Skip to main content

Functionalization Reactions Catalyzed by Activation Enzymes

  • Chapter
  • First Online:
Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense

Abstract

Activation enzymes catalyze oxidation, reduction, and hydrolysis reactions, resulting in the introduction of functional groups to lipophilic foreign compounds, thus increasing the water solubility of parent compounds and facilitating their excretion from the body. The functional reactions introduced to foreign compounds include N-oxidation, S-oxidation, aromatic and aliphatic hydroxylation, O- and N-dealkylation, hydrolysis, and epoxidation. Functionalization reactions are catalyzed by activation enzymes, including cytochrome P450 oxidase, flavin monooxygenase, amine oxidase, nitroreductase, azoreductase, molybdenum hydroxylase, epoxide hydrolase, alcohol dehydrogenase, and aldehyde dehydrogenase. Oxidation reactions occur at carbon and nitrogen atoms or unsaturated hydrocarbon while reduction reactions at nitrogen atom or carbonyl group and hydrolysis reactions at ester, amide, or epoxide group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 16 June 2020

    After initial publication of the book, various errors were identified that needed correction. All corrections listed below have been updated within the current version.

Bibliography

  • Beedham C (1985) Molybdenum hydroxylases as drug-metabolizing enzymes. Drug Metab Rev 16(1- 2):119–156

    Article  CAS  PubMed  Google Scholar 

  • Beedham C (1998) Molybdenum hydroxylases. In: Gorrod JW, Oeschlager H, Caldwell J (eds) Metabolism of xenobiotics. Taylor and Francis, London, pp 51–58

    Google Scholar 

  • Benedetti MS (2001) Biotransformation of xenobiotics by amine oxidases. Fundam Clin Pharmacol 15(2):75–84

    Article  CAS  PubMed  Google Scholar 

  • Benedetti MS, Dostert P (1994) Contribution of amine oxidases to the metabolism of xenobiotics. Drug Metab Rev 26(3):507–535

    Article  CAS  PubMed  Google Scholar 

  • Cashman JR (2000) Human flavin-containing monooxygenase: substrate specificity and role in drug metabolism. Curr Drug Metab 1(2):181–191

    Article  CAS  PubMed  Google Scholar 

  • Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100

    Article  CAS  PubMed  Google Scholar 

  • Chen CH (2012) Activation and detoxification enzymes: functions and implications. Springer, New York

    Book  Google Scholar 

  • Christofferson A, Wilkie J (2009) Mechanism of CB1954 reduction by Escherichia coli nitroreductase. Biochem Soc Trans 37(pt 2):413–418

    Article  CAS  PubMed  Google Scholar 

  • Dawson JH (1998) Probing structure-function relations in heme-containing oxygenases and peroxidases. Science 240:433–439

    Article  Google Scholar 

  • Edmondson DE, Mattevi A, Binda C, Li M, Hubálek F (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11(15):1983–1993

    Article  CAS  PubMed  Google Scholar 

  • Forrest GL, Gonzalez B (2000) Carbonyl reductase. Chem Biol Interact 129(1–2):21–40

    Article  CAS  PubMed  Google Scholar 

  • Guengerich FP (1991a) Reactions and significance of cytochrome P-450 enzymes. J Biol Chem 266(16):10019–10022

    CAS  PubMed  Google Scholar 

  • Guengerich FP (1996) The chemistry of cytochrome P450 reactions. In: Ioannides C (ed) Cytochrome P450: metabolic and toxicological aspects. CRC Press, Boca Raton, pp 55–74

    Google Scholar 

  • Guengerich FP, Peterson LA, Böcker RH (1988) Cytochrome P-450-catalyzed hydroxylation and carboxylic acid ester cleavage of Hantzsch pyridine esters. J Biol Chem 263(17):8176–8183

    CAS  PubMed  Google Scholar 

  • Guengerich FP, Shimada T (1991b) Oxidation of toxic and carcinogenic chemicals by human cytochrome P-450 enzymes. Chem Res Toxicol 4(4):391–407

    Article  CAS  PubMed  Google Scholar 

  • Heikkila RE, Kindt MV, Sonsalla PK, Giovanni A, Youngster SK, McKeown KA, Singer TP (1988) Importance of monoamine oxidase A in the bioactivation of neurotoxic analogs of 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine. Proc Natl Acad Sci 85(16):6172–6176

    Article  CAS  PubMed  Google Scholar 

  • Hodgson E, Levi PE (1992) The role of the flavin-containing monooxygenase (EC 1.14.13.8) in the metabolism and mode of action of agricultural chemicals. Xenobiotica 22(9–10):1175–1183

    Article  CAS  PubMed  Google Scholar 

  • Ioannides C (ed) (2002) Enzyme systems that metabolise drugs and other xenobiotics. Wiley, New York

    Google Scholar 

  • Ito K, Nakanishi M, Lee WC, Zhi Y, Sasaki H, Zenno S, Saigo K, Kitade Y, Tanokura M (2008) Expansion of substrate specificity and catalytic mechanism of azoreductase by X-ray crystallography and site-directed mutagenesis. J Biol Chem 283(20):13889–13896

    Article  CAS  PubMed  Google Scholar 

  • Koder RL, Haynes CA, Rodgers ME, Rodgers DW, Miller AF (2002) Flavin thermodynamics explain the oxygen insensitivity of enteric nitroreductases. Biochemistry 41(48):14197–14205

    Article  CAS  PubMed  Google Scholar 

  • Krenitsky TA, Neil SM, Elion GB, Hitchings GH (1972) A comparison of the specificities of xanthine oxidase and aldehyde oxidase. Arch Biochem Biophys 150(2):585–599

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni AP, Hodgson E (1984) The metabolism of insecticides: the role of monooxygenase enzymes. Annu Rev Pharmacol Toxicol 24:19–42

    Article  CAS  PubMed  Google Scholar 

  • Li R, Bianchet MA, Talalay P, Amzel LM (1995) The three-dimensional structure of NAD(P)H: quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc Natl Acad Sci U S A 92(19):8846–8850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. Chem Rev 104(9):3947–3980

    Article  CAS  PubMed  Google Scholar 

  • de Montellano O, Paul R, de Montellano O (2005) Cytochrome P450: structure, mechanism, and biochemistry, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  • O’Brien PJ (2000) Peroxidases. Chem Biol Interact 129:113–139

    Article  PubMed  Google Scholar 

  • Parkinson A, Ogilvie BW (2008) Biotransformation of xenobiotics. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons. McGrawHill, New York

    Google Scholar 

  • Rajagopalan KV (1980) Xanthine oxidase and aldehyde oxidase. In: Jakoby WB (ed) Enzymatic basis of detoxification. Academic, New York

    Google Scholar 

  • Rafii F, Cerniglia CE (1995) Reduction of azo dyes and nitroaromatic compounds by bacterial enzymes from the human intestinal tract. Environ Health Perspect 103(suppl 5):17–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satoh T, Hosokawa M (2006) Structure, function and regulation of carboxylesterases. Chem Biol Interact 162(3):195–211

    Article  CAS  PubMed  Google Scholar 

  • Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288

    Article  CAS  PubMed  Google Scholar 

  • Seitz HK, Oneta CM (1998) Gastrointestinal alcohol dehydrogenase. Nutr Rev 56:52–60

    Article  CAS  PubMed  Google Scholar 

  • Senter PD, Marquardt H, Thomas BA, Hammock BD, Frank IS, Svensson HP (1996) The role of rat serum carboxylesterase in the activation of paclitaxel and camptothecin prodrugs. Cancer Res 56(7):1471–1474

    CAS  PubMed  Google Scholar 

  • Shimada T, Martin MV, Pruess-Schwartz D, Marnett LJ, Guengerich FP (1989) Roles of individual human cytochrome P-450 enzymes in the bioactivation of benzo(a)pyrene, 7,8-dihydroxy-7,8-dihydrobenzo(a)pyrene, and other dihydrodiol derivatives of polycyclic aromatic hydrocarbons. Cancer Res 49(22):6304–6312

    CAS  PubMed  Google Scholar 

  • Strolin Benedetti M, Tipton KF (1998) Monoamine oxidases and related amine oxidases as phase I enzymes in the metabolism of xenobiotics. J Neural Transm Suppl 52:149–171

    Article  CAS  PubMed  Google Scholar 

  • Uetrecht J (2003) Bioactivation. In: Lee JS, Obach S, Fisher MB (eds) Drug metabolizing enzymes. Marcel Dekker, New York, Chap 3

    Google Scholar 

  • Vasiliou V, Pappa A, Estey T (2004) Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev 36(2):279–299

    Article  CAS  PubMed  Google Scholar 

  • Wong LL (1998) Cytochrome P450 monooxygenases. Curr Opin Chem Biol 2:263–268

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DM (1998) Flavin-containing monooxygenases: catalytic mechanism and substrate specificities. Drug Metab Rev 19(1):1–32

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, CH. (2020). Functionalization Reactions Catalyzed by Activation Enzymes. In: Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-41679-9_6

Download citation

Publish with us

Policies and ethics