Skip to main content

Data-Driven Smart Sustainable Cities: A Conceptual Framework for Urban Intelligence Functions and Related Processes, Systems, and Sciences

  • Chapter
  • First Online:
Advances in the Leading Paradigms of Urbanism and their Amalgamation

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

Cities epitomize complex systems par excellence, more than the sum of their parts and developed through a multitude of individual and collective decisions from the bottom up to the top down. Data-driven smart sustainable cities are becoming even more complex with the very technologies being used to understand and deal with them in terms of their operational functioning, management, planning, and design. Therefore, there is a need for more innovative solutions and sophisticated approaches as to the way such cities can be monitored, understood, and analyzed so as to be more efficiently planned and designed and more effectively operated and managed in line with the long-term vision of sustainability. This chapter examines data-driven smart sustainable urbanism, focusing on new urban intelligence functions and related processes, systems, and sciences. Further, it proposes and illustrates a conceptual framework for data-driven smart sustainable cities on the basis of advanced technologies and data-intensive approaches to science. To achieve these aims, a thematic analysis method is adopted to cope with the vast body of the multidisciplinary literature. We conclude that urban intelligence functions as new conceptions of how data-driven smart sustainable cities function play a pivotal role in facilitating the synergy between urban planning, design, management, and operational functioning in terms of producing the expected benefits of sustainability. The proposed framework represents a conceptual structure intended to serve as a guide for building a model of data-driven smart sustainable cities that can expand the structure into something useful on the basis of further qualitative analyses, empirical investigations, and practical implementations. This work contributes to bringing data-analytic thinking and intelligence to the domain of smart sustainable urbanism, and draws special attention to the clear prospect of big data science and analytics to transform the future form of such urbanism and tackle the kind of complexities it embodies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahvenniemi, H., Huovila, A., Pinto-Seppä, I., & Airaksinen, M. (2017). What are the differences between sustainable and smart cities? Cities, 60, 234–245.

    Google Scholar 

  • Al Nuaimi, E., Al Neyadi, H., Nader, M., & Al-Jaroodi, J. (2015). Applications of big data to smart cities. Journal of Internet Services and Applications, 6(25), 1–15.

    Google Scholar 

  • Anderson, C. (2008). The end of theory: The data deluge makes the scientific method obsolete. Wired, 23 June 2008. Retrieved October 12, 2012, from http://www.wired.com/science/discoveries/magazine/16-07/pb_theory.

  • Angelidou, M., Psaltoglou, A., Komninos, N., Kakderi, C., Tsarchopoulos, P., & Panori, A. (2017). Enhancing sustainable urban development through smart city applications. Journal of Science and Technology Policy Management, 1–25.

    Google Scholar 

  • Batty, M. (2013). Big data, smart cities and city planning. Dialogues in Human Geography, 3(3), 274–279.

    Google Scholar 

  • Batty, M., Axhausen, K. W., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., et al. (2012). Smart cities of the future. European Physical Journal, 214, 481–518.

    Google Scholar 

  • Bell, G., Hey, T., & Szalay, A. (2009). Computer science: Beyond the data deluge. Science, 323(5919), 1297–1298.

    Google Scholar 

  • Benham-Hutchins, M., & Clancy, T. (2010). Social networks as embedded complex adaptive systems. JONA, 40(9), 352–356.

    Google Scholar 

  • Bettencourt, L. M. A. (2014). The uses of big data in cities. Santa Fe, New Mexico: Santa Fe Institute.

    Google Scholar 

  • Bibri, S. E. (2018a). Smart sustainable cities of the future: The untapped potential of big data analytics and context aware computing for advancing sustainability. Berlin, Germany: Springer.

    Google Scholar 

  • Bibri, S. E. (2018b). The IoT for smart sustainable cities of the future: An analytical framework for sensor-based big data applications for environmental sustainability. Sustainable Cities and Society, 38, 230–253.

    Google Scholar 

  • Bibri, S. E. (2018c). A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies. Sustainable Cities and Society, 38, 758–794.

    Google Scholar 

  • Bibri, S. E. (2018d). A foundational framework for smart sustainable city development: Theoretical, disciplinary, and discursive dimensions and their synergies. Sustainable Cities and Society, 38, 758–794.

    Google Scholar 

  • Bibri, S. E. (2019a). On the sustainability of smart and smarter cities in the era of big data: An interdisciplinary and transdisciplinary literature review. Journal of Big Data, 6(25), 2–64.

    Google Scholar 

  • Bibri, S. E. (2019b). Big data science and analytics for smart sustainable urbanism: Unprecedented paradigmatic shifts and practical advancements. Berlin, Germany: Springer.

    Google Scholar 

  • Bibri, S. E. (2019c). The anatomy of the data-driven smart sustainable city: Instrumentation, datafication, computerization and related applications. Journal of Big Data, 6, 59.

    Google Scholar 

  • Bibri, S. E. (2019d). Data-driven smart sustainable urbanism: The intertwined societal factors underlying its materialization, success, expansion, and evolution. Geojournal (in press).

    Google Scholar 

  • Bibri, S. E. (2019e). The sciences underlying smart sustainable urbanism: Unprecedented paradigmatic and scholarly shifts in light of big data science and analytics. Smart Cities, 2(2), 179–213.

    Google Scholar 

  • Bibri, S. E. (2019f). Advances in smart sustainable urbanism: Data-driven and -intensive scientific approaches to wicked problems. In Proceedings of the 4th Annual International Conference on Smart City Applications, ACM, Oct 2–4, Casablanca, Morocco.

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2017a). Smart sustainable cities of the future: An extensive interdisciplinary literature review. Sustainable Cities and Society, 31, 183–212.

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2017b). ICT of the new wave of computing for sustainable urban forms: Their big data and context-aware augmented typologies and design concepts. Sustainable Cities and Society, 32, 449–474.

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2017c). The core enabling technologies of big data analytics and context-aware computing for smart sustainable cities: A review and synthesis. Journal of Big Data, 4(38), 1–50.

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2018). The big data deluge for transforming the knowledge of smart sustainable cities: A data mining framework for urban analytics. In Proceedings of the 3d Annual International Conference on Smart City Applications, ACM, Oct 11–12, Tetouan, Morocco.

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2019a). A Scholarly Backcasting Approach to a Novel Model for Smart Sustainable Cities of the Future: Strategic Problem Orientation City, Territory, and Architecture, 6(3), 1–27.

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2019b). Generating a Vision for Smart Sustainable Cities of the Future: A Scholarly Backcasting Approach. European Journal of Futures Research, 7(5), 1–20.

    Google Scholar 

  • Bibri, S. E., & Krogstie, J. (2020). The emerging data-driven smart city and its innovative applied solutions for sustainability: The cases of London and Barcelona. Journal of Energy Informatics (in press).

    Google Scholar 

  • Bibri, S. E., Krogstie, J., & Gouttaya, N. (2020). Big data science and analytics for tackling smart sustainable urbanism complexities. In M. Ben Ahmed, A. Boudhir, D. Santos, M. El Aroussi, Ä°. Karas (Eds.), Innovations in Smart Cities Applications Edition 3. SCA 2019. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Cham.

    Google Scholar 

  • Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77–101.

    Google Scholar 

  • Clark, W. C. (2007). Sustainability science: A room of its own. Proceedings of the National Academy of Sciences of the United States of America, 104, 1737–1738.

    Google Scholar 

  • Clark, W. C., & Dickson, N. M. (2003). Sustainability science: The emerging research program. Proceedings of the National Academy of Sciences of the United States of America, 100(14), 8059–8061.

    Google Scholar 

  • Chourabi, H., Nam, T., Walker, S., Gil-Garcia, J. R., Mellouli, S., Nahon, K., et al. (2012). Understanding smart cities: An integrative framework. In Proceedings of the Annual Hawaii International Conference on System Sciences (pp. 2289–2297). https://doi.org/10.1109/HICSS.2012.615.

  • Cukier, K., & Mayer-Schoenberger, V. (2013). The rise of big data. Foreign Affairs (May/June), 28–40.

    Google Scholar 

  • David, D. (2017). Environment and urbanization. The International Encyclopedia of Geography, 24(1), 31–46. https://doi.org/10.1002/9781118786352.wbieg0623.

    Article  Google Scholar 

  • Dorogovtsev, S. N., & Mendes, J. F. F. (2003). Evolution of networks: From biological networks to the Internet and WWW. Oxford University Press. ISBN 0-19-851590-1.

    Google Scholar 

  • Elliott, H., Brannen, J., Phoenix, A., Barlow, A., Morris, P., Smart, C., Smithson, J., & Bauer, E. (2013). Analysing qualitative data in groups: Process and practice. Southampton: National Centre for Research Methods Working Paper, NCRM/NOVELLA.

    Google Scholar 

  • Estevez, E., Lopes, N. V., & Janowski, T. (2016). Smart sustainable cities. Reconnaissance Study, 330.

    Google Scholar 

  • Foth, M. (2009). Handbook of research on urban informatics: The practice and promise of the real-time city. Hershey, PA: Information Science Reference.

    Google Scholar 

  • Gianni, D., D’Ambrogio, A., & Tolk, A. (Eds.). (2014). Modeling and simulation-based systems engineering handbook (1st ed.). CRC Press.

    Google Scholar 

  • Godfrey-Smith, P. (2001). Environmental complexity and the evolution of cognition. In R. J. Sternberg & J. C. Kaufman (Eds.), The evolution of intelligence (pp. 223–250). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Haettenschwiler, P. (1999). Neues anwenderfreundliches Konzept der Entscheidungsunterstützung. Gutes Entscheiden in Wirtschaft, Politik und Gesellschaft (pp. 189–208). Zurich: vdf Hochschulverlag AG.

    Google Scholar 

  • Han, J., Meng, X., Zhou, X., Yi, B., Liu, M., & Xiang, W.-N. (2016). A long-term analysis of urbanization process, landscape change, and carbon sources and sinks: A case study in China’s Yangtze River Delta region. Journal of Cleaner Production, 141, 1040–1050. https://doi.org/10.1016/j.jclepro.2016.09.177.

    Article  Google Scholar 

  • Hashem, I. A. T., Chang, V., Anuar, N. B., Adewole, K., Yaqoob, I., Gani, A., et al. (2016). The role of big data in smart city. International Journal of Information Management, 36, 748–758.

    Google Scholar 

  • Hayek, F. (1978). The results of human action but not of human design. In New studies in philosophy, politics, economics (pp. 96–105). Chicago: University of Chicago Press.

    Google Scholar 

  • Holloway, I., & Todres, L. (2003). The status of method: Flexibility, consistency and coherence. Qualitative Research, 3(3), 345–357.

    Google Scholar 

  • Höjer, M., & Wangel, S. (2015). Smart sustainable cities: Definition and challenges. In L. Hilty & B. Aebischer (Eds.), ICT innovations for sustainability (pp. 333–349). Berlin: Springer.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (Eds.). (2000). Choices, values and frames. New York: Cambridge University Press and the Russell Sage Foundation.

    Google Scholar 

  • Kelling, S., Hochachka, W., Fink, D., Riedewald, M., Caruana, R., Ballard, G., et al. (2009). Data-intensive science a new paradigm for biodiversity studies. BioScience, 59, 613–620.

    Google Scholar 

  • Kates, R., Clark, W., Corell, R., Hall, J., & Jaeger, C. (2001). Sustainability science. Science (Science), 292(5517), 641–642.

    Google Scholar 

  • Khanac, Z., Pervaiz, Z., & Abbasi, A. G. (2017). Towards a secure service provisioning framework in a smart city environment. Future Generation Computer Systems, 77, 112–135.

    Google Scholar 

  • Kieffer, S. W., Barton, P., Palmer, A. R., Reitan, P. H., & Zen, E. (2003). Megascale events: Natural disasters and human behavior. The Geological Society of America Abstracts with Programs, 432.

    Google Scholar 

  • Kitchin, R. (2014). The real-time city? Big data and smart urbanism. GeoJournal, 79, 1–14.

    Google Scholar 

  • Kitchin, R. (2015). Data-driven, networked urbanism. https://doi.org/10.2139/ssrn.2641802.

  • Kitchin, R. (2016). The ethics of smart cities and urban science. Philosophical Transactions of the Royal Society A, 374, 20160115.

    Google Scholar 

  • Kitchin, R., Coletta, C., Evans, L., Heaphy, L., & MacDonncha, D. (2017). Smart cities, urban technocrats, epistemic communities and advocacy coalitions (The Programmable City Working Paper 26). Retrieved from http://progcity.maynoothuniversity.ie/2017/03/new-paper-smart-cities-urban-technocrats-epistemic-communities-and-advocacy-coalitions/.

  • Kitchin, R., & Dodge, M. (2011). Code/space: Software and everyday life. Cambridge, MA: MIT Press.

    Google Scholar 

  • Kitchin, R., Lauriault, T. P., & McArdle, G. (2015). Knowing and governing cities through urban indicators, city benchmarking & real-time dashboards. Regional Studies, Regional Science, 2, 1–28.

    Google Scholar 

  • Komiyama, H., & Takeuchi, K. (2006). Sustainability science: Building a new discipline. Sustainability Science, 1, 1–6.

    Google Scholar 

  • Konugurthi, P. K., Agarwal, K., Chillarige, R. R., & Buyya, R. (2016). The anatomy of big data computing. Software: Practice and Experience (SPE), 46(1), 79–105.

    Google Scholar 

  • Kramers, A., Höjer, M., Lövehagen, N., & Wangel, J. (2014). Smart sustainable cities: Exploring ICT solutions for reduced energy use in cities. Environmental Modelling and Software, 56, 52–62.

