Skip to main content

Electrophilic Nature of Metabolic Reactive Intermediates

  • Chapter
  • First Online:
Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense
  • 389 Accesses

Abstract

Reactive intermediates produced by functionalization reactions are generally electrophilic in nature. An electrophile is an electron acceptor, a cation, or a neutral compound, but not an anion. Reactive intermediates can interact with oxygen molecules to produce reactive oxygen species, including highly reactive cationic electrophiles and free radicals. Electrophilic reactive intermediates preferentially form covalent bonds with nucleophiles of cellular components, including cysteine, sulfhydryl, lysine, thiolate and histidine amino residues in proteins, guanine and adenine in DNA, and hydroxyl, carboxyl, and phosphate in lipids. The protection against the harmful effects of electrophilic reactive intermediates or metabolites is to minimize their presence in intracellular levels. The body develops defense systems that include detoxification enzymes, antioxidant enzymes, glutathione, and vitamins E and C and carotene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Baillie TA (2006) Future of toxicology-metabolic activation and drug design: challenges and opportunities in chemical toxicology. Chem Res Toxicol 19(7):889–893

    Article  CAS  Google Scholar 

  • Bolton JL, Shen L (1996) p-Quinone methides are the major decomposition products of catechol estrogen o-quinones. Carcinogenesis 17(5):925–929

    Article  CAS  Google Scholar 

  • Boysen G, Pachkowski BF, Nakamura J, Swenberg JA (2009) The formation and biological significance of N7-guanine adducts. Mutat Res 678(2):76–94

    Article  CAS  Google Scholar 

  • Chen CH (2012) Activation and detoxification enzymes: functions and implications. Springer, New York

    Book  Google Scholar 

  • Coon MJ, Ding XX, Pernecky SJ, Vaz AD (1992) Cytochrome P450: progress and predictions. FASEB J 6(2):669–673

    Article  CAS  Google Scholar 

  • Fisher AA, Labenski MT, Monks TJ, Lau SS (2011) Utilization of LC-MS/MS analyses to identify site- specific chemical protein adducts in vitro. Methods Mol Biol 691:317–326

    Article  CAS  Google Scholar 

  • Furst SM, Sukhai P, McClelland RA, Uetrecht JP (1995) Covalent binding of carbamazepine oxidative metabolites to neutrophils. Drug Metab Dispos 23(5):590–594

    CAS  PubMed  Google Scholar 

  • Guengerich FP (2003) Cytochrome P450 oxidations in the generation of reactive electrophiles: epoxidation and related reactions. Arch Biochem Biophys 409:59–71

    Article  Google Scholar 

  • Hauck AK, Bernlohr DA (2016) Oxidative stress and lipotoxicity. J Lipid Res 57(11):1976–1986

    Article  CAS  Google Scholar 

  • Hemeryck LY, Vanhaecke L (2016) Diet-related DNA adduct formation in relation to carcinogenesis. Nutr Rev 74(8):475–489

    Article  Google Scholar 

  • Hughes TB, Swamidass SJ (2017) Deep learning to predict the formation of quinone species in drug metabolism. Chem Res Toxicol 30(2):642–656

    Article  CAS  Google Scholar 

  • Jurva U, Holmén A, Grönberg G, Masimirembwa C, Weidolf L (2008) Electrochemical generation of electrophilic drug metabolites: characterization of amodiaquine quinoneimine and cysteinyl conjugates by MS, IR, and NMR. Chem Res Toxicol 21(4):928–935

    Article  CAS  Google Scholar 

  • Kalgutkar AS (2017) Liabilities associated with the formation of “hard” electrophiles in reactive metabolite. Chem Res Toxicol 30(1):220–238

    Article  CAS  Google Scholar 

  • Koivisto P, Peltonen K (2001) N7-guanine adducts of the epoxy metabolites of 1,3-butadiene in mice lung. Chem Biol Interact 135–136:363–372

    Article  Google Scholar 

  • Korobkova EA, Nemeth J, Cadougan M, Venkatratnam A, Bassit M, Azar N (2012) Reactive metabolites of desipramine and clomipramine: the kinetics of formation and reactivity with DNA. Bioorg Med Chem 20(1):340–345

    Article  CAS  Google Scholar 

  • Koskinen M, Vodicka P, Vodickova L, Hemminki K (2001) (32)P-postlabelling/HPLC analysis of various styrene-induced DNA adducts in mice. Biomakers 6(3):175–189

    Article  CAS  Google Scholar 

  • Lewis MA, Yoerg DG, Bolton JL, Thompson JA (1996) Alkylation of 2′-deoxynucleosides and DNA by quinone methides derived from 2,6-di-tert-butyl-4-methylphenol. Chem Res Toxicol 9(8):1368–1374

    Article  CAS  Google Scholar 

  • LoPachin RM, Gavin T (2016) Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation. Free Radic Res 50(2):195–205

    Article  CAS  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96(7):2841–2888

    Article  CAS  Google Scholar 

  • McEldoon JP, Dordick JS (1991) Thiol and Mn(2+)-mediated oxidation of veratryl alcohol by horseradish peroxidase. J Biol Chem 266(22):14288–14293

    CAS  PubMed  Google Scholar 

  • Meesters RJ, Duisken M, Hollender J (2007) Study on the cytochrome P450-mediated oxidative metabolism of the terpene alcohol linalool: indication of biological epoxidation. Xenobiotica 37(6):604–617

    Article  CAS  Google Scholar 

  • Meunier B, de Visser SP, Shaik S (2004) Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem Rev 104(9):3947–3980

    Article  CAS  Google Scholar 

  • Nelson SD, Mitchell JR, Timbrell JA, Snodgrass WR, Corcoran GB 3rd (1976) Isoniazid and iproniazid: activation of metabolites to toxic intermediates in man and rat. Science 193:901–903

    Article  CAS  Google Scholar 

  • O’Donnell JP, Dalvie DK, Kalgutkar AS, Obach RS (2003) Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab Dispos 31(11):1369–1377

    Article  Google Scholar 

  • Ortiz de Montellano PR (2010) Hydrocarbon hydroxylation by cytochrome P450 enzymes. Chem Rev 110(2):932–948

    Article  CAS  Google Scholar 

  • Price NE, Johnson KM, Wang J, Fekry MI, Wang Y, Gates KS (2014) Interstrand DNA-DNA cross-link formation between adenine residues and abasic sites in duplex DNA. J Am Chem Soc 136(9):3483–3490

    Article  CAS  Google Scholar 

  • LoPachin RM, Gavin T (2016) Reactions of electrophiles with nucleophilic thiolate sites: relevance to pathophysiological mechanisms and remediation. Free Radic Res 50(2):195–205

    Article  CAS  Google Scholar 

  • Skordos KW, Laycock JD, Yost GS (1998) Thioether adducts of a new imine reactive intermediate of the pneumotoxin 3-methylindole. Chem Res Toxicol 11(11):1326–1331

    Article  CAS  Google Scholar 

  • Sono M, Roach MP, Coulter ED, Dawson JH (1996) Heme-containing oxygenases. Chem Rev 96:2841–2887

    Article  CAS  Google Scholar 

  • Stiborova M, Schmeiser HH, Frei E, Hodek P, Martinek V (2014) Enzymes oxidizing the azo dye 1- phenylazo-2-naphthol (Sudan I) and their contribution to its genotoxicity and carcinogenicity. Curr Drug Metab 15(8):828–840

    Google Scholar 

  • Sun Q, Zhu R, Foss FW Jr, Macdonald TL (2008) In vitro metabolism of a model cyclopropylamine to reactive intermediate: insights into trovafloxacin-induced hepatotoxicity. Chem Res Toxicol 21(3):711–719

    Article  CAS  Google Scholar 

  • Thompson CD, Kinter MT, Macdonald TL (1996) Synthesis and in vitro reactivity of 3-carbamoyl-2-phenylpropionaldehyde and 2-phenylpropenal: putative reactive metabolites of felbamate. Chem Res Toxicol 9(8):1225–1229

    Article  CAS  Google Scholar 

  • Thompson DC, Eling TE (1991) Reactive intermediates formed during the peroxidative oxidation of anisidine isomers. Chem Res Toxicol 4(4):474–481

    Article  CAS  Google Scholar 

  • Wen B, Zhou M (2009) Metabolic activation of the phenothiazine antipsychotics chlorpromazine and thioridazine to electrophilic iminoquinone species in human liver microsomes and recombinant P450s. Chem Biol Interact 181(2):220–226

    Article  CAS  Google Scholar 

  • Yan Z, Zhong HM, Maher N, Torres R, Leo GC, Caldwell GW, Huebert N (2005) Bioactivation of 4- methylphenol (p-cresol) via cytochrome P450-mediated aromatic oxidation in human liver microsomes. Drug Metab Dispos 33(12):1867–1876

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, CH. (2020). Electrophilic Nature of Metabolic Reactive Intermediates. In: Xenobiotic Metabolic Enzymes: Bioactivation and Antioxidant Defense. Springer, Cham. https://doi.org/10.1007/978-3-030-41679-9_10

Download citation

Publish with us

Policies and ethics