Skip to main content

Who Asked Us? How the Theory of Computing Answers Questions about Analysis

  • Chapter
  • First Online:
Complexity and Approximation

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12000))

Abstract

Algorithmic fractal dimensions—constructs of computability theory—have recently been used to answer open questions in classical geometric measure theory, questions of mathematical analysis whose statements do not involve computability theory or logic. We survey these developments and the prospects for future such results.

J.H. Lutz—Research supported in part by National Science Foundation grants 1545028 and 1900716.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM J. Comput. 37(3), 671–705 (2007)

    Article  MathSciNet  Google Scholar 

  2. Besicovitch, A.S.: Sur deux questions d’intégrabilité des fonctions. J. de la Soci?t? de physique et de mathematique de l’Universite de Perm 2, 105–123 (1919)

    Google Scholar 

  3. Besicovitch, A.S.: On Kakeya’s problem and a similar one. Math. Z. 27, 312–320 (1928)

    Article  MathSciNet  Google Scholar 

  4. Bishop, C.J., Peres, Y.: Packing dimension and Cartesian products. Trans. Am. Math. Soc. 348, 4433–4445 (1996)

    Article  MathSciNet  Google Scholar 

  5. Chou, A.W., Ko, K.: Computational complexity of two-dimensional regions. SIAM J. Comput. 24(5), 923–947 (1995)

    Article  MathSciNet  Google Scholar 

  6. Chou, A.W., Ko, K.: On the complexity of finding paths in a two-dimensional domain I: shortest paths. Math. Log. Q. 50(6), 551–572 (2004)

    Article  MathSciNet  Google Scholar 

  7. Chou, A.W., Ko, K.: The computational complexity of distance functions of two-dimensional domains. Theor. Comput. Sci. 337(1–3), 360–369 (2005)

    Article  MathSciNet  Google Scholar 

  8. Chou, A.W., Ko, K.: On the complexity of finding paths in a two-dimensional domain II: piecewise straight-line paths. Electr. Notes Theor. Comput. Sci. 120, 45–57 (2005)

    Article  MathSciNet  Google Scholar 

  9. Davies, R.O.: Some remarks on the Kakeya problem. In: Proceedings of the Cambridge Philosophical Society, vol. 69, pp. 417–421 (1971)

    Article  MathSciNet  Google Scholar 

  10. Davies, R.O.: Two counterexamples concerning Hausdorff dimensions of projections. Colloq. Math. 42, 53–58 (1979)

    Article  MathSciNet  Google Scholar 

  11. Downey, R., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Springer, New York (2010). https://doi.org/10.1007/978-0-387-68441-3

    Book  MATH  Google Scholar 

  12. Edgar, G.: Measure, Topology, and Fractal Geometry, 2nd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-74749-1

    Book  MATH  Google Scholar 

  13. Falconer, K., Fraser, J., Jin, X.: Sixty years of fractal projections. In: Bandt, C., Falconer, K., Zähle, M. (eds.) Fractal Geometry and Stochastics V. PP, vol. 70, pp. 3–25. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18660-3_1

    Chapter  MATH  Google Scholar 

  14. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications, 3rd edn. Wiley, Hoboken (2014)

    MATH  Google Scholar 

  15. Hausdorff, F.: Dimension und äusseres Mass. Math. Ann. 79, 157–179 (1918)

    Article  MathSciNet  Google Scholar 

  16. Kahane, J.P.: Sur la dimension des intersections. In: Barroso, J.A. (ed.) Aspects of Mathematics and Its Applications, pp. 419–430. Elsevier (1986). N.-Holl. Math. Libr. 34

    Google Scholar 

  17. Ko, K.: Complexity Theory of Real Functions. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  18. Ko, K.: A polynomial-time computable curve whose interior has a nonrecursive measure. Theor. Comput. Sci. 145(1&2), 241–270 (1995)

    Article  MathSciNet  Google Scholar 

  19. Ko, K.: On the computability of fractal dimensions and Hausdorff measure. Ann. Pure Appl. Logic 93(1–3), 195–216 (1998)

    Article  MathSciNet  Google Scholar 

  20. Ko, K.: On the complexity of computing the Hausdorff distance. J. Complex. 29(3–4), 248–262 (2013)

    Article  MathSciNet  Google Scholar 

  21. Ko, K., Weihrauch, K.: On the measure of two-dimensional regions with polynomial-time computable boundaries. In: Proceedings of the Eleveth Annual IEEE Conference on Computational Complexity, Philadelphia, Pennsylvania, USA, 24–27 May 1996, pp. 150–159 (1996)

    Google Scholar 

  22. Ko, K., Yu, F.: Jordan curves with polynomial inverse moduli of continuity. Theor. Comput. Sci. 381(1–3), 148–161 (2007)

    Article  MathSciNet  Google Scholar 

  23. Li, M., Vitányi, P.M.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, New York (2008). https://doi.org/10.1007/978-0-387-49820-1

