Skip to main content

Crystallization and Melting Properties of Milk Fat

  • Chapter
  • First Online:
Dairy Fat Products and Functionality

Abstract

 Milk fat physical properties, including its crystallization and melting properties, are involved in many food applications (cream, butter, cheese, and also in bakery). Over a wide range of temperatures, milk fat is a mixture of solid crystals connected in networks and embeded in a liquid phase. These crystals evolve, as a function of temperature and temperings, in terms of amount, composition and structural characteristics. This book chapter describes the crystallization properties and polymorphism of milk fat and shows how they are affected by (1) the dispersion state, i.e. anhydrous fat versus emulsified fat dispersed in numerous droplets, (2) the cooling rates and temperings, (3) shear applied during processing, (4) the presence of minor lipid compounds (FFAs, MAGs, DAGs, phospholipids), (5) the fatty acid and triacylglycerol (TAG) compositions, including milk fat from various species (human, goat, dromedary milks). Deciphering the crystallization properties of milk fat requires investigations at different scale levels, recordings as a function of temperature and time, and the combination of physical techniques. Increasing knowledge in the area of TAG crystallization yields fascinating new insights that contribute in increasing further the value of milk fat in food applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bayard, M., Leal-Calderon, F., & Cansell, M. (2017). Free fatty acids and their esters modulate isothermal crystallization of anhydrous milk fat. Food Chemistry, 218, 22–29.

    Article  CAS  PubMed  Google Scholar 

  • Ben Amara-Dali, W., Lesieur, P., Artzner, F., Karray, N., Attia, H., & Ollivon, M. (2007). Anhydrous goat’s milk fat: Thermal and structural behaviors studied by coupled DSC and X-ray diffraction. 2. Influence of cooling rate. Journal of Agricultural and Food Chemistry, 55, 4741–4751.

    Article  CAS  Google Scholar 

  • Ben Amara-Dali, W., Lopez, C., Lesieur, P., & Ollivon, M. (2008). Crystallization properties and polymorphism of triacylglycerols in goat’s milk fat globules. Journal of Agricultural and Food Chemistry, 56, 4511–4522.

    Article  CAS  PubMed  Google Scholar 

  • Bugeat, S., Briard-Bion, V., Pérez, J., Pradel, P., Martin, B., Lesieur, S., et al. (2011). Enrichment in unsaturated fatty acids and emulsion droplet size affect the crystallization behaviour of milk triacylglycerols upon storage at 4°C. Food Research International, 44, 1314–1330.

    Article  CAS  Google Scholar 

  • Bugeat, S., Perez, J., Briard-Bion, V., Pradel, P., Ferlay, A., Bourgaux, C., et al. (2015). Unsaturated fatty acid enriched vs. control milk triacylglycerols: Solid and liquid TAG phases examined by synchrotron radiation X-ray diffraction coupled with DSC. Food Research International, 67, 91–101.

    Article  CAS  Google Scholar 

  • Buldo, P., Kirkensgaard, J. J. K., & Wiking, L. (2013). Crystallization mechanisms in cream during ripening and initial butter churning. Journal of Dairy Science, 96, 6782–6791.

    Article  CAS  PubMed  Google Scholar 

  • Campos, R., Narine, S. S., & Marangoni, A. G. (2002). Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Research International, 35, 971–982.

    Article  CAS  Google Scholar 

  • Couvreur, S., Hurtaud, C., Lopez, C., Delaby, L., & Peyraud, J. L. (2006). The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. Journal of Dairy Science, 89, 1956–1969.

    Article  CAS  PubMed  Google Scholar 

  • Foubert, I., Vanhoutte, B., & Dewettinck, K. (2004). Temperature and concentration dependent effect of partial glycerides on milk fat crystallization. European Journal of Lipid Science and Technology, 106, 531–539.

    Article  CAS  Google Scholar 

  • Fredrick, E., Moens, K., Heyman, B., Fischer, S., Van der Meeren, P., & Dewettinck, K. (2013). Monoacylglycerols in dairy recombined cream: I. The effect on milk fat crystallization. Food Research International, 51, 892–898.

    Article  CAS  Google Scholar 

  • Fredrick, E., Van de Walle, D., Walstra, P., Zijtveld, J. H., Fischer, S., Van der Meeren, P., et al. (2011). Isothermal crystallization behavior of milk fat in bulk and emulsified state. International Dairy Journal, 21, 685–695.

    Article  CAS  Google Scholar 

  • Gliguem, H., Ghorbel, D., Lopez, C., Michon, C., Ollivon, M., & Lesieur, P. (2009). Crystallization and polymorphism of triacylglycerols contribute to the rheological properties of processed cheese. Journal of Agricultural and Food Chemistry, 57, 3195–3203.

    Article  CAS  PubMed  Google Scholar 

  • Gliguem, H., Lopez, C., Michon, C., Lesieur, P., & Ollivon, M. (2011). The viscoelastic properties of processed cheeses depend on their thermal history and fat polymorphism. Journal of Agricultural and Food Chemistry, 59, 3125–3134.

