Skip to main content

Role of the Matrix on the Digestibility of Dairy Fat and Health Consequences

  • Chapter
  • First Online:
Book cover Dairy Fat Products and Functionality

Abstract

Dairy products are basic products largely consumed in the population, from human milk which is the perfect meal for the newborn to a large variety of dairy products from cow and other mammalians. Dairy products consumption has been recommended for its richness in valuable nutrients, but some research some 30 years ago raised concern on dairy lipid possible health impacts. Since then, the scientific community has tried to decipher the intricate parameters of lipid metabolism in response to lipids varying in composition, structure, food source, in a meal, in a diet, etc. In this chapter, the knowledge coming from epidemiologic studies will be first reviewed to reveal the possible factors that should be studied to understand the lipid travel in the food and in the human body after consumption of different dairy matrices, in order to try to understand their physiological role and health impact. Recent knowledge on how the dairy matrix impacts lipid digestion and metabolism will be reviewed, with a particular emphasis on the knowledge gained from newly developed in vitro models of human digestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUC:

Area under curve

Ca:

Calcium

CCK:

Cholecystokinin

CLA:

Conjugated linoleic acid

CM:

Casein micelles

CN:

Casein

CRP:

C-reactive protein

CVD:

Cardiovascular disease

FA:

Fatty acids

FG:

Fat globule

GGT:

Gamma glutamyl transferase

HDL:

High density lipoprotein

IL:

Interleukin

LAB:

Lactic acid bacteria

LCFA:

Long chain fatty acids

LDL:

Low density lipoprotein

LPS:

Lipopolysaccharides

MCFA:

Medium chain fatty acids

MCP:

Monocyte chemoattractant protein

MF:

Milk fat

MFGM:

Milk fat globule membrane

ML:

Milk lipids

NA:

Not available

NEFA:

Non-esterified fatty acids

PC:

Phosphatidylcholine

PE:

Phosphatidylethanolamine

PI:

Phosphatidylinositol

PL:

Phospholipid

PS:

Phosphatidylserine

RTC:

Randomized control trial

SCFA:

Short chain fatty acids

FA:

Saturated fatty acids

SM:

Sphingomyelin

T2D:

Type 2 diabetes

TCA:

Trichloroacetic acid

TAG:

Triacylglycerol

TNF-α:

Tumor necrosis factor-α

VLDL:

Very low-density lipoprotein

WAT:

White adipose tissue

WP:

Whey proteins

References

  • Adouard, N., Magne, L., Cattenoz, T., Guillemin, H., Foligné, B., Picque, D., et al. (2016). Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract. Food Microbiology, 53, 30–40.

    Article  CAS  PubMed  Google Scholar 

  • Aguilera, J. M. (2006). Food product engineering: Building the right structures. Journal of the Science of Food and Agriculture, 86(8), 1147–1155.

    Article  CAS  Google Scholar 

  • Aguirre, M., Eck, A., Koenen, M. E., Savelkoul, P. H. M., Budding, A. E., & Venema, K. (2016). Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Research in Microbiology, 167(2), 114–125.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, D. D., Bylsma, L. C., Vargas, A. J., Cohen, S. S., Doucette, A., Mohamed, M., et al. (2016). Dairy consumption and CVD: A systematic review and meta- analysis. The British Journal of Nutrition, 115(04), 737–750.

    Article  CAS  PubMed  Google Scholar 

  • Argov, N., Lemay, D. G., & German, J. B. (2008). Milk fat globule structure and function: Nanoscience comes to milk production. Trends in Food Science and Technology, 19(12), 617–623.

    Article  CAS  Google Scholar 

  • Argov-Argaman, N., Smilowitz, J. T., Bricarello, D. A., Barboza, M., Lerno, L., Froehlich, J. W., et al. (2010). Lactosomes: Structural and compositional classification of unique nanometer-sized protein lipid particles of human milk. Journal of Agricultural and Food Chemistry, 58(21), 11234–11242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Armand, M. (2007). Lipases and lipolysis in the human digestive tract: Where do we stand? Current Opinion in Clinical Nutrition & Metabolic Care, 10(2), 156–164.

    Article  CAS  Google Scholar 

  • Armand, M., Borel, P., Ythier, P., Dutot, G., Melin, C., Senft, M., et al. (1992). Effects of droplet size, triacylglycerol composition, and calcium on the hydrolysis of complex emulsions by pancreatic lipase: An in vitro study. The Journal of Nutritional Biochemistry, 3(7), 333–341.

    Article  CAS  Google Scholar 

  • Armand, M., Pasquier, B., André, M., Borel, P., Senft, M., Peyrot, J., et al. (1999). Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. The American Journal of Clinical Nutrition, 70(6), 1096–1106.

    Article  CAS  PubMed  Google Scholar 

  • Asselin, G., Lavigne, C., Bergeron, N., Angers, P., Belkacemi, K., Arul, J., et al. (2004). Fasting and postprandial lipid response to the consumption of modified milk fats by Guinea pigs. Lipids, 39(10), 985–992.

    Article  CAS  PubMed  Google Scholar 

  • Ataie-Jafari, A., Larijani, B., Alavi Majd, H., & Tahbaz, F. (2009). Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Annals of Nutrition & Metabolism, 54(1), 22–27.

    Article  CAS  Google Scholar 

  • Auerbach, A., Vyas, G., Li, A., Halushka, M., & Witwer, K. (2016). Uptake of dietary milk miRNAs by adult humans: A validation study. F1000Res, 5, 721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ayala-Bribiesca, E., Lussier, M., Chabot, D., Turgeon, S. L., & Britten, M. (2016). Effect of calcium enrichment of Cheddar cheese on its structure, in vitro digestion and lipid bioaccessibility. International Dairy Journal, 53, 1–9.

    Article  CAS  Google Scholar 

  • Ayala-Bribiesca, E., Turgeon, S. L., & Britten, M. (2017). Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions. Journal of Dairy Science, 100(4), 2454–2470.

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Bribiesca, E., Turgeon, S. L., Pilon, G., Marette, A., & Britten, M. (2018). Postprandial lipemia and fecal fat excretion in rats is affected by the calcium content and type of milk fat present in Cheddar-type cheeses. Food Research International, 107, 589–595.

    Article  CAS  PubMed  Google Scholar 

  • Baillargeon, M. W., Bistline Jr., R. G., & Sonnet, P. E. (1989). Evaluation of strains of Geotrichum candidum for lipase production and fatty acid specificity. Applied Microbiology and Biotechnology, 30(1), 92–96.

    Article  CAS  Google Scholar 

  • Barbé, F., Le Feunteun, S., Rémond, D., Ménard, O., Jardin, J., Henry, G., et al. (2014). Tracking the in vivo release of bioactive peptides in the gut during digestion: Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrices fed mini-pigs. Food Research International, 63, 147–156.

    Article  CAS  Google Scholar 

  • Barbé, F., Ménard, O., Gouar, Y. L., Buffière, C., Famelart, M.-H., Laroche, B., et al. (2013). The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 136(3- 4), 1203–1212.

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner, S., Kelly, E. R., van der Made, S., Berendschot, T. T., Husche, C., Lutjohann, D., et al. (2013). The influence of consuming an egg or an egg-yolk buttermilk drink for 12 wk on serum lipids, inflammation, and liver function markers in human volunteers. Nutrition, 29(10), 1237–1244.

