Skip to main content

Bioactivation Metabolism: Activation Enzymes

  • Chapter
  • First Online:
Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense

Abstract

Enzymes make up the largest and most highly specialized class of protein molecules. Foreign compound-metabolizing enzymes are produced from the information stored within the genes and are present in most tissues with the highest levels located in the liver and intestines. Activation enzymes are composed of oxidases, hydrolases, and reductases. Oxidases include cytochrome P450s, flavin-containing monooxygenases, amine oxidases, lipoxygenases, aldehyde and xanthine oxidases, alcohol dehydrogenases, prostaglandin H synthase, and peroxidases. Oxidation reaction occurs at specific atom or group such as carbon, nitrogen, or unsaturated hydrocarbon. Reductases include nitroreductase, azoreductase, aldo-keto reductase, and carbonyl reductase. Reduction reactions occur at nitrogen atom or carbonyl group. Hydrolases include carboxylesterases and epoxide hydrolases. Hydrolysis reactions occur at specific group such as ester, amide, or epoxide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Abell CW, Kwan SW (2000) Molecular characterization of monoamine oxidases A and B. Prog Nucleic Acid Res Mol Biol 65:129–156

    Article  Google Scholar 

  • Anzenbacher P, Zanger UM (2012) Metabolism of drugs and other xenobiotics. Wiley VCH, Weinheim

    Book  Google Scholar 

  • Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624

    Article  CAS  Google Scholar 

  • Basaran R, Eke BC (2017) Flavin containing monooxygenases and metabolism of xenobiotics. Turk J Pharm Sci 14(1):90–94

    Article  CAS  Google Scholar 

  • Beedham C (1997) The role of non-P450 enzymes in drug oxidation. Pharm World Sci 19:255–263

    Article  CAS  Google Scholar 

  • Bondy SC, Naderi S (1994) Contribution of hepatic cytochrome P450 systems to the generation of reactive oxygen species. Biochem Pharmacol 48(1):155–159

    Article  CAS  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  CAS  Google Scholar 

  • Klaassen CD (ed) (2018) Casarett & Doull’s toxicology: the basic science of poisons, 9th edn. McGraw-Hill, New York

    Google Scholar 

  • Cashman JR (2002) Human flavin-containing monooxygenase (form 3): polymorphisms and variations in chemical metabolism. Pharmacogenomics 3:325–339

    Article  CAS  Google Scholar 

  • Cashman JR, Zhang J (2006) Human flavin-containing monooxygenases. Annu Rev Pharmacol Toxicol 46:65–100

    Article  CAS  Google Scholar 

  • Chen CH (2012) Activation and detoxification enzymes: functions and implications. Springer, New York

    Book  Google Scholar 

  • Ross D (2004) Quinone reductases multitasking in the metabolic world. Drug Metab Rev 36(3–4):639–654

    Article  CAS  Google Scholar 

  • Edmondson DE, Mattevi A, Binda C et al (2004) Structure and mechanism of monoamine oxidase. Curr Med Chem 11:1983–1993

    Article  CAS  Google Scholar 

  • Edenberg HJ (2007) The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health 30(1):5–13

    PubMed  PubMed Central  Google Scholar 

  • Gershater MC, Cummins I, Edwards R (2007) Role of a carboxylesterase in herbicide bioactivation in Arabidopsis thaliana. J Biol Chem 282:21460–21466

    Article  CAS  Google Scholar 

  • Guengerich FP (2008) Cytochrome p450 and chemical toxicology. Chem Res Toxicol 21(1):70–83

    Article  CAS  Google Scholar 

  • Guengerich FP (2002) Cytochrome P450. In: Ioannides C (ed) Enzyme system that metabolize drugs and other xenobiotics. Wiley, New York

    Google Scholar 

  • Hollenberg PF (1992) Mechanisms of cytochrome P450 and peroxidase-catalyzed xenobiotic metabolism. FASEB J 6(2):686–694

    Article  CAS  Google Scholar 

  • Hyndman D, Bauman DR, Heredia VV, Penning TM (2003) The aldo-keto reductase superfamily homepage. Chem Biol Interact 143–144:621–631

    Article  Google Scholar 

  • Ioannides C (2002) Xenobiotic metabolism: an overview. In: Ioannides C (ed) Enzymes systems that metabolise drugs and other xenobiotics. Wiley, New York

    Google Scholar 

  • Jin Y, Penning TM (2007) Aldo-keto reductases and bioactivation/detoxification. In: Cho AK, Blaschke TF, Insel PA (eds) Annual review of pharmacology and toxicology, pp 263–292.