    Article  CAS  PubMed  Google Scholar 

  • Grall, D. S., & Hartel, R. W. (1992). Kinetics of butterfat crystallization. Journal of the American Oil Chemists Society, 69, 741–747.

    Article  CAS  Google Scholar 

  • Karray, N., Lopez, C., Lesieur, P., & Ollivon, M. (2005). Dromedary milk fat: thermal and structural properties 2. Influence of cooling rate. Le Lait, 85(6), 433–451.

    Article  CAS  Google Scholar 

  • Kaylegian, K. E., & Lindsay, R. C. (1995). Handbook of milk fat fractionation technology and application. Champaign, IL: AOCS Press.

    Google Scholar 

  • Lopez, C. (2011). Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid and Interface Science, 16, 391–404.

    Article  CAS  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P., Bernadou, S., Keller, G., & Ollivon, M. (2002). Thermal and structural behavior of milk fat: 3. Influence of cream cooling rate and droplet size. Journal of Colloid and Interface Science, 254, 64–78.

    CAS  PubMed  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P., & Ollivon, M. (2002). Crystalline structures formed in cream and anhydrous milk fat at 4°C. Le Lait, 82, 317–335.

    Article  CAS  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P., & Ollivon, M. (2007). Coupling of time-resolved synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and polymorphism of triglycerides in milk fat globules. Le Lait, 87, 459–480.

    Article  CAS  Google Scholar 

  • Lopez, C., Bourgaux, C., Lesieur, P., Riaublanc, A., & Ollivon, M. (2006). Milk fat and primary fractions obtained by dry fractionation 1. Chemical composition and crystallisation properties. Chemistry and Physics of Lipids, 144, 17–33.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., Beaucher, E., & Ollivon, M. (2008). Multiscale characterization of the organization of triglycerides and phospholipids in Emmental cheese: From the microscopic to the molecular level. Journal of Agricultural and Food Chemistry, 56, 2406–2414.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., Bourgaux, C., & Perez, J. (2013). Solid triacylglycerols within human fat globules: Crystals with a melting point above in-body temperature formed upon storage of breast milk at low temperature. Food Research International, 54, 1541–1552.

    Article  CAS  Google Scholar 

  • Lopez, C., Briard-Bion, V., Camier, B., & Gassi, J.-Y. (2006). Milk fat thermal properties and solid fat content in Emmental cheese: A differential scanning calorimetry study. Journal of Dairy Science, 89, 2894–2910.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science & Technology, 95, 863–893.

    Article  CAS  Google Scholar 

  • Lopez, C., Karray, N., Lesieur, P., & Ollivon, M. (2005). Crystallisation and melting properties of dromedary milk fat globules studied by X-ray diffraction and differential scanning calorimetry. Comparison with anhydrous dromedary milk fat. European Journal of Lipid Science and Technology, 107, 673–683.

    Article  CAS  Google Scholar 

  • Lopez, C., Lavigne, F., Lesieur, P., Keller, G., & Ollivon, M. (2001a). Thermal and structural behavior of anhydrous milk fat: 2. Crystalline forms obtained by slow cooling. Journal of Dairy Science, 84, 2402–2412.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Lavigne, F., Lesieur, P., Keller, G., & Ollivon, M. (2001b). Thermal and structural behavior of milk fat: 1. Unstable species of anhydrous milk fat. Journal of Dairy Science, 84, 756–766.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Lesieur, P., Bourgaux, C., Keller, G., & Ollivon, M. (2001). Thermal and structural behavior of milk fat: 2. Crystalline forms obtained by slow cooling of cream. Journal of Colloid and Interface Science, 240, 150–161.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Lesieur, P., Bourgaux, C., & Ollivon, M. (2005). Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate. Journal of Dairy Science, 88, 511–526.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Briard-Bion, V., & Ménard, O. (2014). Polar lipids, sphingomyelin and long-chain unsaturated fatty acids from the milk fat globule membrane are increased in milks produced by cows fed fresh pasture based diet during spring. Food Research International, 58, 59–68.

    Google Scholar 

  • Lopez, C., Lesieur, P., Keller, G., & Ollivon, M. (2000). Thermal and structural behavior of milk fat: 1. Unstable species of cream. Journal of Colloid and Interface Science, 229, 62–71.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., & Ollivon, M. (2009). Triglycerides obtained by dry fractionation of milk fat. 2. Thermal properties and polymorphic evolutions on heating. Chemistry and Physics of Lipids, 159, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Marangoni, A. G., & Lencki, R. W. (1998). Ternary phase behaviour of milk fat fractions. Journal of Agricultural and Food Chemistry, 46, 3879–3884.

    Article  CAS  Google Scholar 

  • Mazzanti, G., Marangoni, A. G., & Idziak, S. H. J. (2009). Synchrotron study on crystallization kinetics of milk fat under shear flow. Food Research International, 42, 682–694.