    Article  CAS  PubMed  Google Scholar 

  • Benzonana, G., & Desnuelle, P. (1965). Etude cinetique de l’action de la lipase pancreatique sur des triglycerides en emulsion. Essai d’une enzymologie en milieu heterogene. Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation, 105(1), 121–136.

    Article  CAS  Google Scholar 

  • Bernard, A., & Carlier, H. (1991). Absorption and intestinal catabolism of fatty acids in the rat: Effect of chain length and unsaturation. Experimental Physiology, 76(3), 445–455.

    Article  CAS  PubMed  Google Scholar 

  • Berry, S. E., Miller, G. J., & Sanders, T. A. (2007). The solid fat content of stearic acid-rich fats determines their postprandial effects. The American Journal of Clinical Nutrition, 85(6), 1486–1494.

    Article  CAS  PubMed  Google Scholar 

  • Berry, S. E., & Sanders, T. A. (2005). Influence of triacylglycerol structure of stearic acid-rich fats on postprandial lipaemia. The Proceedings of the Nutrition Society, 64(2), 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Bertolini, M. C., Laramee, L., Thomas, D. Y., Cygler, M., Schrag, J. D., & Vernet, T. (1994). Polymorphism in the lipase genes of Geotrichum candidum strains. European Journal of Biochemistry, 219(1–2), 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Bertolini, M. C., Schrag, J. D., Cygler, M., Ziomek, E., Thomas, D. Y., & Vernet, T. (1995). Expression and characterization of Geotrichum candidum lipase I gene. Comparison of specificity profile with lipase II. European Journal of Biochemistry, 228(3), 863–869.

    Article  CAS  PubMed  Google Scholar 

  • Berton, A., Rouvellac, S., Robert, B., Rousseau, F., Lopez, C., & Crenon, I. (2012). Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: Native versus homogenized milk fat globules. Food Hydrocolloids, 29(1), 123–134.

    Article  CAS  Google Scholar 

  • Blanquet, S., Zeijdner, E., Beyssac, E., Meunier, J.-P., Denis, S., Havenaar, R., et al. (2004). A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharmaceutical Research, 21(4), 585–591.

    Article  CAS  PubMed  Google Scholar 

  • Bohl, M., Bjornshave, A., Rasmussen, K. V., Schioldan, A. G., Amer, B., Larsen, M. K., et al. (2015). Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): A 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study. The American Journal of Clinical Nutrition, 101(4), 870–878.

    Article  CAS  PubMed  Google Scholar 

  • Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., et al. (2017). Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition, 58(13), 1–23.

    PubMed  Google Scholar 

  • Boirie, Y., Dangin, M., Gachon, P., Vasson, M.-P., Maubois, J.-L., & Beaufrère, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14930–14935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bondia-Pons, I., Hyötyläinen, T., & Orešič, M. (2015). Role of microbiota in regulating host lipid metabolism and disease risk. In S. Kochhar & F.-P. Martin (Eds.), Metabonomics and gut microbiota in nutrition and disease (pp. 235–260). London: Springer.

    Chapter  Google Scholar 

  • Bonnaire, L., Sandra, S., Helgason, T., Decker, E. A., Weiss, J., & McClements, D. J. (2008). Influence of lipid physical state on the in vitro digestibility of emulsified lipids. Journal of Agricultural and Food Chemistry, 56(10), 3791–3797.

    Article  CAS  PubMed  Google Scholar 

  • Borel, P., Armand, M., Pasquier, B., Senft, M., Dutot, G., Melin, C., et al. (1994). Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat. Journal of Parenteral and Enteral Nutrition, 18(6), 534–543.

    Article  CAS  PubMed  Google Scholar 

  • Bortolotti, M., Dubuis, J., Schneiter, P., & Tappy, L. (2012). Effects of dietary protein on lipid metabolism in high fructose fed humans. Clinical Nutrition, 31(2), 238–245.

    Article  CAS  PubMed  Google Scholar 

  • Bortolotti, M., Schneiter, P., & Tappy, L. (2010). Effects of dietary protein on post-prandial lipid metabolism in healthy humans. Clinical Nutrition ESPEN, 5(5), e191–e197.

    Google Scholar 

  • Bourlieu, C., Menard, O., De La Chevasnerie, A., Sams, L., Rousseau, F., Madec, M. N., et al. (2015). The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chemistry, 182, 224–235.

    Article  CAS  PubMed  Google Scholar 

  • Bourlieu, C., & Michalski, M. C. (2015). Structure-function relationship of the milk fat globule. Current Opinion in Clinical Nutrition and Metabolic Care, 18(2), 118–127.

    Article  CAS  PubMed  Google Scholar 

  • Brassard, D., Tessier-Grenier, M., Allaire, J., Rajendiran, E., She, Y., Ramprasath, V., et al. (2017). Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: A randomized controlled trial. The American Journal of Clinical Nutrition, 105(4), 800–809.

    Article  CAS  PubMed  Google Scholar 

  • Briard, V., & Michalski, M. C. (2004). Fatty acid composition of total fat from camembert cheeses with small and large native milk fat globules. Milchwissenschaft-Milk Science International, 59(5- 6), 273–277.

    CAS  Google Scholar 

  • Calder, P. C. (2002). Dietary modification of inflammation with lipids. Proceedings of the Nutrition Society, 61(3), 345–358.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772.

    Article  CAS  PubMed  Google Scholar 

  • Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470–1481.

    Article  CAS  PubMed  Google Scholar 

  • Carriere, F., Barrowman, J. A., Verger, R., & Laugier, R. (1993). Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology, 105(3), 876–888.

    Article  CAS  PubMed  Google Scholar 

  • Carriere, F., Renou, C., Lopez, V., De Caro, J., Ferrato, F., Lengsfeld, H., et al. (2000). The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology, 119(4), 949–960.

    Article  CAS  PubMed  Google Scholar 

  • Castro-Gomez, P., Garcia-Serrano, A., Visioli, F., & Fontecha, J. (2015). Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 101, 41–51.

    Article  CAS  PubMed  Google Scholar 

  • Charton, E., & Macrae, A. R. (1992). Substrate specificities of lipases A and B from Geotrichum candidum CMICC 335426. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 1123(1), 59–64.

    Article  CAS  Google Scholar 

  • Chen, G.-C., Wang, Y., Tong, X., Szeto, I. M. Y., Smit, G., Li, Z.-N., et al. (2016). Cheese consumption and risk of cardiovascular disease: A meta-analysis of prospective studies. European Journal of Nutrition, 56(8), 1–11.

    Google Scholar 

  • Chen, M., Li, Y., Sun, Q., Pan, A., Manson, J. E., Rexrode, K. M., et al. (2016). Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. The American Journal of Clinical Nutrition, 104(5), 1209–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Claeys, W. L., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., Dierick, K., et al. (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food Control, 31(1), 251–262.

    Article  CAS  Google Scholar 

  • Clemente, G., Mancini, M., Nazzaro, F., Lasorella, G., Rivieccio, A., Palumbo, A. M., et al. (2003). Effects of different dairy products on postprandial lipemia. Nutrition, Metabolism, and Cardiovascular Diseases, 13(6), 377–383.

