaptation by gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231(4733):48–51

    Article  CAS  PubMed  Google Scholar 

  • Morales JO, Watts AB, McConville JT (2016) Mechanical particle-size reduction techniques. In Formulating Poorly Water Soluble Drugs (pp. 165–213). Springer, Cham.

    Google Scholar 

  • Mosharraf M, Nyström C (1995) The effect of particle size and shape on the surface specific dissolution rate of microsized practically insoluble drugs. Int J Pharm 122(1–2):35–47

    Article  CAS  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000a) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177

    Article  PubMed  Google Scholar 

  • Müller RH, Mäder K, Gohla S (2000b) Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 50(1):161–177. https://doi.org/10.1016/S0939-6411(00)00087-4

    Article  PubMed  Google Scholar 

  • Müller RH, Gohla S, Keck CM (2011) State of the art of nanocrystals – special features, production, nanotoxicology aspects and intracellular delivery. Eur J Pharm Biopharm 78(1):1–9. https://doi.org/10.1016/j.ejpb.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  • Mulligan C, Yong R, Gibbs B (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60(1–4):371–380

    Article  Google Scholar 

  • Nacsa A, Ambrus R, Berkesi O, Szabo-Revesz P, Aigner Z (2008) Water-soluble loratadine inclusion complex: analytical control of the preparation by microwave irradiation. J Pharm Biomed Anal 48(3):1020–1023

    Article  CAS  PubMed  Google Scholar 

  • Omari-Siaw E, Wang Q, Sun C, Gu Z, Zhu Y, Cao X, Firempong CK, Agyare R, Xu X, Yu J (2016) Tissue distribution and enhanced in vivo anti-hyperlipidemic-antioxidant effects of perillaldehyde-loaded liposomal nanoformulation against Poloxamer 407-induced hyperlipidemia. Int J Pharm 513(1–2):68–77

    Article  CAS  PubMed  Google Scholar 

  • Onoue S, Takahashi H, Kawabata Y, Seto Y, Hatanaka J, Timmermann B, Yamada S (2010) Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci 99(4):1871–1881

    Article  CAS  PubMed  Google Scholar 

  • Park S-H, Choi H-K (2006) The effects of surfactants on the dissolution profiles of poorly water-soluble acidic drugs. Int J Pharm 321(1–2):35–41

    Article  CAS  PubMed  Google Scholar 

  • Patel VR, Agrawal YK (2011) Nanosuspension: an approach to enhance solubility of drugs. J Adv Pharm Technol Res 2(2):81–87. https://doi.org/10.4103/2231-4040.82950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawar SS, Dahifale BR, Nagargoje SP, Shendge RS (2017) Nanosuspension technologies for delivery of drugs. Nanosci Nanotechnol Res 4(2):59–66. http://pubs.sciepub.com/nnr/4/2/4

    Google Scholar 

  • Piao J, Jang A, Choi Y, Tahir MN, Kim Y, Park S, Cho E, Jung S (2014) Solubility enhancement of α-naphthoflavone by synthesized hydroxypropyl cyclic-(1→ 2)-β-d-glucans (cyclosophoroases). Carbohydr Polym 101:733–740

    Article  CAS  PubMed  Google Scholar 

  • Pouton CW (1997) Formulation of self-emulsifying drug delivery systems. Adv Drug Deliv Rev 25(1):47–58

    Article  CAS  Google Scholar 

  • Puri A, Loomis K, Smith B, Lee J-H, Yavlovich A, Heldman E, Blumenthal R (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin J, Chen D, Lu W, Xu H, Yan C, Hu H, Chen B, Qiao M, Zhao X (2008) Preparation, characterization, and evaluation of liposomal ferulic acid in vitro and in vivo. Drug Dev Ind Pharm 34(6):602–608. https://doi.org/10.1080/03639040701833559

    Article  CAS  PubMed  Google Scholar 

  • Rabinow BE (2004) Nanosuspensions in drug delivery. Nat Rev Drug Discov 3(9):785–796. https://doi.org/10.1038/nrd1494

    Article  CAS  PubMed  Google Scholar 

  • Rachmawati H, Al Shaal L, Muller RH, Keck CM (2013) Development of curcumin nanocrystal: physical aspects. J Pharm Sci 102(1):204–214. https://doi.org/10.1002/jps.23335

    Article  CAS  PubMed  Google Scholar 

  • Rangel-Yagui CO, Pessoa A Jr, Tavares LC (2005) Micellar solubilization of drugs. J Pharm Pharm Sci 8(2):147–163

    CAS  PubMed  Google Scholar 

  • Ravve A (2013) Principles of polymer chemistry. Springer Science & Business Media.

