Advertisement

Role of the Matrix on the Digestibility of Dairy Fat and Health Consequences

  • Marie-Caroline Michalski
  • Laurie-Eve Rioux
  • Sylvie L. TurgeonEmail author
Chapter
  • 115 Downloads

Abstract

Dairy products are basic products largely consumed in the population, from human milk which is the perfect meal for the newborn to a large variety of dairy products from cow and other mammalians. Dairy products consumption has been recommended for its richness in valuable nutrients, but some research some 30 years ago raised concern on dairy lipid possible health impacts. Since then, the scientific community has tried to decipher the intricate parameters of lipid metabolism in response to lipids varying in composition, structure, food source, in a meal, in a diet, etc. In this chapter, the knowledge coming from epidemiologic studies will be first reviewed to reveal the possible factors that should be studied to understand the lipid travel in the food and in the human body after consumption of different dairy matrices, in order to try to understand their physiological role and health impact. Recent knowledge on how the dairy matrix impacts lipid digestion and metabolism will be reviewed, with a particular emphasis on the knowledge gained from newly developed in vitro models of human digestion.

Abbreviations

AUC

Area under curve

Ca

Calcium

CCK

Cholecystokinin

CLA

Conjugated linoleic acid

CM

Casein micelles

CN

Casein

CRP

C-reactive protein

CVD

Cardiovascular disease

FA

Fatty acids

FG

Fat globule

GGT

Gamma glutamyl transferase

HDL

High density lipoprotein

IL

Interleukin

LAB

Lactic acid bacteria

LCFA

Long chain fatty acids

LDL

Low density lipoprotein

LPS

Lipopolysaccharides

MCFA

Medium chain fatty acids

MCP

Monocyte chemoattractant protein

MF

Milk fat

MFGM

Milk fat globule membrane

ML

Milk lipids

NA

Not available

NEFA

Non-esterified fatty acids

PC

Phosphatidylcholine

PE

Phosphatidylethanolamine

PI

Phosphatidylinositol

PL

Phospholipid

PS

Phosphatidylserine

RTC

Randomized control trial

SCFA

Short chain fatty acids

FA

Saturated fatty acids

SM

Sphingomyelin

T2D

Type 2 diabetes

TCA

Trichloroacetic acid

TAG

Triacylglycerol

TNF-α

Tumor necrosis factor-α

VLDL

Very low-density lipoprotein

WAT

White adipose tissue

WP

Whey proteins

References

  1. Adouard, N., Magne, L., Cattenoz, T., Guillemin, H., Foligné, B., Picque, D., et al. (2016). Survival of cheese-ripening microorganisms in a dynamic simulator of the gastrointestinal tract. Food Microbiology, 53, 30–40.PubMedCrossRefGoogle Scholar
  2. Aguilera, J. M. (2006). Food product engineering: Building the right structures. Journal of the Science of Food and Agriculture, 86(8), 1147–1155.CrossRefGoogle Scholar
  3. Aguirre, M., Eck, A., Koenen, M. E., Savelkoul, P. H. M., Budding, A. E., & Venema, K. (2016). Diet drives quick changes in the metabolic activity and composition of human gut microbiota in a validated in vitro gut model. Research in Microbiology, 167(2), 114–125.PubMedCrossRefGoogle Scholar
  4. Alexander, D. D., Bylsma, L. C., Vargas, A. J., Cohen, S. S., Doucette, A., Mohamed, M., et al. (2016). Dairy consumption and CVD: A systematic review and meta- analysis. The British Journal of Nutrition, 115(04), 737–750.PubMedCrossRefGoogle Scholar
  5. Argov, N., Lemay, D. G., & German, J. B. (2008). Milk fat globule structure and function: Nanoscience comes to milk production. Trends in Food Science and Technology, 19(12), 617–623.CrossRefGoogle Scholar
  6. Argov-Argaman, N., Smilowitz, J. T., Bricarello, D. A., Barboza, M., Lerno, L., Froehlich, J. W., et al. (2010). Lactosomes: Structural and compositional classification of unique nanometer-sized protein lipid particles of human milk. Journal of Agricultural and Food Chemistry, 58(21), 11234–11242.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Armand, M. (2007). Lipases and lipolysis in the human digestive tract: Where do we stand? Current Opinion in Clinical Nutrition & Metabolic Care, 10(2), 156–164.CrossRefGoogle Scholar
  8. Armand, M., Borel, P., Ythier, P., Dutot, G., Melin, C., Senft, M., et al. (1992). Effects of droplet size, triacylglycerol composition, and calcium on the hydrolysis of complex emulsions by pancreatic lipase: An in vitro study. The Journal of Nutritional Biochemistry, 3(7), 333–341.CrossRefGoogle Scholar
  9. Armand, M., Pasquier, B., André, M., Borel, P., Senft, M., Peyrot, J., et al. (1999). Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. The American Journal of Clinical Nutrition, 70(6), 1096–1106.PubMedCrossRefGoogle Scholar
  10. Asselin, G., Lavigne, C., Bergeron, N., Angers, P., Belkacemi, K., Arul, J., et al. (2004). Fasting and postprandial lipid response to the consumption of modified milk fats by Guinea pigs. Lipids, 39(10), 985–992.PubMedCrossRefGoogle Scholar
  11. Ataie-Jafari, A., Larijani, B., Alavi Majd, H., & Tahbaz, F. (2009). Cholesterol-lowering effect of probiotic yogurt in comparison with ordinary yogurt in mildly to moderately hypercholesterolemic subjects. Annals of Nutrition & Metabolism, 54(1), 22–27.CrossRefGoogle Scholar
  12. Auerbach, A., Vyas, G., Li, A., Halushka, M., & Witwer, K. (2016). Uptake of dietary milk miRNAs by adult humans: A validation study. F1000Res, 5, 721.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Ayala-Bribiesca, E., Lussier, M., Chabot, D., Turgeon, S. L., & Britten, M. (2016). Effect of calcium enrichment of Cheddar cheese on its structure, in vitro digestion and lipid bioaccessibility. International Dairy Journal, 53, 1–9.CrossRefGoogle Scholar
  14. Ayala-Bribiesca, E., Turgeon, S. L., & Britten, M. (2017). Effect of calcium on fatty acid bioaccessibility during in vitro digestion of Cheddar-type cheeses prepared with different milk fat fractions. Journal of Dairy Science, 100(4), 2454–2470.PubMedCrossRefGoogle Scholar
  15. Ayala-Bribiesca, E., Turgeon, S. L., Pilon, G., Marette, A., & Britten, M. (2018). Postprandial lipemia and fecal fat excretion in rats is affected by the calcium content and type of milk fat present in Cheddar-type cheeses. Food Research International, 107, 589–595.PubMedCrossRefGoogle Scholar
  16. Baillargeon, M. W., Bistline Jr., R. G., & Sonnet, P. E. (1989). Evaluation of strains of Geotrichum candidum for lipase production and fatty acid specificity. Applied Microbiology and Biotechnology, 30(1), 92–96.CrossRefGoogle Scholar
  17. Barbé, F., Le Feunteun, S., Rémond, D., Ménard, O., Jardin, J., Henry, G., et al. (2014). Tracking the in vivo release of bioactive peptides in the gut during digestion: Mass spectrometry peptidomic characterization of effluents collected in the gut of dairy matrices fed mini-pigs. Food Research International, 63, 147–156.CrossRefGoogle Scholar
  18. Barbé, F., Ménard, O., Gouar, Y. L., Buffière, C., Famelart, M.-H., Laroche, B., et al. (2013). The heat treatment and the gelation are strong determinants of the kinetics of milk proteins digestion and of the peripheral availability of amino acids. Food Chemistry, 136(3- 4), 1203–1212.PubMedCrossRefGoogle Scholar