    Article  CAS  PubMed  Google Scholar 

  • Cobos, A., Horne, D. S., & Muir, D. D. (1995). Rheological properties of acid milk gels.1. Effect of composition, process and acidification conditions on products from recombined milks. Milchwissenschaft, 50(8), 444–448.

    CAS  Google Scholar 

  • Collins, Y. F., McSweeney, P. L. H., & Wilkinson, M. G. (2003). Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. International Dairy Journal, 13, 841–866.

    Article  CAS  Google Scholar 

  • Conway, V., Couture, P., Richard, C., Gauthier, S. F., Pouliot, Y., & Lamarche, B. (2013). Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women. Nutrition, Metabolism, and Cardiovascular Diseases, 23(12), 1255–1262.

    Article  CAS  PubMed  Google Scholar 

  • Conway, V., Gauthier, S. F., & Pouliot, Y. (2014). Buttermilk: Much more than a source of milk phospholipids. Animal Frontiers, 4(2), 44–51.

    Article  Google Scholar 

  • Couedelo, L., Amara, S., Lecomte, M., Meugnier, E., Monteil, J., Fonseca, L., et al. (2015). Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food & Function, 6(5), 1726–1735.

    Article  CAS  Google Scholar 

  • Das, S., Holland, R., Crow, V. L., Bennett, R. J., & Manderson, G. J. (2005). Effect of yeast and bacterial adjuncts on the CLA content and flavour of a washed-curd, dry-salted cheese. International Dairy Journal, 15, 807–815.

    Article  CAS  Google Scholar 

  • de Goede, J., Geleijnse, J. M., Ding, E. L., & Soedamah-Muthu, S. S. (2015). Effect of cheese consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, 73(5), 259–275.

    Article  PubMed  Google Scholar 

  • de Oliveira Otto, M. C., Mozaffarian, D., Kromhout, D., Bertoni, A. G., Sibley, C. T., Jacobs, D. R., et al. (2012). Dietary intake of saturated fat by food source and incident cardiovascular disease: The multi-ethnic study of atherosclerosis. The American Journal of Clinical Nutrition, 96(2), 397–404.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devle, H., Ulleberg, E. K., Naess-Andresen, C. F., Rukke, E.-O., Vegarud, G., & Ekeberg, D. (2014). Reciprocal interacting effects of proteins and lipids during ex vivo digestion of bovine milk. International Dairy Journal, 36, 6–13.

    Article  CAS  Google Scholar 

  • Drouin-Chartier, J.-P., Brassard, D., Tessier-Grenier, M., Côté, J. A., Labonté, M.-È., Desroches, S., et al. (2016). Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Advances in Nutrition, 7(6), 1026–1040.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drouin-Chartier, J. P., Cote, J. A., Labonte, M. E., Brassard, D., Tessier-Grenier, M., Desroches, S., et al. (2016). Comprehensive review of the impact of dairy foods and dairy fat on cardiometabolic risk. Advances in Nutrition, 7(6), 1041–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drouin-Chartier, J.-P., Tremblay, A. J., Maltais-Giguère, J., Charest, A., Guinot, L., Rioux, L.-E., et al. (2017). Differential impact of the cheese matrix on the postprandial lipid response: A randomized, crossover, controlled trial. The American Journal of Clinical Nutrition, 106(6), 1358–1365.

    Article  CAS  PubMed  Google Scholar 

  • Druart, C., Neyrinck, A. M., Vlaeminck, B., Fievez, V., Cani, P. D., & Delzenne, N. M. (2014). Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One, 9(1), e87560.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dubois, C., Armand, M., Azais-Braesco, V., Portugal, H., Pauli, A. M., Bernard, P. M., et al. (1994). Effects of moderate amounts of emulsified dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. The American Journal of Clinical Nutrition, 60(3), 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Duchateau, G. S. M. J. E., & Klaffke, W. (2009). Health food product composition, structure and bioavailability. In D. J. McClements & E. Decker (Eds.), Designing functional foods: Measuring and controlling food structure breakdown and nutrient absorption. Vol 613.2 D457 2009 (pp. 647–675). Boca Raton, FL: CRC Press; Woodhead Publishing.

    Chapter  Google Scholar 

  • Dupont, D., Ménard, O., Le Feunteun, S., & Rémond, D. (2014). Comment la structure des gels laitiers régule-t-elle la biodisponibilité des acides aminés ? Innovations Agronomiques, 36, 57–68.

    Google Scholar 

  • Eckhardt, E. R., Wang, D. Q., Donovan, J. M., & Carey, M. C. (2002). Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology, 122(4), 948–956.

    Article  CAS  PubMed  Google Scholar 

  • Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., et al. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, 217–225.

    Article  CAS  Google Scholar 

  • Fang, X., Rioux, L.-E., Labrie, S., & Turgeon, S. L. (2016a). Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion. International Dairy Journal, 56, 169–178.

    Article  CAS  Google Scholar 

  • Fang, X., Rioux, L.-E., Labrie, S., & Turgeon, S. L. (2016b). Disintegration and nutrients release from cheese with different textural properties during in vitro digestion. Food Research International, 88(Part B), 276–283.

    Article  CAS  Google Scholar 

  • Favé, G., Coste, T. C., & Armand, M. (2004). Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability. Cellular and Molecular Biology, 50(7), 815–831.

    PubMed  Google Scholar 

  • Favé, G., Peyrot, J., Hamosh, M., & Armand, M. (2007). Digestion des lipides alimentaires: intérêt de la lipase gastrique humaine ? Cahiers de Nutrition et de Diététique, 42(4), 183–190.

    Article  Google Scholar 

  • Fernandez, B., Savard, P., & Fliss, I. (2016). Survival and metabolic activity of pediocin producer pediococcus acidilactici UL5: Its impact on intestinal microbiota and Listeria monocytogenes in a model of the human terminal ileum. Microbial Ecology, 72(4), 931–942.

    Article  CAS  PubMed  Google Scholar 

  • Florence, A. C. R., da Silva, R. C., De Santo, A. P., Gioielli, L. A., Tamime, A. Y., & de Oliveira, M. N. (2009). Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures. Dairy Science & Technology, 89(6), 541–553.

    Article  CAS  Google Scholar 

  • Fruekilde, M. B., & Hoy, C. E. (2004). Lymphatic fat absorption varies among rats administered dairy products differing in physiochemical properties. The Journal of Nutrition, 134(5), 1110–1113.

    Article  CAS  PubMed  Google Scholar 

  • Gallier, S., Cui, J., Olson, T. D., Rutherfurd, S. M., Ye, A., Moughan, P. J., et al. (2013). In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chemistry, 141(3), 3273–3281.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, C., Antona, C., Robert, B., Lopez, C., & Armand, M. (2014). The size and interfacial composition of milk fat globules are key factors controlling triglycerides bioavailability in simulated human gastro-duodenal digestion. Food Hydrocolloids, 35(0), 494–504.

    Article  CAS  Google Scholar 

  • Gaudichon, C., Laurent, C., Mahe, S., Marks, L., Tome, D., & Krempf, M. (1994). Rate of [15N]leucine incorporation and determination of nitrogenous fractions from gastro-jejunal secretion in fasting humans. Reproduction, Nutrition, Development, 34(4), 349–359.