    Google Scholar 

  • Recharla N, Riaz M, Ko S, Park S (2017) Novel technologies to enhance solubility of food-derived bioactive compounds: a review. J Funct Foods 39:63–73

    Article  CAS  Google Scholar 

  • Sahu A, Kasoju N, Bora U (2008) Fluorescence study of the curcumin− casein micelle complexation and its application as a drug nanocarrier to cancer cells. Biomacromolecules 9(10):2905–2912

    Article  CAS  PubMed  Google Scholar 

  • Salvi VR, Pawar P (2019) Nanostructured lipid carriers (NLC) system: a novel drug targeting carrier. J Drug Delivery Sci Technol 51:255–267. https://doi.org/10.1016/j.jddst.2019.02.017

    Article  CAS  Google Scholar 

  • Saoji SD, Raut NA, Dhore PW, Borkar CD, Popielarczyk M, Dave VS (2016) Preparation and evaluation of phospholipid-based complex of standardized Centella extract (SCE) for the enhanced delivery of Phytoconstituents. AAPS J 18(1):102–114. https://doi.org/10.1208/s12248-015-9837-2

    Article  CAS  PubMed  Google Scholar 

  • Sapra K, Sapra A, Singh S, Kakkar S (2012) Self emulsifying drug delivery system: a tool in solubility enhancement of poorly soluble drugs. Indo Global J Pharm 2(3):313–332

    CAS  Google Scholar 

  • Savjani KT, Gajjar AK, Savjani JK (2012) Drug solubility: importance and enhancement techniques. ISRN Pharm 2012

    Google Scholar 

  • Seo S-W, Han H-K, Chun M-K, Choi H-K (2012) Preparation and pharmacokinetic evaluation of curcumin solid dispersion using Solutol® HS15 as a carrier. Int J Pharm 424(1):18–25. https://doi.org/10.1016/j.ijpharm.2011.12.051

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Maddineni S, Lu J, Repka MA (2013) Melt extrusion with poorly soluble drugs. Int J Pharm 453(1):233–252. https://doi.org/10.1016/j.ijpharm.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  • Shah MK, Khatri P, Vora N, Patel NK, Jain S, Lin S, A.M. (Ed.) (2019) Chapter 5 – lipid nanocarriers: preparation, characterization and absorption mechanism and applications to improve oral bioavailability of poorly water-soluble drugs. In: Grumezescu AM (ed) Biomedical applications of nanoparticles. William Andrew Publishing, pp 117–147

    Google Scholar 

  • Shao B, Cui C, Ji H, Tang J, Wang Z, Liu H, Qin M, Li X, Wu L (2015) Enhanced oral bioavailability of piperine by self-emulsifying drug delivery systems: in vitro, in vivo and in situ intestinal permeability studies. Drug Deliv 22(6):740–747. https://doi.org/10.3109/10717544.2014.898109

    Article  CAS  PubMed  Google Scholar 

  • Sharma D, Soni M, Kumar S, Gupta G (2009) Solubility enhancement–eminent role in poorly soluble drugs. Res J Pharm Technol 2(2):220–224

    CAS  Google Scholar 

  • Shen G, Cheng L, Wang LQ, Zhang LH, Shen BD, Liao WB, Li JJ, Zheng J, Xu R, Yuan HL (2016) Formulation of dried lignans nanosuspension with high redispersibility to enhance stability, dissolution, and oral bioavailability. Chin J Nat Med 14(10):757–768. https://doi.org/10.1016/S1875-5364(16)30090-5

    Article  PubMed  Google Scholar 

  • Shulman M, Cohen M, Soto-Gutierrez A, Yagi H, Wang H, Goldwasser J, Lee-Parsons CW, Benny-Ratsaby O, Yarmush ML, Nahmias Y (2011) Enhancement of naringenin bioavailability by complexation with hydroxypropoyl-β-cyclodextrin. PLoS One 6(4):e18033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqui AA, Iram F, Siddiqui S, Sahu K (2014) Role of natural products in drug discovery process. Int J Drug Dev Res 6(2):172–204

    CAS  Google Scholar 

  • Singh M, Sharma R, Banerjee U (2002) Biotechnological applications of cyclodextrins. Biotechnol Adv 20(5–6):341–359