  19. Baumgartner, S., Kelly, E. R., van der Made, S., Berendschot, T. T., Husche, C., Lutjohann, D., et al. (2013). The influence of consuming an egg or an egg-yolk buttermilk drink for 12 wk on serum lipids, inflammation, and liver function markers in human volunteers. Nutrition, 29(10), 1237–1244.PubMedCrossRefGoogle Scholar
  20. Benzonana, G., & Desnuelle, P. (1965). Etude cinetique de l’action de la lipase pancreatique sur des triglycerides en emulsion. Essai d’une enzymologie en milieu heterogene. Biochimica et Biophysica Acta (BBA) - Enzymology and Biological Oxidation, 105(1), 121–136.CrossRefGoogle Scholar
  21. Bernard, A., & Carlier, H. (1991). Absorption and intestinal catabolism of fatty acids in the rat: Effect of chain length and unsaturation. Experimental Physiology, 76(3), 445–455.PubMedCrossRefGoogle Scholar
  22. Berry, S. E., Miller, G. J., & Sanders, T. A. (2007). The solid fat content of stearic acid-rich fats determines their postprandial effects. The American Journal of Clinical Nutrition, 85(6), 1486–1494.PubMedCrossRefGoogle Scholar
  23. Berry, S. E., & Sanders, T. A. (2005). Influence of triacylglycerol structure of stearic acid-rich fats on postprandial lipaemia. The Proceedings of the Nutrition Society, 64(2), 205–212.PubMedCrossRefGoogle Scholar
  24. Bertolini, M. C., Laramee, L., Thomas, D. Y., Cygler, M., Schrag, J. D., & Vernet, T. (1994). Polymorphism in the lipase genes of Geotrichum candidum strains. European Journal of Biochemistry, 219(1–2), 119–125.PubMedCrossRefGoogle Scholar
  25. Bertolini, M. C., Schrag, J. D., Cygler, M., Ziomek, E., Thomas, D. Y., & Vernet, T. (1995). Expression and characterization of Geotrichum candidum lipase I gene. Comparison of specificity profile with lipase II. European Journal of Biochemistry, 228(3), 863–869.PubMedCrossRefGoogle Scholar
  26. Berton, A., Rouvellac, S., Robert, B., Rousseau, F., Lopez, C., & Crenon, I. (2012). Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: Native versus homogenized milk fat globules. Food Hydrocolloids, 29(1), 123–134.CrossRefGoogle Scholar
  27. Blanquet, S., Zeijdner, E., Beyssac, E., Meunier, J.-P., Denis, S., Havenaar, R., et al. (2004). A dynamic artificial gastrointestinal system for studying the behavior of orally administered drug dosage forms under various physiological conditions. Pharmaceutical Research, 21(4), 585–591.PubMedCrossRefGoogle Scholar
  28. Bohl, M., Bjornshave, A., Rasmussen, K. V., Schioldan, A. G., Amer, B., Larsen, M. K., et al. (2015). Dairy proteins, dairy lipids, and postprandial lipemia in persons with abdominal obesity (DairyHealth): A 12-wk, randomized, parallel-controlled, double-blinded, diet intervention study. The American Journal of Clinical Nutrition, 101(4), 870–878.PubMedCrossRefGoogle Scholar
  29. Bohn, T., Carriere, F., Day, L., Deglaire, A., Egger, L., Freitas, D., et al. (2017). Correlation between in vitro and in vivo data on food digestion. What can we predict with static in vitro digestion models? Critical Reviews in Food Science and Nutrition, 58(13), 1–23.PubMedGoogle Scholar
  30. Boirie, Y., Dangin, M., Gachon, P., Vasson, M.-P., Maubois, J.-L., & Beaufrère, B. (1997). Slow and fast dietary proteins differently modulate postprandial protein accretion. Proceedings of the National Academy of Sciences of the United States of America, 94(26), 14930–14935.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Bondia-Pons, I., Hyötyläinen, T., & Orešič, M. (2015). Role of microbiota in regulating host lipid metabolism and disease risk. In S. Kochhar & F.-P. Martin (Eds.), Metabonomics and gut microbiota in nutrition and disease (pp. 235–260). London: Springer.CrossRefGoogle Scholar
