Skip to main content

Oxidative Stress Mediated by Reactive Intermediates

  • Chapter
  • First Online:
Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense
  • 376 Accesses

Abstract

Reactive intermediates generated from activation metabolism are associated with inflammation and carcinogenesis. Oxidative stress occurs as the productions of reactive oxygen species, free radicals, or other reactive intermediates are not balanced by the capability of body’s defense systems. Oxidative stress-mediated cellular damages play a crucial role in the pathogenesis processes that can attribute to cardiovascular disorder, neurodegeneration, pulmonary injury, and cancers. An elevated level of chemically reactive intermediates requires an overwhelming response from detoxification enzymes and endogenous antioxidants. An imbalance between oxidants and antioxidants is the underlying basis of oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Andersson KE (2018) Oxidative stress and its possible relation to lower urinary tract functional pathology. BJU Int 121(4):527–533

    Article  Google Scholar 

  • Betteridge DJ (2000) What is oxidative stress? Metabolism 49(2 suppl 1):3–8

    Article  CAS  Google Scholar 

  • Biswas C, Shah N, Muthu M, La P, Fernando AP, Sengupta S, Yang G, Dennery PA (2014) Nuclear heme oxygenase-1 (HO-1) modulates subcellular distribution and activation of Nrf2, impacting metabolic and anti-oxidant defenses. J Biol Chem 289(39):26882–26894

    Article  CAS  Google Scholar 

  • Bolton JL, Dunlap TL, Dietz BM (2018) Formation and biological targets of botanical o-quinones. Food Chem Toxicol 120:700–707

    Article  CAS  Google Scholar 

  • Bryan CL, Jenkinson SG (1987) Species variation in lung antioxidant enzyme activities. J Appl Physiol 63(2):597–602

    Article  CAS  Google Scholar 

  • Chen C-H (2012) Activation and detoxification enzymes: functions and implications. Springer Sciences, New York

    Book  Google Scholar 

  • Costa VM, Carvalho F, Duarte JA, Bastos ML, Remiao F (2013) The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress. Chem Res Toxicol 26(9):1285–1311

    Article  CAS  Google Scholar 

  • Dicker E, Cederbaum AI (1993) Requirement for iron for the production of hydroxyl radicals by rat liver quinone reductase. J Pharmacol Exp Ther 266(3):1282–1290

    CAS  PubMed  Google Scholar 

  • Drew B, Leeuwenburgh C (2002) Aging and the role of reactive nitrogen species. Ann N Y Acad Sci 959:66–81

    Article  CAS  Google Scholar 

  • Federico A, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C (2007) Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer 121(11):2381–2386

    Article  CAS  Google Scholar 

  • Goetz ME, Luch A (2008) Reactive species: a cell damaging rout assisting to chemical carcinogens. Cancer Lett 266(1):73–83

    Article  CAS  Google Scholar 

  • Gower JD (1988) A role for dietary lipids and antioxidants in the activation of carcinogens. Free Radic Biol Med 5(2):95–111

    Article  CAS  Google Scholar 

  • Harman D (1992) Role of free radicals in aging and disease. Ann N Y Acad Sci 673:126–141

    Article  CAS  Google Scholar 

  • Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F (2018) Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol 100:1–19

    Article  CAS  Google Scholar 

  • Jiang T, Sun Q, Chen S (2016) Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 147:1–19

    Article  CAS  Google Scholar 

  • Jinsmaa Y, Florang VR, Rees JN, Mexas LM, Eckert LL, Allen EM, Anderson DG, Doorn JA (2011) Dopamine-derived biological reactive intermediates and protein modifications: implications for Parkinson’s disease. Chem Biol Interact 192(1-2):118–121

    Article  CAS  Google Scholar 

  • Kehrer JP, Klotz LO (2015) Free radicals and related reactive species as mediators of tissue injury and disease: implications for health. Crit Rev Toxicol 45(9):765–798

    Article  CAS  Google Scholar 

  • Lapenna D, de Gioia S, Ciofani G, Mezzetti A, Ucchino S, Calafiore AM, Napolitano AM, Di Ilio C, Cuccurullo F (1998) Glutathione-related antioxidant defenses in human atherosclerotic plaques. Circulation 97(19):1930–1934