    Article  CAS  Google Scholar 

  • Michalski, M.-C., Ollivon, M., Briard, V., Leconte, N., & Lopez, C. (2004). Native fat globules of different sizes selected from raw milk: Thermal and structural behavior. Chemistry and Physics of Lipids, 132(2), 247–261.

    Article  CAS  PubMed  Google Scholar 

  • Ollivon, M., Keller, G., Bourgaux, C., Kalnin, D., Villeneuve, P., & Lesieur, P. (2006). DSC and high resolution X-ray diffraction coupling. Journal of Thermal Analysis and Calorimetry, 85, 219–224.

    Article  CAS  Google Scholar 

  • Ramel, P. R., & Marangoni, A. G. (2016). Engineering the microstructure of milk fat by blending binary and ternary mixtures of its melting fractions. RSC Advances, 6, 41189–41194.

    Article  CAS  Google Scholar 

  • Ramel, P. R., Peyronel, F., & Marangoni, A. G. (2016). Characterization of the nanoscale structure of milk fat. Food Chemistry, 203, 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Ronholt, S., Kirkensgaard, J. J. K., Mortensen, K., & Knudsen, J. C. (2014). Effect of cream cooling rate and water content on butter microstructure during four weeks of storage. Food Hydrocolloids, 34, 169–176.

    Article  CAS  Google Scholar 

  • Smet, K., Coudijzer, K., Fredrick, E., De Campeneere, S., De Block, J., Wouters, J., et al. (2010). Crystallization behaviour of milk fat obtained from linseed-fed cows. Journal of Dairy Science, 93, 495–505.

    Article  CAS  PubMed  Google Scholar 

  • Smiddy, M. A., Huppertz, T., & Van Ruth, S. M. (2012). Triacylglycerol and melting profiles of milk fat from several species. International Dairy Journal, 24, 64–69.

    Article  CAS  Google Scholar 

  • Söderberg, I., Hernqvist, L., & Buchheim, W. (1989). Milk fat crystallization in natural milk fat globules. Milchwissenschaft, 44, 403–406.

    Google Scholar 

  • Ten Grotenhuis, E., Van Aken, G. A., Van Malssen, K. F., & Schenk, H. (1999). Polymorphism of milk fat studied by differential scanning calorimetry and real-time X–ray powder diffraction. Journal of the American Oil Chemists Society, 76, 1031–1039.

    Article  Google Scholar 

  • Timms, R. E. (1980). The phase behaviour and polymorphism of milk fat, milk fat fractions and fully hardened milk fat. Australian Journal of Dairy Technology, 35, 47–53.

    CAS  Google Scholar 

  • Truong, T., Bansal, N., Sharma, R., Palmer, M., & Bhandari, B. (2014). Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chemistry, 145, 725–735.

    Article  CAS  PubMed  Google Scholar 

  • Truong, T., Morgan, G. P., Bansal, N., Palmer, M., & Bhandari, B. (2015). Crystal structures and morphologies of fractionated milk fat in nanoemulsions. Food Chemistry, 171, 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Tzompa-Sosa, D. A., Ramel, P. R., Van Valenberg, H. J. F., & Van Aken, G. A. (2016). Formation of b polymorphs in milk fats with large differences in triacylglycerol profiles. Journal of Agricultural and Food Chemistry, 64, 4152–4157.

    Article  CAS  PubMed  Google Scholar 

  • Van Aken, G. A., Ten Grotenhuis, E., Van Langevelde, A. J., & Schenck, H. (1999). Composition and crystallization of milk fat fractions. Journal of the American Oil Chemists Society, 76, 1323–1331.

    Article  Google Scholar 

  • Van Aken, G. A., & Visser, K. A. (2000). Firmness and crystallization of milk fat in relation to processing conditions. Journal of Dairy Science, 83, 1919–1932.

    Article  PubMed  Google Scholar 

  • Vanhoutte, B., Dewettinck, K., Foubert, I., Vanlerberghe, B., & Huyghebaert, A. (2002). The effect of phospholipids and water on the isothermal crystallisation of milk fat. European Journal of Lipid Science and Technology, 104, 490–495.

    Article  CAS  Google Scholar 

  • Wright, A. J., Hartel, R. W., Narine, S. S., & Marangoni, A. G. (2000). The effect of minor components on milk fat crystallization. Journal of the American Oil Chemists Society, 77, 463–475.

    Article  CAS  Google Scholar 

  • Wright, A. J., & Marangoni, A. G. (2003). The effect of minor components on milk fat microstructure and mechanical properties. Journal of Food Science, 68, 182–186.

    Article  CAS  Google Scholar 

  • Wright, A. J., & Marangoni, A. G. (2006). Crystallization and rheological properties of milk fat. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry, volume 2 Lipids (3rd ed., pp. 245–332). New York: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christelle Lopez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lopez, C. (2020). Crystallization and Melting Properties of Milk Fat. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_9

Download citation

Publish with us

Policies and ethics