  32. Bonnaire, L., Sandra, S., Helgason, T., Decker, E. A., Weiss, J., & McClements, D. J. (2008). Influence of lipid physical state on the in vitro digestibility of emulsified lipids. Journal of Agricultural and Food Chemistry, 56(10), 3791–3797.PubMedCrossRefGoogle Scholar
  33. Borel, P., Armand, M., Pasquier, B., Senft, M., Dutot, G., Melin, C., et al. (1994). Digestion and absorption of tube-feeding emulsions with different droplet sizes and compositions in the rat. Journal of Parenteral and Enteral Nutrition, 18(6), 534–543.PubMedCrossRefGoogle Scholar
  34. Bortolotti, M., Dubuis, J., Schneiter, P., & Tappy, L. (2012). Effects of dietary protein on lipid metabolism in high fructose fed humans. Clinical Nutrition, 31(2), 238–245.PubMedCrossRefGoogle Scholar
  35. Bortolotti, M., Schneiter, P., & Tappy, L. (2010). Effects of dietary protein on post-prandial lipid metabolism in healthy humans. Clinical Nutrition ESPEN, 5(5), e191–e197.Google Scholar
  36. Bourlieu, C., Menard, O., De La Chevasnerie, A., Sams, L., Rousseau, F., Madec, M. N., et al. (2015). The structure of infant formulas impacts their lipolysis, proteolysis and disintegration during in vitro gastric digestion. Food Chemistry, 182, 224–235.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Bourlieu, C., & Michalski, M. C. (2015). Structure-function relationship of the milk fat globule. Current Opinion in Clinical Nutrition and Metabolic Care, 18(2), 118–127.PubMedCrossRefGoogle Scholar
  38. Brassard, D., Tessier-Grenier, M., Allaire, J., Rajendiran, E., She, Y., Ramprasath, V., et al. (2017). Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: A randomized controlled trial. The American Journal of Clinical Nutrition, 105(4), 800–809.PubMedCrossRefGoogle Scholar
  39. Briard, V., & Michalski, M. C. (2004). Fatty acid composition of total fat from camembert cheeses with small and large native milk fat globules. Milchwissenschaft-Milk Science International, 59(5- 6), 273–277.Google Scholar
  40. Calder, P. C. (2002). Dietary modification of inflammation with lipids. Proceedings of the Nutrition Society, 61(3), 345–358.PubMedCrossRefGoogle Scholar
  41. Cani, P. D., Amar, J., Iglesias, M. A., Poggi, M., Knauf, C., Bastelica, D., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772.PubMedCrossRefGoogle Scholar
  42. Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., et al. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470–1481.CrossRefPubMedGoogle Scholar
  43. Carriere, F., Barrowman, J. A., Verger, R., & Laugier, R. (1993). Secretion and contribution to lipolysis of gastric and pancreatic lipases during a test meal in humans. Gastroenterology, 105(3), 876–888.PubMedCrossRefGoogle Scholar
  44. Carriere, F., Renou, C., Lopez, V., De Caro, J., Ferrato, F., Lengsfeld, H., et al. (2000). The specific activities of human digestive lipases measured from the in vivo and in vitro lipolysis of test meals. Gastroenterology, 119(4), 949–960.PubMedCrossRefGoogle Scholar
  45. Castro-Gomez, P., Garcia-Serrano, A., Visioli, F., & Fontecha, J. (2015). Relevance of dietary glycerophospholipids and sphingolipids to human health. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 101, 41–51.PubMedCrossRefGoogle Scholar