    Google Scholar 

  • Lee, K. (2000). Global sustainable development: Its intellectual and historical roots: Global sustainable development in the 21st Century (pp. 31–47). Edinburgh University Press.

    Google Scholar 

  • Majdandzic, A., Podobnik, B., Buldyrev, S. V., Kenett, D. Y., Havlin, S., & Eugene Stanley, H. (2013). Spontaneous recovery in dynamical networks. Nature Physics, 10(1), 34–38.

    Google Scholar 

  • Majdandzic, A., Braunstein, L. A., Curme, C., Vodenska, I., Levy-Carciente, S., Eugene Stanley, H., et al. (2016). Multiple tipping points and optimal repairing in interacting networks. Nature Communications, 7, 10850.

    Google Scholar 

  • Miles Matthew, B., & Michael Huberman, A. (1994). Qualitative data analysis: An expanded source book (2nd ed.). Newbury Park, CA: Sage.

    Google Scholar 

  • Miller, H. J. (2010). The data avalanche is here. Shouldn’t we be digging? Journal of Regional Science, 50, 181–201.

    Google Scholar 

  • Newman, M. (2010). Networks: An introduction. Oxford University Press.

    Google Scholar 

  • Nikitin, K., Lantsev, N., Nugaev, A., & Yakovleva, A. (2016). Data-driven cities: From concept to applied solutions. PricewaterhouseCoopers (PwC). Retrieved from http://docplayer.net/50140321-From-concept-to-applied-solutions-data-driven-cities.html.

  • Pagliara, F., de Bok, M., Simmonds, D., & Wilson, A. (Eds.). (2013). Employment location in cities and regions: Models and applications. Heidelberg: Springer.

    Google Scholar 

  • Paley, J., & Gail, E. (2011). Complexity theory as an approach to explanation in healthcare: A critical discussion. International Journal of Nursing Studies, 48, 269–279.

    Google Scholar 

  • Pantelis, K., & Aija, L. (2013). Understanding the value of (big) data. In Big Data 2013 IEEE International Conference on IEEE (pp. 38–42).

    Google Scholar 

  • Power, D. J. (2002). Web-based and model-driven decision support systems: Concepts and issues. In Proceedings of the Americas Conference on Information Systems, Long Beach, California.

    Google Scholar 

  • Prigogine, I. (1997). The end of certainty. New York: The Free Press.

    Google Scholar 

  • Rathore, M. M., Won-HwaHong, A. P., Seo, H. C., Awan, I., & Saeed, S. (2018). Exploiting IoT and bigdata analytics: Defining smart digital city using real-time urban data. Journal of Sustainable Cities and Society, 40, 600–610.

    Google Scholar 

  • Ratti, C., & Offenhuber, D. (2014). Decoding the city: How big data can change urbanism. Basel, Switzerland: Birkhauser Verlag AG.

    Google Scholar 

  • Reitan, P. (2005). Sustainability science- and what’s needed beyond science. Sustainability: Science, Practice and Policy, 1(1), 77–80.

    Google Scholar 

  • Rittel, H. W. J. (1969). Panel on policy sciences. American Association for the Advancement of Science, 4, 155.

    Google Scholar 

  • Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4(2), 155–169.

    Google Scholar 

  • Shahrokni, H., Ã…rman, L., Lazarevic, D., Nilsson, A., & Brandt, N. (2015). Implementing smart urban metabolism in the Stockholm Royal Seaport: Smart city SRS. Journal of Industrial Ecology, 19(5), 917–929.

    Google Scholar 

  • Simon, H. A. (1965). The new science of management decisions. In Herbert A. Simon (Ed.), The shape of automation for men and management. New York: Harper and Row.

    Google Scholar 

  • Simon, H. A. (1976). Administrative behavior (3rd ed.). New York: The Free Press.

    Google Scholar 

  • Sprague, R. (1980). A framework for the development of decision support systems. MIS Quarterly, 4(4), 1–25.

    Google Scholar 

  • Sprague, R. H., & Carlson, E. D. (1982). Building effective decision support systems. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Yaneer, B.-Y. (2002). General features of complex systems. In Encyclopedia of life support systems. Oxford, UK: EOLSS UNESCO Publishers.

    Google Scholar 

  • Yigitcanlar, T., & Lee, S. H. (2013). Korean ubiquitous-eco-city: A smart-sustainable urban form or a branding hoax? Technological Forecasting and Social Change, 89, 100–114.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Elias Bibri .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bibri, S. (2020). Data-Driven Smart Sustainable Cities: A Conceptual Framework for Urban Intelligence Functions and Related Processes, Systems, and Sciences. In: Advances in the Leading Paradigms of Urbanism and their Amalgamation. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-41746-8_6

Download citation

Publish with us

Policies and ethics