    Article  CAS  PubMed  Google Scholar 

  • Gaudichon, C., Mahe, S., Roos, N., Benamouzig, R., Luengo, C., Huneau, J. F., et al. (1995). Exogenous and endogenous nitrogen flow rates and level of protein hydrolysis in the human jejunum after [15N]milk and [15N]yoghurt ingestion. The British Journal of Nutrition, 74(2), 251–260.

    Article  CAS  PubMed  Google Scholar 

  • German, J. B. (2008). Milk fats: A different perspective. Sciences des Aliments, 28, 176–186.

    Article  CAS  Google Scholar 

  • German, J. B., Gibson, R. A., Krauss, R. M., Nestel, P., Lamarche, B., van Staveren, W. A., et al. (2009). A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk. European Journal of Nutrition, 48(4), 191–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gijsbers, L., Ding, E. L., Malik, V. S., de Goede, J., Geleijnse, J. M., & Soedamah-Muthu, S. S. (2016). Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. The American Journal of Clinical Nutrition, 103(4), 1111–1124.

    Article  CAS  PubMed  Google Scholar 

  • Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1), 90–101.

    Article  CAS  Google Scholar 

  • Graham, D. Y., & Sackman, J. W. (1983). Solubility of calcium soaps of long-chain fatty-acids in simulated intestinal environment. Digestive Diseases and Sciences, 28(8), 733–736.

    Article  CAS  PubMed  Google Scholar 

  • Grundy, M. M.-L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science and Technology, 51(9), 1937–1946.

    Article  CAS  PubMed  Google Scholar 

  • Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30(11), 591–600.

    Article  CAS  PubMed  Google Scholar 

  • Guinot, L., Rioux, L. E., Labrie, S., Britten, M., & Turgeon, S. L. (2019). Identification of texture parameters influencing commercial cheese matrix disintegration and lipid digestion using an in vitro static digestion model. Food Research International, 121, 269–277.

    Article  CAS  PubMed  Google Scholar 

  • Guo, Q., Bellissimo, N., & Rousseau, D. (2017). Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels. Food Hydrocolloids, 69(Supplement C), 264–272.

    Article  CAS  Google Scholar 

  • Guo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109–118.

    Article  CAS  PubMed  Google Scholar 

  • Harwalkar, V. R., & Kalab, M. (1986). Relationship between microstructure and susceptibility to syneresis in yogurt made from reconstituted nonfat dry milk. Food Microstructure, 5(2), 287–294.

    Google Scholar 

  • Health Canada. (2015). Canadian Nutrient File. Retrieved November 29, 2017, from http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/cnf_downloads-telechargement_fcen-eng.php

  • Health Canada. (2016). Canada’s food guide. Retrieved November 23, 2017, from http://www.hc-sc.gc.ca/fn-an/food-guide-aliment/index-eng.php

  • Heertje, I. (2014). Structure and function of food products: A review. Food Structure, 1(1), 3–23.

    Article  Google Scholar 

  • Hernández-Galán, L., Cattenoz, T., Le Feunteun, S., Canette, A., Briandet, R., Le-Guin, S., et al. (2017). Effect of dairy matrices on the survival of Streptococcus thermophilus, Brevibacterium aurantiacum and Hafnia alvei during digestion. Food Research International, 100, 477–488.

    Article  PubMed  CAS  Google Scholar 

  • Holmer-Jensen, J., Mortensen, L. S., Astrup, A., de Vrese, M., Holst, J. J., Thomsen, C., et al. (2013). Acute differential effects of dietary protein quality on postprandial lipemia in obese non- diabetic subjects. Nutrition Research, 33(1), 34–40.

    Article  CAS  PubMed  Google Scholar 

  • Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860–867.

    Article  CAS  PubMed  Google Scholar 

  • Hu, M., Li, Y., Decker, E. A., & McClements, D. J. (2010). Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloids, 24(8), 719–725.

    Article  CAS  Google Scholar 

  • Huang, E. Y., Leone, V. A., Devkota, S., Wang, Y., Brady, M. J., & Chang, E. B. (2013). Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. JPEN Journal of Parenteral and Enteral Nutrition, 37(6), 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Hunt, J. N., & Knox, M. T. (1968). Control of gastric emptying. The American Journal of Digestive Diseases, 13(4), 372–375.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M. A., Devle, H., Comi, I., Ulleberg, E. K., Rukke, E.-O., Vegarud, G. E., et al. (2017). Ex vivo digestion of raw, pasteurised and homogenised milk – Effects on lipolysis and proteolysis. International Dairy Journal, 65, 14–19.

    Article  CAS  Google Scholar 

  • Ito, M., Oishi, K., Yoshida, Y., Okumura, T., Sato, T., Naito, E., et al. (2015). Effects of lactic acid bacteria on low-density lipoprotein susceptibility to oxidation and aortic fatty lesion formation in hyperlipidemic hamsters. Beneficial Microbes, 6(3), 287–293.

    Article  CAS  PubMed  Google Scholar 

  • Ivanovic, N., Minic, R., Dimitrijevic, L., Radojevic Skodric, S., Zivkovic, I., & Djordjevic, B. (2015). Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food & Function, 6(2), 558–565.

    Article  CAS  Google Scholar 

  • Izumi, H., Tsuda, M., Sato, Y., Kosaka, N., Ochiya, T., Iwamoto, H., et al. (2015). Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 98(5), 2920–2933.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen, T., & Poulsen, O. M. (1992). Separation and characterization of 61- and 57-kDa lipases from Geotrichum candidum ATCC 66592. Canadian Journal of Microbiology, 38(1), 75–80.

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen, T., & Poulsen, O. M. (1995). Comparison of lipases from different strains of the fungus Geotrichum candidum. Biochimica et Biophysica Acta - Lipids and Lipid Metabolism, 1257(2), 96–102.

    Article  Google Scholar 

  • Jensen, R. G., & Newburg, D. S. (1995). Bovine milk lipids. In R. G. Jensen (Ed.), Handbook of milk composition (pp. 543–576). San Diego, CA: Academic.

    Chapter  Google Scholar 

  • Jo, S. Y., Choi, E. A., Lee, J. J., & Chang, H. C. (2015). Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high- cholesterol diet. Journal of the Science of Food and Agriculture, 95(13), 2750–2756.

    Article  CAS  PubMed  Google Scholar 

  • Jones, P. J. H., & Kubow, S. (2006). Lipids, sterols, and their metabolites. In M. E. Shils, M. Shike, A. C. Ross, B. Caballero, & R. Cousins (Eds.), Modern nutrition in health and disease (10th ed., pp. 92–122). Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  • Kawase, M., Hashimoto, H., Hosoda, M., Morita, H., & Hosono, A. (2000). Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. Journal of Dairy Science, 83(2), 255–263.

    Article  CAS  PubMed  Google Scholar 

  • Keogh, J. B., Wooster, T. J., Golding, M., Day, L., Otto, B., & Clifton, P. M. (2011). Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans. The Journal of Nutrition, 141(5), 809–815.

    Article  CAS  PubMed  Google Scholar 

  • Kong, F., & Singh, R. P. (2008). Disintegration of solid foods in human stomach. Journal of Food Science, 73(5), R67–R80.

    Article  CAS  PubMed  Google Scholar 

  • Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergeres, G., Portmann, R., & Egger, L. (2012). Validation of an in vitro digestive system for studying macronutrient decomposition in humans. The Journal of Nutrition, 142(2), 245–250.