  46. Charton, E., & Macrae, A. R. (1992). Substrate specificities of lipases A and B from Geotrichum candidum CMICC 335426. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 1123(1), 59–64.CrossRefGoogle Scholar
  47. Chen, G.-C., Wang, Y., Tong, X., Szeto, I. M. Y., Smit, G., Li, Z.-N., et al. (2016). Cheese consumption and risk of cardiovascular disease: A meta-analysis of prospective studies. European Journal of Nutrition, 56(8), 1–11.Google Scholar
  48. Chen, M., Li, Y., Sun, Q., Pan, A., Manson, J. E., Rexrode, K. M., et al. (2016). Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. The American Journal of Clinical Nutrition, 104(5), 1209–1217.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Claeys, W. L., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., Dierick, K., et al. (2013). Raw or heated cow milk consumption: Review of risks and benefits. Food Control, 31(1), 251–262.CrossRefGoogle Scholar
  50. Clemente, G., Mancini, M., Nazzaro, F., Lasorella, G., Rivieccio, A., Palumbo, A. M., et al. (2003). Effects of different dairy products on postprandial lipemia. Nutrition, Metabolism, and Cardiovascular Diseases, 13(6), 377–383.PubMedCrossRefGoogle Scholar
  51. Cobos, A., Horne, D. S., & Muir, D. D. (1995). Rheological properties of acid milk gels.1. Effect of composition, process and acidification conditions on products from recombined milks. Milchwissenschaft, 50(8), 444–448.Google Scholar
  52. Collins, Y. F., McSweeney, P. L. H., & Wilkinson, M. G. (2003). Lipolysis and free fatty acid catabolism in cheese: A review of current knowledge. International Dairy Journal, 13, 841–866.CrossRefGoogle Scholar
  53. Conway, V., Couture, P., Richard, C., Gauthier, S. F., Pouliot, Y., & Lamarche, B. (2013). Impact of buttermilk consumption on plasma lipids and surrogate markers of cholesterol homeostasis in men and women. Nutrition, Metabolism, and Cardiovascular Diseases, 23(12), 1255–1262.PubMedCrossRefGoogle Scholar
  54. Conway, V., Gauthier, S. F., & Pouliot, Y. (2014). Buttermilk: Much more than a source of milk phospholipids. Animal Frontiers, 4(2), 44–51.CrossRefGoogle Scholar
  55. Couedelo, L., Amara, S., Lecomte, M., Meugnier, E., Monteil, J., Fonseca, L., et al. (2015). Impact of various emulsifiers on ALA bioavailability and chylomicron synthesis through changes in gastrointestinal lipolysis. Food & Function, 6(5), 1726–1735.CrossRefGoogle Scholar
  56. Das, S., Holland, R., Crow, V. L., Bennett, R. J., & Manderson, G. J. (2005). Effect of yeast and bacterial adjuncts on the CLA content and flavour of a washed-curd, dry-salted cheese. International Dairy Journal, 15, 807–815.CrossRefGoogle Scholar
  57. de Goede, J., Geleijnse, J. M., Ding, E. L., & Soedamah-Muthu, S. S. (2015). Effect of cheese consumption on blood lipids: A systematic review and meta-analysis of randomized controlled trials. Nutrition Reviews, 73(5), 259–275.PubMedCrossRefGoogle Scholar
  58. de Oliveira Otto, M. C., Mozaffarian, D., Kromhout, D., Bertoni, A. G., Sibley, C. T., Jacobs, D. R., et al. (2012). Dietary intake of saturated fat by food source and incident cardiovascular disease: The multi-ethnic study of atherosclerosis. The American Journal of Clinical Nutrition, 96(2), 397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Devle, H., Ulleberg, E. K., Naess-Andresen, C. F., Rukke, E.-O., Vegarud, G., & Ekeberg, D. (2014). Reciprocal interacting effects of proteins and lipids during ex vivo digestion of bovine milk. International Dairy Journal, 36, 6–13.CrossRefGoogle Scholar