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Bharti N, Madan J, Hiremath S (2010) Characterization of cyclodextrin inclusion complexes—a review. J Pharm Sci Technol 2(3):171–183

    CAS  Google Scholar 

  • Singh RP, Gangadharappa HV, Mruthunjaya K (2017) Phospholipids: unique carriers for drug delivery systems. J Drug Deliv Sci Technol 39:166–179. https://doi.org/10.1016/j.jddst.2017.03.027

    Article  CAS  Google Scholar 

  • Small P (1953) Some factors affecting the solubility of polymers. J Appl Chem 3(2):71–80

    Article  CAS  Google Scholar 

  • Stella V, Rajewski R (1992) Derivatives of cyclodextrins exhibiting enhanced aqueous solubility and the use thereof. Google Patentsdoi

    Google Scholar 

  • Summerlin N, Soo E, Thakur S, Qu Z, Jambhrunkar S, Popat A (2015) Resveratrol nanoformulations: challenges and opportunities. Int J Pharm 479(2):282–290. https://doi.org/10.1016/j.ijpharm.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  • Sun M, Gao Y, Pei Y, Guo C, Li H, Cao F, Yu A, Zhai G (2010) Development of nanosuspension formulation for oral delivery of quercetin. J Biomed Nanotechnol 6(4):325–332

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wang F, Sui Y, She Z, Zhai W, Wang C, Deng Y (2012) Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals. Int J Nanomedicine 7:5733–5744. https://doi.org/10.2147/IJN.S34365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutradhar KB, Khatun S, Luna IP (2013) Increasing possibilities of Nanosuspension. J Nanotechnol 2013:12. https://doi.org/10.1155/2013/346581

    Article  CAS  Google Scholar 

  • Tamjidi F, Shahedi M, Varshosaz J, Nasirpour A (2013) Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules. Innovative Food Sci Emerg Technol 19:29–43

    Article  CAS  Google Scholar 

  • Teixeira C, Mendonca L, Bergamaschi M, Queiroz R, Souza G, Antunes L, Freitas L (2016) Microparticles containing curcumin solid dispersion: stability, bioavailability and anti-inflammatory activity. AAPS PharmSciTech 17(2):252–261

    Article  CAS  PubMed  Google Scholar 

  • Tiwari G, Tiwari R, Rai AK (2010) Cyclodextrins in delivery systems: applications. J Pharm Bioallied Sci 2(2):72–79. https://doi.org/10.4103/0975-7406.67003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran TH, Guo Y, Song D, Bruno RS, Lu X (2014) Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J Pharm Sci 103(3):840–852

    Article  CAS  PubMed  Google Scholar 

  • Tran P, Pyo Y-C, Kim D-H, Lee S-E, Kim J-K, Park J-S (2019) Overview of the manufacturing methods of solid dispersion Technology for Improving the solubility of poorly water-soluble drugs and application to anticancer drugs. Pharmaceutics 11(3):132. https://doi.org/10.3390/pharmaceutics11030132

    Article  CAS  PubMed Central  Google Scholar 

  • Trollope L, Cruickshank DL, Noonan T, Bourne SA, Sorrenti M, Catenacci L, Caira MR (2014) Inclusion of trans-resveratrol in methylated cyclodextrins: synthesis and solid-state structures. Beilstein J Org Chem 10:3136–3151. https://doi.org/10.3762/bjoc.10.331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upreti M, Strassburger K, Chen YL, Wu S, Prakash I (2011) Solubility enhancement of steviol glycosides and characterization of their inclusion complexes with gamma-cyclodextrin. Int J Mol Sci 12(11):7529–7553. https://doi.org/10.3390/ijms12117529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hoogevest P (2017) Review – an update on the use of oral phospholipid excipients. Eur J Pharm Sci 108:1–12. https://doi.org/10.1016/j.ejps.2017.07.008

    Article  CAS  PubMed  Google Scholar 

  • Vemula VR, Lagishetty V, Lingala S (2010) Solubility enhancement techniques. Int J Pharm Sci Rev Res 5(1):41–51

    CAS  Google Scholar 

  • Verma S, Gokhale R, Burgess DJ (2009) A comparative study of top-down and bottom-up approaches for the preparation of micro/nanosuspensions. Int J Pharm 380(1–2):216–222