    Article  CAS  PubMed  Google Scholar 

  • Labonte, M. E., Couture, P., Richard, C., Desroches, S., & Lamarche, B. (2013). Impact of dairy products on biomarkers of inflammation: A systematic review of randomized controlled nutritional intervention studies in overweight and obese adults. The American Journal of Clinical Nutrition, 97(4), 706–717.

    Article  CAS  PubMed  Google Scholar 

  • Labonte, M. E., Cyr, A., Abdullah, M. M., Lepine, M. C., Vohl, M. C., Jones, P., et al. (2014). Dairy product consumption has no impact on biomarkers of inflammation among men and women with low-grade systemic inflammation. The Journal of Nutrition, 144(11), 1760–1767.

    Article  CAS  PubMed  Google Scholar 

  • Lai, H. C., & Ney, D. M. (1998). Gastric digestion modifies absorption of butterfat into lymph chylomicrons in rats. The Journal of Nutrition, 128(12), 2403–2410.

    Article  CAS  PubMed  Google Scholar 

  • Lamarche, B. (2008). Review of the effect of dairy products on non-lipid risk factors for cardiovascular disease. Journal of the American College of Nutrition, 27(6), 741s–746s.

    Article  PubMed  Google Scholar 

  • Lambert, J. E., & Parks, E. J. (2012). Postprandial metabolism of meal triglyceride in humans. Biochimica et Biophysica Acta, 1821(5), 721–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724–731.

    Article  CAS  Google Scholar 

  • Lamothe, S., Rémillard, N., Tremblay, J., & Britten, M. (2017). Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. Food Research International, 92, 138–146.

    Article  CAS  PubMed  Google Scholar 

  • Laugerette, F., Vors, C., Peretti, N., & Michalski, M. C. (2011). Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie, 93(1), 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Le Huerou-Luron, I., Bouzerzour, K., Ferret-Bernard, S., Menard, O., Le Normand, L., Perrier, C., et al. (2016). A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European Journal of Nutrition, 57(2), 463–476.

    Article  PubMed  CAS  Google Scholar 

  • Lecomte, M., Couedelo, L., Meugnier, E., Plaisancie, P., Letisse, M., Benoit, B., et al. (2016). Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Molecular Nutrition & Food Research, 60(3), 609–620.

    Article  CAS  Google Scholar 

  • Li, R., Dudemaine, P. L., Zhao, X., Lei, C., & Ibeagha-Awemu, E. M. (2016). Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One, 11(4), e0154129.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang, L., Qi, C., Wang, X.-G., Jin, Q., & McClements, D. J. (2017). Influence of homogenization and thermal processing on the gastrointestinal fate of bovine milk fat: In vitro digestion study. Journal of Agricultural and Food Chemistry, 65(50), 11109–11117.

    Article  CAS  PubMed  Google Scholar 

  • Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420(6917), 868–874.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C. (2011). Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science, 16(5), 391–404.

    Article  CAS  Google Scholar 

  • Lopez, C., Briard-Bion, V., Camier, B., & Gassi, J. Y. (2006). Milk fat thermal properties and solid fat content in emmental cheese: A differential scanning calorimetry study. Journal of Dairy Science, 89(8), 2894–2910.

    Article  CAS  PubMed  Google Scholar 

  • Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science and Technology, 95(6), 863–893.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Miranda, J., Williams, C., & Lairon, D. (2007). Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. The British Journal of Nutrition, 98(03), 458–473.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen, J. K., & Astrup, A. (2011). Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. The British Journal of Nutrition, 105(12), 1823–1831.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen, J. K., Jensen, S. K., & Astrup, A. (2014). Milk minerals modify the effect of fat intake on serum lipid profile: Results from an animal and a human short-term study. The British Journal of Nutrition, 111(08), 1412–1420.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen, J. K., Nielsen, S., Holst, J. J., Tetens, I., Rehfeld, J. F., & Astrup, A. (2007). Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. The American Journal of Clinical Nutrition, 85(3), 678–687.

    Article  CAS  PubMed  Google Scholar 

  • Lovegrove, J. A., & Givens, D. I. (2016). Dairy food products: Good or bad for cardiometabolic disease? Nutrition Research Reviews, 29(2), 249–267.

    Article  PubMed  Google Scholar 

  • Mariotti, F., Valette, M., Lopez, C., Fouillet, H., Famelart, M.-H., Mathé, V., et al. (2015). Casein compared with whey proteins affects the Organization of dietary fat during digestion and attenuates the postprandial triglyceride response to a mixed high-fat meal in healthy, overweight men. The Journal of Nutrition, 145(12), 2657–2664.

    Article  CAS  PubMed  Google Scholar 

  • Masson, C. (2013). The effects of constituents and the food matrix of dairy products on postprandial metabolism in overweight subjects. Maastricht: Maastricht University.

    Google Scholar 

  • Mat, D. J. L., Le Feunteun, S., Michon, C., & Souchon, I. (2016). In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Research International, 88, 226–233.

    Article  CAS  Google Scholar 

  • McIntosh, F. M., Shingfield, K. J., Devillard, E., Russell, W. R., & Wallace, R. J. (2009). Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. Microbiology, 155(Pt 1), 285–294.

    Article  CAS  PubMed  Google Scholar 

  • McIntyre, I., Osullivan, M., & Oriordan, D. (2017). Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels. Food & Function, 8(4), 1641–1651.

    Article  CAS  Google Scholar 

  • Mekki, N., Charbonnier, M., Borel, P., Leonardi, J., Juhel, C., Portugal, H., et al. (2002). Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. The Journal of Nutrition, 132(12), 3642–3649.

    Article  CAS  PubMed  Google Scholar 

  • Melnik, B. C., & Schmitz, G. (2017). Milk’s role as an epigenetic regulator in health and disease. Diseases, 5(1), 12.

    Article  PubMed Central  CAS  Google Scholar 

  • Meyer, J. H., Mayer, E. A., Jehn, D., Gu, Y., Fink, A. S., & Fried, M. (1986). Gastric processing and emptying of fat. Gastroenterology, 90(5 Pt 1), 1176–1187.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M. C. (2007). On the supposed influence of milk homogenization on the risk of CVD, diabetes and allergy. The British Journal of Nutrition, 97(4), 598–610.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M.-C. (2009). Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipemia. European Journal of Lipid Science and Technology, 111(5), 413–431.

    Article  CAS  Google Scholar 

  • Michalski, M.-C., Briard, V., Desage, M., & Geloen, A. (2005). The dispersion state of milk fat influences triglyceride metabolism in the rat. European Journal of Nutrition, 44(7), 436–444.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M. C., Camier, B., Briard, V., Leconte, N., Gassi, J. Y., Goudedranche, H., et al. (2004). The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Le Lait, 84(4), 343–358.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Camier, B., Gassi, J. Y., Briard-Bion, V., Leconte, N., Famelart, M. H., et al. (2007). Functionality of smaller vs control native milk fat globules in Emmental cheeses manufactured with adapted technologies. Food Research International, 40(1), 191–202.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Cariou, R., Michel, F., & Garnier, C. (2002). Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. Journal of Dairy Science, 85(10), 2451–2461.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M. C., Gassi, J. Y., Famelart, M. H., Leconte, N., Camier, B., Michel, F., et al. (2003). The size of native milk fat globules affects physico-chemical and sensory properties of camembert cheese. Le Lait, 83(2), 131–143.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Genot, C., Gayet, C., Lopez, C., Fine, F., Joffre, F., et al. (2013). Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Progress in Lipid Research, 52(4), 354–373.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M.-C., & Januel, C. (2006). Does homogenization affect the human health properties of cow’s milk? Trends in Food Science and Technology, 17(8), 423–437.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Leconte, N., Briard-Bion, V., Fauquant, J., Maubois, J. L., & Goudedranche, H. (2006). Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. Journal of Dairy Science, 89(10), 3778–3790.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M. C., Soares, A. F., Lopez, C., Leconte, N., Briard, V., & Geloen, A. (2006). The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. European Journal of Nutrition, 45(4), 215–224.

    Article  CAS  PubMed  Google Scholar 

  • Milard, M., Laugerette, F., Durand, A., Buisson, C., Meugnier, E., Loizon, E., et al. (2019). Milk polar lipids in a high-fat diet can prevent body weight gain: Modulated abundance of gut bacteria in relation with fecal loss of specific fatty acids. Molecular Nutrition & Food Research, 63(4), e1801078. https://doi.org/10.1002/mnfr.201801078

    Article  CAS  Google Scholar 

  • Milard, M., Penhoat, A., Durand, A., Buisson, C., Loizon, E., Meugnier, E., et al. (2019). Acute effects of milk polar lipids on intestinal tight junction expression: Towards animpact of sphingomyelin through the regulation of IL-8 secretion? The Journal of Nutritional Biochemistry, 65, 128–138.

    Article  CAS  PubMed  Google Scholar 

  • Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food - an international consensus. Food & Function, 5(6), 1113–1124.

    Article  CAS  Google Scholar 

  • Mohamadshahi, M., Veissi, M., Haidari, F., Javid, A. Z., Mohammadi, F., & Shirbeigi, E. (2014). Effects of probiotic yogurt consumption on lipid profile in type 2 diabetic patients: A randomized controlled clinical trial. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 19(6), 531–536.

    CAS  Google Scholar 

  • Mortensen, L. S., Hartvigsen, M. L., Brader, L. J., Astrup, A., Schrezenmeir, J., Holst, J. J., et al. (2009). Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: Comparison of whey, casein, gluten, and cod protein. The American Journal of Clinical Nutrition, 90(1), 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Mu, H., & Hoy, C. E. (2004). The digestion of dietary triacylglycerols. Progress in Lipid Research, 43(2), 105–133.

    Article  CAS  PubMed  Google Scholar 

  • Mu, H., & Porsgaard, T. (2005). The metabolism of structured triacylglycerols. Progress in Lipid Research, 44(6), 430–448.

    Article  CAS  PubMed  Google Scholar 

  • Mullally, M. M., Mehra, R., & FitzGerald, R. J. (1998). Thermal effects on the conformation and susceptibility of beta-lactoglobulin to hydrolysis by gastric and pancreatic endoproteinases. Irish Journal of Agricultural and Food Research, 37(1), 51–60.

    CAS  Google Scholar 

  • Murphy, E. A., Velazquez, K. T., & Herbert, K. M. (2015). Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Current Opinion in Clinical Nutrition and Metabolic Care, 18(5), 515–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nestel, P. J. (2008). Effects of dairy fats within different foods on plasma lipids. Journal of the American College of Nutrition, 27(6), 735S–740S.

    Article  PubMed  Google Scholar 

  • Nestel, P. J., Mellett, N., Pally, S., Wong, G., Barlow, C. K., Croft, K., et al. (2013). Effects of low- fat or full-fat fermented and non-fermented dairy foods on selected cardiovascular biomarkers in overweight adults. The British Journal of Nutrition, 110(12), 2242–2249.

    Article  CAS  PubMed  Google Scholar 

  • Nordestgaard, B. G., Benn, M., Schnohr, P., & Tybjærg-Hansen, A. (2007). Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. Journal of the American Medical Association, 298(3), 299–308.

    Article  CAS  PubMed  Google Scholar 

  • Norris, G. H., Jiang, C., Ryan, J., Porter, C. M., & Blesso, C. N. (2016). Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. The Journal of Nutritional Biochemistry, 30, 93–101.

    Article  CAS  PubMed  Google Scholar 

  • Norris, G. H., Milard, M., Michalski, M. C., & Blesso, C. N. (2019). Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. The Journal of Nutritional Biochemistry, 73, 108244. https://doi.org/10.1016/j.jnutbio.2019.108224

    Article  CAS  Google Scholar 

  • Nuora, A., Tupasela, T., Tahvonen, R., Rokka, S., Marnila, P., Viitanen, M., et al. (2018). Effect of homogenised and pasteurised versus native cows’ milk on gastrointestinal symptoms, intestinal pressure and postprandial lipid metabolism. International Dairy Journal, 79, 15–23.

    Article  CAS  Google Scholar 

  • Ohlsson, L., Burling, H., & Nilsson, A. (2009). Long term effects on human plasma lipoproteins of a formulation enriched in butter milk polar lipid. Lipids in Health and Disease, 8, 44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pal, S., Ellis, V., & Dhaliwal, S. (2010). Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. The British Journal of Nutrition, 104(5), 716–723.

    Article  CAS  PubMed  Google Scholar 

  • Pal, S., & Radavelli-Bagatini, S. (2013). The effects of whey protein on cardiometabolic risk factors. Obesity Reviews, 14(4), 324–343.

    Article  CAS  PubMed  Google Scholar 

  • Pan, D. D., Zeng, X. Q., & Yan, Y. T. (2011). Characterisation of lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. Journal of the Science of Food and Agriculture, 91(3), 512–518.

    Article  CAS  PubMed  Google Scholar 

  • Panagiotakos, D. B., Pitsavos, C. H., Zampelas, A. D., Chrysohoou, C. A., & Stefanadis, C. I. (2010). Dairy products consumption is associated with decreased levels of inflammatory markers related to cardiovascular disease in apparently healthy adults: The ATTICA study. Journal of the American College of Nutrition, 29(4), 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Payne, A. N., Zihler, A., Chassard, C., & Lacroix, C. (2012). Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology, 30(1), 17–25.

    Article  CAS  PubMed  Google Scholar 

  • Pei, R., Martin, D. A., DiMarco, D. M., & Bolling, B. W. (2017). Evidence for the effects of yogurt on gut health and obesity. Critical Reviews in Food Science and Nutrition, 57(8), 1569–1583.

    Article  PubMed  Google Scholar 

  • Pereira, D. I., & Gibson, G. R. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Critical Reviews in Biochemistry and Molecular Biology, 37(4), 259–281.

    Article  CAS  PubMed  Google Scholar 

  • Pessione, E., & Cirrincione, S. (2016). Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Frontiers in Microbiology, 7, 876.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pimpin, L., Wu, J. H. Y., Haskelberg, H., Del Gobbo, L., & Mozaffarian, D. (2016). Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS One, 11(6), e0158118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin, L. Q., Xu, J. Y., Han, S. F., Zhang, Z. L., Zhao, Y. Y., & Szeto, I. M. (2015). Dairy consumption and risk of cardiovascular disease: An updated meta-analysis of prospective cohort studies. Asia Pacific Journal of Clinical Nutrition, 24(1), 90–100.

    PubMed  Google Scholar 

  • Ramadan, Q., Jafarpoorchekab, H., Huang, C., Silacci, P., Carrara, S., Koklu, G., et al. (2013). NutriChip: Nutrition analysis meets microfluidics. Lab on a Chip, 13(2), 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Ramprasath, V. R., Jones, P. J., Buckley, D. D., Woollett, L. A., & Heubi, J. E. (2013). Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans. Lipids in Health and Disease, 12, 125.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raziani, F., Tholstrup, T., Kristensen, M. D., Svanegaard, M. L., Ritz, C., Astrup, A., et al. (2016). High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome: A randomized controlled trial. The American Journal of Clinical Nutrition, 104(4), 973–981.

    Article  CAS  PubMed  Google Scholar 

  • Reis, M. G., Roy, N. C., Bermingham, E. N., Ryan, L., Bibiloni, R., Young, W., et al. (2013). Impact of dietary dairy polar lipids on lipid metabolism of mice fed a high-fat diet. Journal of Agricultural and Food Chemistry, 61(11), 2729–2738.

    Article  CAS  PubMed  Google Scholar 

  • Rohm, H., & Schmid, W. (1993). Influence of dry-matter fortification on flow properties of yogurt 1. Evaluation of flow curves. Milchwissenschaft, 48(10), 556–560.

    Google Scholar 

  • Rosqvist, F., Smedman, A., Lindmark-Mansson, H., Paulsson, M., Petrus, P., Straniero, S., et al. (2015). Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: A randomized study. The American Journal of Clinical Nutrition, 102(1), 20–30.

    Article  CAS  PubMed  Google Scholar 

  • Russell, D. A., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2011). Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology, 149(1), 88–105.

    Article  CAS  PubMed  Google Scholar 

  • Sanders, T. A., Filippou, A., Berry, S. E., Baumgartner, S., & Mensink, R. P. (2011). Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. The American Journal of Clinical Nutrition, 94(6), 1433–1441.

    Article  CAS  PubMed  Google Scholar 

  • Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E., & Vernon-Carter, E. J. (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14(2), 151–159.

    Article  CAS  Google Scholar 

  • Sanggaard, K. M., Holst, J. J., Rehfeld, J. F., Sandstrom, B., Raben, A., & Tholstrup, T. (2004). Different effects of whole milk and a fermented milk with the same fat and lactose content on gastric emptying and postprandial lipaemia, but not on glycaemic response and appetite. The British Journal of Nutrition, 92(3), 447–459.

    Article  CAS  PubMed  Google Scholar 

  • Sautier, C., Dieng, K., Flament, C., Doucet, C., Suquet, J. P., & Lemonnier, D. (1983). Effects of whey protein, casein, soya-bean and sunflower proteins on the serum, tissue and faecal steroids in rats. The British Journal of Nutrition, 49(3), 313–319.

    Article  CAS  PubMed  Google Scholar 

  • Schiffrin, E. J., Parlesak, A., Bode, C., Bode, J. C., van’t Hof, M. A., Grathwohl, D., et al. (2009). Probiotic yogurt in the elderly with intestinal bacterial overgrowth: Endotoxaemia and innate immune functions. The British Journal of Nutrition, 101(7), 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Schwab, U., Lauritzen, L., Tholstrup, T., Haldorssoni, T., Riserus, U., Uusitupa, M., et al. (2014). Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food & Nutrition Research, 58, 25145.

    Article  CAS  Google Scholar 

  • Sethi, S., Gibney, M. J., & Williams, C. M. (1993). Postprandial lipoprotein metabolism. Nutrition Research Reviews, 6(01), 161–183.

    Article  CAS  PubMed  Google Scholar 

  • Shani-Levi, C., Alvito, P., Andrés, A., Assunção, R., Barberá, R., Blanquet-Diot, S., et al. (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio- relevant information. Trends in Food Science & Technology, 60(Supplement C), 52–63.

    Article  CAS  Google Scholar 

  • Snow, D. R., Ward, R., Olsen, A., Jimenez-Flores, R., & Hintze, K. J. (2011). Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. Journal of Dairy Science, 94(5), 2201–2212.

    Article  CAS  PubMed  Google Scholar 

  • Soedamah-Muthu, S. S., Verberne, L. D., Ding, E. L., Engberink, M. F., & Geleijnse, J. M. (2012). Dairy consumption and incidence of hypertension: A dose-response meta-analysis of prospective cohort studies. Hypertension, 60(5), 1131–1137.

    Article  CAS  PubMed  Google Scholar 

  • Soerensen, K. V., Thorning, T. K., Astrup, A., Kristensen, M., & Lorenzen, J. K. (2014). Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men. The American Journal of Clinical Nutrition, 99, 984–991.

    Article  CAS  PubMed  Google Scholar 

  • Sprong, R. C., Hulstein, M. F., & Van der Meer, R. (2001). Bactericidal activities of milk lipids. Antimicrobial Agents and Chemotherapy, 45(4), 1298–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprong, R. C., Hulstein, M. F. E., & van der Meer, R. (2002). Bovine milk fat components inhibit food-borne pathogens. International Dairy Journal, 12(2–3), 209–215.

    Article  CAS  Google Scholar 

  • Stenson, W. F. (2006). The esophagus and stomach. In M. E. Shils, M. Shike, A. C. Ross, B. Caballero, & R. Cousins (Eds.), Modern nutrition in health and disease (10th ed., pp. 1179–1188). Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  • Sun, J., & Buys, N. (2015). Effects of probiotics consumption on lowering lipids and CVD risk factors: A systematic review and meta-analysis of randomized controlled trials. Annals of Medicine, 47(6), 430–440.

    Article  PubMed  CAS  Google Scholar 

  • Tholstrup, T. (2006). Dairy products and cardiovascular disease. Current Opinion in Lipidology, 17(1), 1–10.

    CAS  PubMed  Google Scholar 

  • Tholstrup, T., Hoy, C. E., Andersen, L. N., Christensen, R. D., & Sandstrom, B. (2004). Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? Journal of the American College of Nutrition, 23(2), 169–176.

    Article  PubMed  Google Scholar 

  • Thompson, L. U., Jenkins, D. J., Amer, M. A., Reichert, R., Jenkins, A., & Kamulsky, J. (1982). The effect of fermented and unfermented milks on serum cholesterol. The American Journal of Clinical Nutrition, 36(6), 1106–1111.

    Article  CAS  PubMed  Google Scholar 

  • Thorning, T. K., Bertram, H. C., Bonjour, J.-P., de Groot, L., Dupont, D., Feeney, E., et al. (2017). Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. The American Journal of Clinical Nutrition, 105(5), 1033–1045.

    Article  CAS  PubMed  Google Scholar 

  • Thorning, T. K., Raben, A., Bendsen, N. T., Jørgensen, H. H., Kiilerich, P., Ardö, Y., et al. (2016). Importance of the fat content within the cheese-matrix for blood lipid profile, faecal fat excretion, and gut microbiome in growing pigs. International Dairy Journal, 61, 67–75.