    Google Scholar 

  • Kedderis GL, Hollenberg PF (1983) Characterization of the N-demethylation reactions catalyzed by horseradish peroxidase. J. Biol. Chem 258(13):8129–8138

    CAS  PubMed  Google Scholar 

  • Krueger SK, Williams DE (2005) Mammalian flavin-containing monooxygenases: structure/function, genetic polymorphisms and role in drug metabolism. Pharmacol Ther 106(3):357–387

    Article  CAS  Google Scholar 

  • Kulkarni AP (2001) Lipoxygenase--a versatile biocatalyst for biotransformation of endobiotics and xenobiotics. Cell Mol Life Sci 58:1805–1825

    Article  CAS  Google Scholar 

  • Hosokawa M (2008) Structure and catalytic properties of carboxylesterase isozymes involved in metabolic activation of prodrugs. Molecules 13(2):412–431

    Article  CAS  Google Scholar 

  • Meijer J, DePierre JW (1988) Cytosolic epoxide hydrolase. Chem Biol Interact 64:207–249

    Article  CAS  Google Scholar 

  • O’Brien PJ (2000) Peroxidases. Chem Biol Interact 129:113–139

    Article  Google Scholar 

  • Misal SA, Gawai KR (2018) Azoreductase: a key player of xenobiotic metabolism. Bioresour Bioprocess 5:17

    Article  Google Scholar 

  • Nassar AF (ed) (2010) Biotransformation and metabolite elucidation of xenobiotics. Wiley, Hoboken

    Google Scholar 

  • Oppermann U (2007) Carbonyl reductases: the complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Annu Rev Pharmacol Toxicol 47:293–322

    Article  CAS  Google Scholar 

  • Oppermann UC, Maser E (2000) Molecular and structural aspects of xenobiotic carbonyl metabolizing enzymes. Role of reductases and dehydrogenases in xenobiotic phase I reactions. Toxicology 144(1–3):71–81

    Article  CAS  Google Scholar 

  • Parkinson A, Ogilvie BW (2008) Biotransformation of xenobiotics. In: Klaassen CD (ed) Casarett and Doull’s toxicology: the basic science of poisons. McGrawHill, New York

    Google Scholar 

  • Satoh T, Hosokawa M (2006) Structure, function and regulation of carboxylesterases. Chem Biol Interact 162:195–211

    Article  CAS  Google Scholar 

  • Satoh T, Hosokawa M (1998) The mammalian carboxylesterases: from molecules to functions. Annu Rev Pharmacol Toxicol 38:257–288

    Article  CAS  Google Scholar 

  • Strolin Benedetti M, Tipton KF (1998) Monoamine oxidases and related amine oxidases as phase I enzymes in the metabolism of xenobiotics. J Neural Transm Suppl 52:149–171

    Article  CAS  Google Scholar 

  • Thomas PE, Ryan DE, Von Bahr C, Glaumann H, Levin W (1982) Human liver microsomal epoxide hydrolase. Correlation of immunochemical quantitation with catalytic activity. Mol Pharmacol 37:190–195

    Google Scholar 

  • Tipton KF, Benedetti MS (2002) Amine oxidases and the metabolism of xenobiotics. In: Ioannides C (ed) Enzyme system that metabolize drugs and other xenobiotics. Wiley, New York

    Google Scholar 

  • Wermuth B, Platts KL, Seidel A, Oesch F (1986) Carbonyl reductase provides the enzymatic basis of quinone detoxification in man. Biochem Pharmacol 35(8):1277–1282

    Article  CAS  Google Scholar 

  • Ziegler DM (2002) An overview of the mechanism, substrate specificities, and structure of FMOs. Drug Metab Rev 34:503–511

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, CH. (2020). Bioactivation Metabolism: Activation Enzymes. In: Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-41679-9_5

Download citation

Publish with us

Policies and ethics