    Article  CAS  Google Scholar 

  • Lobo V, Patil A, Phatak A, Chandra N (2010) Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev 4(8):118–126

    Article  CAS  Google Scholar 

  • Meister A, Anderson M (1983) Glutathione. Annu Rev Biochem 52:711–760

    Article  CAS  Google Scholar 

  • Mena S, Ortega A, Estrela JM (2009) Oxidative stress in environmental-induced carcinogenesis. Mutat Res 674(1-2):36–44

    Article  CAS  Google Scholar 

  • McCord JM (2000) The evolution of free radicals and oxidative stress. Am J Med 108:652–659

    Article  CAS  Google Scholar 

  • Milder J, Patel M (2012) Modulation of oxidative stress and mitochondrial function by the ketogenic diet. Epilepsy Res 100(3):295–303

    Article  CAS  Google Scholar 

  • Mironczuk-Chodakowska I, Witkowska AM, Zuiko ME (2018) Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci 63(1):68–78

    Article  Google Scholar 

  • Morel Y, Barouki R (1999) Repression of gene expression by oxidative stress. Biochem J 342(Pt 3):481–496

    Article  CAS  Google Scholar 

  • Oyenihi AB, Ayeleso AO, Mukwevho E, Masola B (2015) Antioxidant strategies in the management of diabetic neuropathy. Biomed Res Int 2015:515042

    Article  Google Scholar 

  • Pearson PG, Soderlund EJ, Dybing E, Nelson SD (1990) Metabolic activation of 1,2-dibromo-3-chloropropane: evidence for the formation of reactive episulfonium ion intermediates. Biochemistry 29(20):4971–4981

    Article  CAS  Google Scholar 

  • Prasad S, Gupta SC, Tyagi AK (2017) Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett 387:95–105

    Article  CAS  Google Scholar 

  • Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM, Miller BF, Hamilton KL (2013) Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med 56:102–111

    Article  CAS  Google Scholar 

  • Sies H (1997) Oxidative stress: oxidants and antioxidants. Exp Physiol 82:291–295

    Article  CAS  Google Scholar 

  • Simao AN, Dichi JB, Barbosa DS, Cecchini R, Dichi I (2008) Influence of uric acid and gamma- glutamyltransferase on total antioxidant capacity and oxidative stress in patients with metabolic syndrome. Nutrition 24(7-8):675–681

    Article  CAS  Google Scholar 

  • Soloway AH, Curley RW Jr, Soloway SM (2011) Macular degeneration: a possible biochemical mechanism. Med Hypotheses 76(5):729–732

    Article  CAS  Google Scholar 

  • Sun Q, Zhu R, Foss FW Jr, Macdonald TL (2008) In vitro metabolism of a model cyclopropylamine to reactive intermediate: insights into trovafloxacin-induced hepatotoxicity. Chem Res Toxicol 21(3):711–719

    Article  CAS  Google Scholar 

  • Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol 552:335–344

    Article  CAS  Google Scholar 

  • Tyurina YY, Kapralov AA, Jiang J, Borisenko GG, Potapovich AL, Sorokin A, Kochanek PM, Graham SH, Schor NF, Kagan VE (2006) Oxidation and cytotoxicity of 6-OHDA are mediated by reactive intermediates of COX-2 overexpressed in PC12 cells. Brain Res 1093(1):71–82

    Article  CAS  Google Scholar 

  • Valoti M, Sipe HJ Jr, Sgaragli G, Mason RP (1989) Free radical intermediates during peroxidase oxidation of 2-t-butyl-4-methoxyphenol, 2,6-di-t-butyl-4-methylphenol, and related phenol compounds. Arch Biochem Biophys 269(2):423–432

    Article  CAS  Google Scholar 

  • West JD, Marnett LJ (2005) Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem Res Toxicol 18(11):1642–1653

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, CH. (2020). Oxidative Stress Mediated by Reactive Intermediates. In: Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-41679-9_11

Download citation

Publish with us

Policies and ethics