    Book  MATH  Google Scholar 

  24. Lutz, J.H.: The dimensions of individual strings and sequences. Inf. Comput. 187(1), 49–79 (2003)

    Article  MathSciNet  Google Scholar 

  25. Lutz, J.H., Lutz, N.: Lines missing every random point. Computability 4(2), 85–102 (2015)

    Article  MathSciNet  Google Scholar 

  26. Lutz, J.H., Lutz, N.: Algorithmic information, plane Kakeya sets, and conditional dimension. ACM Trans. Comput. Theory 10(2), 7:1–7:22 (2018)

    Article  MathSciNet  Google Scholar 

  27. Lutz, J.H., Mayordomo, E.: Dimensions of points in self-similar fractals. SIAM J. Comput. 38(3), 1080–1112 (2008)

    Article  MathSciNet  Google Scholar 

  28. Lutz, N.: Fractal intersections and products via algorithmic dimension. In: 42nd Proceedings of the International Symposium on Mathematical Foundations of Computer Science, Aalborg, Denmark, 21–25 August 2017 (2017)

    Google Scholar 

  29. Lutz, N.: Fractal intersections and products via algorithmic dimension (extended version) (2019). https://arxiv.org/abs/1612.01659

  30. Lutz, N., Stull, D.M.: Bounding the dimension of points on a line. Information and Computation (to appear)

    Google Scholar 

  31. Lutz, N., Stull, D.M.: Projection theorems using effective dimension. In: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, Liverpool, UK, 27–31 August 2018, pp. 71:1–71:15 (2018)

    Google Scholar 

  32. Marstrand, J.M.: Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. Lond. Math. Soc. 4(3), 257–302 (1954)

    Article  MathSciNet  Google Scholar 

  33. Martin-Löf, P.: The definition of random sequences. Inf. Control 9(6), 602–619 (1966)

    Article  MathSciNet  Google Scholar 

  34. Mattila, P.: Hausdorff dimension and capacities of intersections of sets in \(n\)-space. Acta Math. 152, 77–105 (1984)

    Article  MathSciNet  Google Scholar 

  35. Mattila, P.: On the Hausdorff dimension and capacities of intersections. Mathematika 32, 213–217 (1985)

    Article  MathSciNet  Google Scholar 

  36. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  37. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Inf. Process. Lett. 84(1), 1–3 (2002)

    Article  MathSciNet  Google Scholar 

  38. Molter, U., Rela, E.: Furstenberg sets for a fractal set of directions. Proc. Am. Math. Soc. 140, 2753–2765 (2012)

    Article  MathSciNet  Google Scholar 

  39. Moschovakis, Y.N.: Descriptive Set Theory. North-Holland Publishing, Amsterdam (1980)

    MATH  Google Scholar 

  40. Nies, A.: Computability and Randomness. Oxford University Press Inc., New York (2009)

    Book  Google Scholar 

  41. Shen, A., Uspensky, V.A., Vereshchagin, N.: Kolmogorov Complexity and Algorithmic Randomness. AMS, Boston (2017)

    Book  Google Scholar 

  42. Shen, A., Vereshchagin, N.K.: Logical operations and Kolmogorov complexity. Theoret. Comput. Sci. 271(1–2), 125–129 (2002)

    Article  MathSciNet  Google Scholar 

  43. Soare, R.I.: Turing oracle machines, online computing, and three displacements in computability theory. Ann. Pure Appl. Log. 160, 368–399 (2009)

    Article  MathSciNet  Google Scholar 

  44. Stull, D.M.: Results on the dimension spectra of planar lines. In: 43rd International Symposium on Mathematical Foundations of Computer Science, MFCS 2018, Liverpool, UK, 27–31 August 2018, pp. 79:1–79:15 (2018)

    Google Scholar 

  45. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math. 153(1), 259–277 (1984)

    Article  MathSciNet  Google Scholar 

  46. Tricot, C.: Two definitions of fractional dimension. Math. Proc. Camb. Philos. Soc. 91(1), 57–74 (1982)

    Article  MathSciNet  Google Scholar 

  47. Xiao, Y.: Packing dimension, Hausdorff dimension and Cartesian product sets. Math. Proc. Camb. Philos. Soc. 120(3), 535–546 (1996)

    Article  MathSciNet  Google Scholar 

  48. Yu, F., Chou, A.W., Ko, K.: On the complexity of finding circumscribed rectangles and squares for a two-dimensional domain. J. Complex. 22(6), 803–817 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack H. Lutz .

Editor information

Editors and Affiliations

Additional information

Dedicated to the Memory of Ker-I Ko

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutz, J.H., Lutz, N. (2020). Who Asked Us? How the Theory of Computing Answers Questions about Analysis. In: Du, DZ., Wang, J. (eds) Complexity and Approximation. Lecture Notes in Computer Science(), vol 12000. Springer, Cham. https://doi.org/10.1007/978-3-030-41672-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-41672-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-41671-3

  • Online ISBN: 978-3-030-41672-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics