Advertisement

Crystallization and Melting Properties of Milk Fat

  • Christelle LopezEmail author
Chapter
  • 114 Downloads

Abstract

 Milk fat physical properties, including its crystallization and melting properties, are involved in many food applications (cream, butter, cheese, and also in bakery). Over a wide range of temperatures, milk fat is a mixture of solid crystals connected in networks and embeded in a liquid phase. These crystals evolve, as a function of temperature and temperings, in terms of amount, composition and structural characteristics. This book chapter describes the crystallization properties and polymorphism of milk fat and shows how they are affected by (1) the dispersion state, i.e. anhydrous fat versus emulsified fat dispersed in numerous droplets, (2) the cooling rates and temperings, (3) shear applied during processing, (4) the presence of minor lipid compounds (FFAs, MAGs, DAGs, phospholipids), (5) the fatty acid and triacylglycerol (TAG) compositions, including milk fat from various species (human, goat, dromedary milks). Deciphering the crystallization properties of milk fat requires investigations at different scale levels, recordings as a function of temperature and time, and the combination of physical techniques. Increasing knowledge in the area of TAG crystallization yields fascinating new insights that contribute in increasing further the value of milk fat in food applications.

References

  1. Bayard, M., Leal-Calderon, F., & Cansell, M. (2017). Free fatty acids and their esters modulate isothermal crystallization of anhydrous milk fat. Food Chemistry, 218, 22–29.PubMedCrossRefGoogle Scholar
  2. Ben Amara-Dali, W., Lesieur, P., Artzner, F., Karray, N., Attia, H., & Ollivon, M. (2007). Anhydrous goat’s milk fat: Thermal and structural behaviors studied by coupled DSC and X-ray diffraction. 2. Influence of cooling rate. Journal of Agricultural and Food Chemistry, 55, 4741–4751.CrossRefGoogle Scholar
  3. Ben Amara-Dali, W., Lopez, C., Lesieur, P., & Ollivon, M. (2008). Crystallization properties and polymorphism of triacylglycerols in goat’s milk fat globules. Journal of Agricultural and Food Chemistry, 56, 4511–4522.PubMedCrossRefGoogle Scholar
  4. Bugeat, S., Briard-Bion, V., Pérez, J., Pradel, P., Martin, B., Lesieur, S., et al. (2011). Enrichment in unsaturated fatty acids and emulsion droplet size affect the crystallization behaviour of milk triacylglycerols upon storage at 4°C. Food Research International, 44, 1314–1330.CrossRefGoogle Scholar
  5. Bugeat, S., Perez, J., Briard-Bion, V., Pradel, P., Ferlay, A., Bourgaux, C., et al. (2015). Unsaturated fatty acid enriched vs. control milk triacylglycerols: Solid and liquid TAG phases examined by synchrotron radiation X-ray diffraction coupled with DSC. Food Research International, 67, 91–101.CrossRefGoogle Scholar
  6. Buldo, P., Kirkensgaard, J. J. K., & Wiking, L. (2013). Crystallization mechanisms in cream during ripening and initial butter churning. Journal of Dairy Science, 96, 6782–6791.PubMedCrossRefGoogle Scholar
  7. Campos, R., Narine, S. S., & Marangoni, A. G. (2002). Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Research International, 35, 971–982.CrossRefGoogle Scholar
  8. Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L., & Peyraud, J. L. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science, 89, 1956–1969.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Foubert, I., Vanhoutte, B., & Dewettinck, K. (2004). Temperature and concentration dependent effect of partial glycerides on milk fat crystallization. European Journal of Lipid Science and Technology, 106, 531–539.CrossRefGoogle Scholar
  10. Fredrick, E., Moens, K., Heyman, B., Fischer, S., Van der Meeren, P., & Dewettinck, K. (2013). Monoacylglycerols in dairy recombined cream: I. The effect on milk fat crystallization. Food Research International, 51, 892–898.CrossRefGoogle Scholar
  11. Fredrick, E., Van de Walle, D., Walstra, P., Zijtveld, J. H., Fischer, S., Van der Meeren, P., et al. (2011). Isothermal crystallization behavior of milk fat in bulk and emulsified state. International Dairy Journal, 21, 685–695.CrossRefGoogle Scholar
  12. Gliguem, H., Ghorbel, D., Lopez, C., Michon, C., Ollivon, M., & Lesieur, P. (2009). Crystallization and polymorphism of triacylglycerols contribute to the rheological properties of processed cheese. Journal of Agricultural and Food Chemistry, 57, 3195–3203.PubMedCrossRefGoogle Scholar
  13. Gliguem, H., Lopez, C., Michon, C., Lesieur, P., & Ollivon, M. (2011). The viscoelastic properties of processed cheeses depend on their thermal history and fat polymorphism. Journal of Agricultural and Food Chemistry, 59, 3125–3134.PubMedCrossRefGoogle Scholar
  14. Grall, D. S., & Hartel, R. W. (1992). Kinetics of butterfat crystallization. Journal of the American Oil Chemists Society, 69, 741–747.CrossRefGoogle Scholar
  15. Karray, N., Lopez, C., Lesieur, P., & Ollivon, M. (2005). Dromedary milk fat: thermal and structural properties 2. Influence of cooling rate. Le Lait, 85(6), 433–451.CrossRefGoogle Scholar
  16. Kaylegian, K. E., & Lindsay, R. C. (1995). Handbook of milk fat fractionation technology and application. Champaign, IL: AOCS Press.Google Scholar
  17. Lopez, C. (2011). Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid and Interface Science, 16, 391–404.CrossRefGoogle Scholar
  18. Lopez, C., Bourgaux, C., Lesieur, P., Bernadou, S., Keller, G., & Ollivon, M. (2002). Thermal and structural behavior of milk fat: 3. Influence of cream cooling rate and droplet size. Journal of Colloid and Interface Science, 254, 64–78.PubMedGoogle Scholar
  19. Lopez, C., Bourgaux, C., Lesieur, P., & Ollivon, M. (2002). Crystalline structures formed in cream and anhydrous milk fat at 4°C. Le Lait, 82, 317–335.CrossRefGoogle Scholar
  20. Lopez, C., Bourgaux, C., Lesieur, P., & Ollivon, M. (2007). Coupling of time-resolved synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and polymorphism of triglycerides in milk fat globules. Le Lait, 87, 459–480.CrossRefGoogle Scholar
  21. Lopez, C., Bourgaux, C., Lesieur, P., Riaublanc, A., & Ollivon, M. (2006). Milk fat and primary fractions obtained by dry fractionation 1. Chemical composition and crystallisation properties. Chemistry and Physics of Lipids, 144, 17–33.PubMedCrossRefGoogle Scholar
  22. Lopez, C., Briard-Bion, V., Beaucher, E., & Ollivon, M. (2008). Multiscale characterization of the organization of triglycerides and phospholipids in Emmental cheese: From the microscopic to the molecular level. Journal of Agricultural and Food Chemistry, 56, 2406–2414.CrossRefPubMedGoogle Scholar
  23. Lopez, C., Briard-Bion, V., Bourgaux, C., & Perez, J. (2013). Solid triacylglycerols within human fat globules: Crystals with a melting point above in-body temperature formed upon storage of breast milk at low temperature. Food Research International, 54, 1541–1552.CrossRefGoogle Scholar
  24. Lopez, C., Briard-Bion, V., Camier, B., & Gassi, J.-Y. (2006). Milk fat thermal properties and solid fat content in Emmental cheese: A differential scanning calorimetry study. Journal of Dairy Science, 89, 2894–2910.PubMedCrossRefGoogle Scholar
  25. Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science & Technology, 95, 863–893.CrossRefGoogle Scholar
  26. Lopez, C., Karray, N., Lesieur, P., & Ollivon, M. (2005). Crystallisation and melting properties of dromedary milk fat globules studied by X-ray diffraction and differential scanning calorimetry. Comparison with anhydrous dromedary milk fat. European Journal of Lipid Science and Technology, 107, 673–683.CrossRefGoogle Scholar
  27. Lopez, C., Lavigne, F., Lesieur, P., Keller, G., & Ollivon, M. (2001a). Thermal and structural behavior of anhydrous milk fat: 2. Crystalline forms obtained by slow cooling. Journal of Dairy Science, 84, 2402–2412.PubMedCrossRefGoogle Scholar
  28. Lopez, C., Lavigne, F., Lesieur, P., Keller, G., & Ollivon, M. (2001b). Thermal and structural behavior of milk fat: 1. Unstable species of anhydrous milk fat. Journal of Dairy Science, 84, 756–766.PubMedCrossRefGoogle Scholar
  29. Lopez, C., Lesieur, P., Bourgaux, C., Keller, G., & Ollivon, M. (2001). Thermal and structural behavior of milk fat: 2. Crystalline forms obtained by slow cooling of cream. Journal of Colloid and Interface Science, 240, 150–161.PubMedCrossRefGoogle Scholar
  30. Lopez, C., Lesieur, P., Bourgaux, C., & Ollivon, M. (2005). Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate. Journal of Dairy Science, 88, 511–526.PubMedCrossRefGoogle Scholar
  31. Lopez, C., Briard-Bion, V., & Ménard, O. (2014). Polar lipids, sphingomyelin and long-chain unsaturated fatty acids from the milk fat globule membrane are increased in milks produced by cows fed fresh pasture based diet during spring. Food Research International, 58, 59–68.Google Scholar
  32. Lopez, C., Lesieur, P., Keller, G., & Ollivon, M. (2000). Thermal and structural behavior of milk fat: 1. Unstable species of cream. Journal of Colloid and Interface Science, 229, 62–71.PubMedCrossRefGoogle Scholar
  33. Lopez, C., & Ollivon, M. (2009). Triglycerides obtained by dry fractionation of milk fat. 2. Thermal properties and polymorphic evolutions on heating. Chemistry and Physics of Lipids, 159, 1–12.PubMedCrossRefGoogle Scholar
  34. Marangoni, A. G., & Lencki, R. W. (1998). Ternary phase behaviour of milk fat fractions. Journal of Agricultural and Food Chemistry, 46, 3879–3884.CrossRefGoogle Scholar
  35. Mazzanti, G., Marangoni, A. G., & Idziak, S. H. J. (2009). Synchrotron study on crystallization kinetics of milk fat under shear flow. Food Research International, 42, 682–694.CrossRefGoogle Scholar
  36. Michalski, M.-C., Ollivon, M., Briard, V., Leconte, N., & Lopez, C. (2004). Native fat globules of different sizes selected from raw milk: Thermal and structural behavior. Chemistry and Physics of Lipids, 132(2), 247–261.PubMedCrossRefGoogle Scholar
  37. Ollivon, M., Keller, G., Bourgaux, C., Kalnin, D., Villeneuve, P., & Lesieur, P. (2006). DSC and high resolution X-ray diffraction coupling. Journal of Thermal Analysis and Calorimetry, 85, 219–224.CrossRefGoogle Scholar
  38. Ramel, P. R., & Marangoni, A. G. (2016). Engineering the microstructure of milk fat by blending binary and ternary mixtures of its melting fractions. RSC Advances, 6, 41189–41194.CrossRefGoogle Scholar
  39. Ramel, P. R., Peyronel, F., & Marangoni, A. G. (2016). Characterization of the nanoscale structure of milk fat. Food Chemistry, 203, 224–230.PubMedCrossRefGoogle Scholar
  40. Ronholt, S., Kirkensgaard, J. J. K., Mortensen, K., & Knudsen, J. C. (2014). Effect of cream cooling rate and water content on butter microstructure during four weeks of storage. Food Hydrocolloids, 34, 169–176.CrossRefGoogle Scholar
  41. Smet, K., Coudijzer, K., Fredrick, E., De Campeneere, S., De Block, J., Wouters, J., et al. (2010). Crystallization behaviour of milk fat obtained from linseed-fed cows. Journal of Dairy Science, 93, 495–505.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Smiddy, M. A., Huppertz, T., & Van Ruth, S. M. (2012). Triacylglycerol and melting profiles of milk fat from several species. International Dairy Journal, 24, 64–69.CrossRefGoogle Scholar
  43. Söderberg, I., Hernqvist, L., & Buchheim, W. (1989). Milk fat crystallization in natural milk fat globules. Milchwissenschaft, 44, 403–406.Google Scholar
  44. Ten Grotenhuis, E., Van Aken, G. A., Van Malssen, K. F., & Schenk, H. (1999). Polymorphism of milk fat studied by differential scanning calorimetry and real-time X–ray powder diffraction. Journal of the American Oil Chemists Society, 76, 1031–1039.CrossRefGoogle Scholar
  45. Timms, R. E. (1980). The phase behaviour and polymorphism of milk fat, milk fat fractions and fully hardened milk fat. Australian Journal of Dairy Technology, 35, 47–53.Google Scholar
  46. Truong, T., Bansal, N., Sharma, R., Palmer, M., & Bhandari, B. (2014). Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chemistry, 145, 725–735.PubMedCrossRefGoogle Scholar
  47. Truong, T., Morgan, G. P., Bansal, N., Palmer, M., & Bhandari, B. (2015). Crystal structures and morphologies of fractionated milk fat in nanoemulsions. Food Chemistry, 171, 157–167.PubMedCrossRefGoogle Scholar
  48. Tzompa-Sosa, D. A., Ramel, P. R., Van Valenberg, H. J. F., & Van Aken, G. A. (2016). Formation of b polymorphs in milk fats with large differences in triacylglycerol profiles. Journal of Agricultural and Food Chemistry, 64, 4152–4157.PubMedCrossRefGoogle Scholar
  49. Van Aken, G. A., Ten Grotenhuis, E., Van Langevelde, A. J., & Schenck, H. (1999). Composition and crystallization of milk fat fractions. Journal of the American Oil Chemists Society, 76, 1323–1331.CrossRefGoogle Scholar
  50. Van Aken, G. A., & Visser, K. A. (2000). Firmness and crystallization of milk fat in relation to processing conditions. Journal of Dairy Science, 83, 1919–1932.PubMedCrossRefGoogle Scholar
  51. Vanhoutte, B., Dewettinck, K., Foubert, I., Vanlerberghe, B., & Huyghebaert, A. (2002). The effect of phospholipids and water on the isothermal crystallisation of milk fat. European Journal of Lipid Science and Technology, 104, 490–495.CrossRefGoogle Scholar
  52. Wright, A. J., Hartel, R. W., Narine, S. S., & Marangoni, A. G. (2000). The effect of minor components on milk fat crystallization. Journal of the American Oil Chemists Society, 77, 463–475.CrossRefGoogle Scholar
  53. Wright, A. J., & Marangoni, A. G. (2003). The effect of minor components on milk fat microstructure and mechanical properties. Journal of Food Science, 68, 182–186.CrossRefGoogle Scholar
  54. Wright, A. J., & Marangoni, A. G. (2006). Crystallization and rheological properties of milk fat. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry, volume 2 Lipids (3rd ed., pp. 245–332). New York: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.INRAE, UMR STLORennesFrance
  2. 2.INRAE, UR BIANantesFrance

Personalised recommendations