    Article  CAS  Google Scholar 

  • Timmen, H., & Precht, D. (1984). Zum Einfluss unterschiedlicher technologischer Behandlung von Milch auf die Verdauungsvorgange im Magen. V. Lipolyse im Magen. [influence of different technological treatments of milk on digestion in the stomach. V. Lipolysis in the stomach]. Milchwissenschaft, 39(5), 276–280.

    CAS  Google Scholar 

  • Title, A. C., Denzler, R., & Stoffel, M. (2015). Uptake and function studies of maternal Milk-derived MicroRNAs. The Journal of Biological Chemistry, 290(39), 23680–23691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya, A., Almiron-Roig, E., Lluch, A., Guyonnet, D., & Drewnowski, A. (2006). Higher satiety ratings following yogurt consumption relative to fruit drink or dairy fruit drink. Journal of the American Dietetic Association, 106(4), 550–557.

    Article  PubMed  Google Scholar 

  • Tunick, M. H., Ren, D. X., Van Hekken, D. L., Bonnaillie, L., Paul, M., Kwoczak, R., et al. (2016). Effect of heat and homogenization on in vitro digestion of milk. Journal of Dairy Science, 99(6), 4124–4139.

    Article  CAS  PubMed  Google Scholar 

  • Turgeon, S. L., & Brisson, G. (2019). The dairy matrix: Bioaccessibility and bioavailability of nutrients and physiological effects. Journal of Dairy Science (accepted). https://doi.org/10.3168/jds.2019-17308

  • Turgeon, S. L., & Rioux, L.-E. (2011). Food matrix impact on macronutrients nutritional properties. Food Hydrocolloids, 25(8), 1915–1924.

    Article  CAS  Google Scholar 

  • Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity- associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031.

    Article  PubMed  Google Scholar 

  • US Department of Health and Human Services, US Department of Agriculture. (2015). 2015–2020 Dietary Guidelines for Americans. Retrieved December, 2015, from http://health.gov/dietaryguidelines/2015/guidelines/

  • Vallières, C. (2016). Effet de réduction en sodium sur la texture et la bioaccessibilité des protéines d’un fromage à pâte molle à croûte fleurie. Mémoire (M. Sc.), Université Laval, Québec, QC, Canada

    Google Scholar 

  • van Avesaat, M., Troost, F. J., Ripken, D., Hendriks, H. F., & Masclee, A. A. (2015). Ileal brake activation: Macronutrient-specific effects on eating behavior? International Journal of Obesity, 39(2), 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Van Hekken, D. L., Tunick, M. H., Ren, D. X., & Tomasula, P. M. (2017). Comparing the effect of homogenization and heat processing on the properties and in vitro digestion of milk from organic and conventional dairy herds. Journal of Dairy Science, 100(8), 6042–6052.

    Article  PubMed  CAS  Google Scholar 

  • Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31–40.

    Article  CAS  PubMed  Google Scholar 

  • Vors, C., Capolino, P., Guerin, C., Meugnier, E., Pesenti, S., Chauvin, M.-A., et al. (2012). Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food & Function, 3(5), 537–546.

    Article  CAS  Google Scholar 

  • Vors, C., Gayet-Boyer, C., & Michalski, M.-C. (2015). Produits laitiers et inflammation métabolique: Quels liens en phase postprandiale et à long terme ? Cahiers de Nutrition et de Diététique, 50(1), 25–38.

    Article  Google Scholar 

  • Vors, C., Joumard-Cubizolles, L., Lecomte, M., Combe, E., Ouchchane, L., Drai, J., et al. (2020). Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: Towards a gut sphingomyelin-cholesterol interplay. Gut, 69, 487–501. https://doi.org/10.1136/gutjnl-2018-318155

    Article  PubMed  Google Scholar 

  • Vors, C., Nazare, J. A., Michalski, M. C., & Laville, M. (2014). Intérêt de la phase postprandiale pour la santé de l’Homme. Obésité, 9(1), 31–41.

    Article  Google Scholar 

  • Vors, C., Pineau, G., Gabert, L., Drai, J., Louche-Pelissier, C., Defoort, C., et al. (2013). Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: A randomized crossover clinical trial. The American Journal of Clinical Nutrition, 97(1), 23–36.

    Article  CAS  PubMed  Google Scholar 

  • Wang, T. Y., Liu, M., Portincasa, P., & Wang, D. Q. (2013). New insights into the molecular mechanism of intestinal fatty acid absorption. European Journal of Clinical Investigation, 43(11), 1203–1223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wat, E., Tandy, S., Kapera, E., Kamili, A., Chung, R. W. S., Brown, A., et al. (2009). Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis, 205(1), 144–150.

    Article  CAS  PubMed  Google Scholar 

  • Weiland, A., Bub, A., Barth, S. W., Schrezenmeir, J., & Pfeuffer, M. (2016). Effects of dietary milk- and soya- phospholipids on lipid-parameters and other risk indicators for cardiovascular diseases in overweight or obese men - two double-blind, randomised, controlled, clinical trials. Journal of Nutritional Science, 5, e21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Westphal, S., Kastner, S., Taneva, E., Leodolter, A., Dierkes, J., & Luley, C. (2004). Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. The American Journal of Clinical Nutrition, 80, 284–290.

    Article  CAS  PubMed  Google Scholar 

  • Xie, N., Cui, Y., Yin, Y. N., Zhao, X., Yang, J. W., Wang, Z. G., et al. (2011). Effects of two lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complementary and Alternative Medicine, 11, 53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yakoob, M. Y., Shi, P., Hu, F. B., Campos, H., Rexrode, K. M., Orav, E. J., et al. (2014). Circulating biomarkers of dairy fat and risk of incident stroke in U.S. men and women in 2 large prospective cohorts. The American Journal of Clinical Nutrition, 100(6), 1437–1447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2016a). The formation and breakdown of structured clots from whole milk during gastric digestion. Food & Function, 7(10), 4259–4266.

    Article  CAS  Google Scholar 

  • Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2016b). Formation of a structured clot during the gastric digestion of milk: Impact on the rate of protein hydrolysis. Food Hydrocolloids, 52, 478–486.

    Article  CAS  Google Scholar 

  • Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2017). Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. Journal of Dairy Science, 100, 36–47.

    Article  CAS  PubMed  Google Scholar 

  • Ye, A., Cui, J., & Singh, H. (2010). Effect of the fat globule membrane on in vitro digestion of milk fat globules with pancreatic lipase. International Dairy Journal, 20(12), 822–829.

    Article  CAS  Google Scholar 

  • Zhang, X., & Beynen, A. C. (1993). Lowering effect of dietary milk-whey protein v. casein on plasma and liver cholesterol concentrations in rats. The British Journal of Nutrition, 70(1), 139–146.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, A. L., Hintze, K. J., Jimenez-Flores, R., & Ward, R. E. (2012). Dietary fat composition influences tissue lipid profile and gene expression in Fischer-344 rats. Lipids, 47(12), 1119–1130.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, A. L., & Ward, R. E. (2019). Milk polar lipids modulate lipid metabolism, gut permeability, and systemic inflammation in high-fat-fed C57BL/6J ob/ob mice, a model of severe obesity. Journal of Dairy Science, 102(6), 4816–4831.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie L. Turgeon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Michalski, MC., Rioux, LE., Turgeon, S.L. (2020). Role of the Matrix on the Digestibility of Dairy Fat and Health Consequences. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_8

Download citation

Publish with us

Policies and ethics