    Article  CAS  PubMed  Google Scholar 

  • Watkins R, Wu L, Zhang C, Davis RM, Xu B (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wen H, Jung H, Li X (2015) Drug delivery approaches in addressing clinical pharmacology-related issues: opportunities and challenges. AAPS J 17(6):1327–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams HD, Trevaskis NL, Charman SA, Shanker RM, Charman WN, Pouton CW, Porter CJH (2013) Strategies to address low drug solubility in discovery and development. Pharmacol Rev 65(1):315–499. https://doi.org/10.1124/pr.112.005660

    Article  CAS  PubMed  Google Scholar 

  • Xia W, Liu P, Zhang J, Chen J (2011) Biological activities of chitosan and chitooligosaccharides. Food Hydrocoll 25(2):170–179

    Article  CAS  Google Scholar 

  • Xu G, Shi H, Ren L, Gou H, Gong D, Gao X, Huang N (2015) Enhancing the anti-colon cancer activity of quercetin by self-assembled micelles. Int J Nanomedicine 10:2051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen C-C, Chen Y-C, Wu M-T, Wang C-C, Wu Y-T (2018) Nanoemulsion as a strategy for improving the oral bioavailability and anti-inflammatory activity of andrographolide. Int J Nanomedicine 13:669–680. https://doi.org/10.2147/IJN.S154824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Peng P, Dharap SS, Wang Y, Mehlig M, Chandna P, Zhao H, Filpula D, Yang K, Borowski V, Borchard G, Zhang Z, Minko T (2005) Antitumor activity of poly(ethylene glycol)–camptothecin conjugate: the inhibition of tumor growth in vivo. J Control Release 110(1):90–102. https://doi.org/10.1016/j.jconrel.2005.09.050

    Article  CAS  PubMed  Google Scholar 

  • Zafar F, Jahan N, Khalil Ur R, Bhatti HN (2019) Increased Oral bioavailability of Piperine from an optimized Piper nigrum Nanosuspension. Planta Med 85(03):249–257. https://doi.org/10.1055/a-0759-2208

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Ma PX (2013) Cyclodextrin-based supramolecular systems for drug delivery: recent progress and future perspective. Adv Drug Deliv Rev 65(9):1215–1233. https://doi.org/10.1016/j.addr.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q-F, Nie H-C, Shangguang X-C, Yin Z-P, Zheng G-D, Chen J-G (2012) Aqueous solubility and stability enhancement of astilbin through complexation with cyclodextrins. J Agric Food Chem 61(1):151–156

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Chiu Li L, Mao S (2014) Nanosuspensions of poorly water soluble drugs prepared by top-down technologies. Curr Pharm Des 20(3):388–407

    Article  CAS  PubMed  Google Scholar 

  • Zhang K, Zhang M, Liu Z, Zhang Y, Gu L, Hu G, Chen X, Jia J (2016a) Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats. Fitoterapia 113:102–109. https://doi.org/10.1016/j.fitote.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Z, Zhang K, Yang G, Wang Z, Zhao J, Hu R, Feng N (2016b) Ethyl oleate-containing nanostructured lipid carriers improve oral bioavailability of trans-ferulic acid ascompared with conventional solid lipid nanoparticles. Int J Pharm 511(1):57–64. https://doi.org/10.1016/j.ijpharm.2016.06.131

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xie Z, Zhang N, Zhong J (2017) Nanosuspension drug delivery system: preparation, characterization, postproduction processing, dosage form, and application. In Nanostructures for Drug Delivery (pp. 413–443). Elsevier.

    Google Scholar 

  • Zhou D-Y, Rakariyatham K (2019) Phospholipids. In: Melton L, Shahidi F, Varelis P (eds) Encyclopedia of food chemistry. Academic, Oxford, pp 546–549

    Chapter  Google Scholar 

  • Zu Y, Wu W, Zhao X, Li Y, Wang W, Zhong C, Zhang Y, Zhao X (2014) Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int J Pharm 471(1–2):366–376. https://doi.org/10.1016/j.ijpharm.2014.05.049

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Chella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jain, H., Chella, N. (2020). Solubility Enhancement Techniques for Natural Product Delivery. In: Saneja, A., Panda, A., Lichtfouse, E. (eds) Sustainable Agriculture Reviews 43. Sustainable Agriculture Reviews, vol 43. Springer, Cham. https://doi.org/10.1007/978-3-030-41838-0_2

Download citation

Publish with us

Policies and ethics