  60. Drouin-Chartier, J.-P., Brassard, D., Tessier-Grenier, M., Côté, J. A., Labonté, M.-È., Desroches, S., et al. (2016). Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Advances in Nutrition, 7(6), 1026–1040.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Drouin-Chartier, J. P., Cote, J. A., Labonte, M. E., Brassard, D., Tessier-Grenier, M., Desroches, S., et al. (2016). Comprehensive review of the impact of dairy foods and dairy fat on cardiometabolic risk. Advances in Nutrition, 7(6), 1041–1051.PubMedPubMedCentralCrossRefGoogle Scholar
  62. Drouin-Chartier, J.-P., Tremblay, A. J., Maltais-Giguère, J., Charest, A., Guinot, L., Rioux, L.-E., et al. (2017). Differential impact of the cheese matrix on the postprandial lipid response: A randomized, crossover, controlled trial. The American Journal of Clinical Nutrition, 106(6), 1358–1365.PubMedCrossRefGoogle Scholar
  63. Druart, C., Neyrinck, A. M., Vlaeminck, B., Fievez, V., Cani, P. D., & Delzenne, N. M. (2014). Role of the lower and upper intestine in the production and absorption of gut microbiota-derived PUFA metabolites. PLoS One, 9(1), e87560.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Dubois, C., Armand, M., Azais-Braesco, V., Portugal, H., Pauli, A. M., Bernard, P. M., et al. (1994). Effects of moderate amounts of emulsified dietary fat on postprandial lipemia and lipoproteins in normolipidemic adults. The American Journal of Clinical Nutrition, 60(3), 374–382.PubMedCrossRefGoogle Scholar
  65. Duchateau, G. S. M. J. E., & Klaffke, W. (2009). Health food product composition, structure and bioavailability. In D. J. McClements & E. Decker (Eds.), Designing functional foods: Measuring and controlling food structure breakdown and nutrient absorption. Vol 613.2 D457 2009 (pp. 647–675). Boca Raton, FL: CRC Press; Woodhead Publishing.CrossRefGoogle Scholar
  66. Dupont, D., Ménard, O., Le Feunteun, S., & Rémond, D. (2014). Comment la structure des gels laitiers régule-t-elle la biodisponibilité des acides aminés ? Innovations Agronomiques, 36, 57–68.Google Scholar
  67. Eckhardt, E. R., Wang, D. Q., Donovan, J. M., & Carey, M. C. (2002). Dietary sphingomyelin suppresses intestinal cholesterol absorption by decreasing thermodynamic activity of cholesterol monomers. Gastroenterology, 122(4), 948–956.PubMedCrossRefGoogle Scholar
  68. Egger, L., Ménard, O., Delgado-Andrade, C., Alvito, P., Assunção, R., Balance, S., et al. (2016). The harmonized INFOGEST in vitro digestion method: From knowledge to action. Food Research International, 88, 217–225.CrossRefGoogle Scholar
  69. Fang, X., Rioux, L.-E., Labrie, S., & Turgeon, S. L. (2016a). Commercial cheeses with different texture have different disintegration and protein/peptide release rates during simulated in vitro digestion. International Dairy Journal, 56, 169–178.CrossRefGoogle Scholar
  70. Fang, X., Rioux, L.-E., Labrie, S., & Turgeon, S. L. (2016b). Disintegration and nutrients release from cheese with different textural properties during in vitro digestion. Food Research International, 88(Part B), 276–283.CrossRefGoogle Scholar
  71. Favé, G., Coste, T. C., & Armand, M. (2004). Physicochemical properties of lipids: New strategies to manage fatty acid bioavailability. Cellular and Molecular Biology, 50(7), 815–831.PubMedGoogle Scholar
  72. Favé, G., Peyrot, J., Hamosh, M., & Armand, M. (2007). Digestion des lipides alimentaires: intérêt de la lipase gastrique humaine ? Cahiers de Nutrition et de Diététique, 42(4), 183–190.CrossRefGoogle Scholar
  73. Fernandez, B., Savard, P., & Fliss, I. (2016). Survival and metabolic activity of pediocin producer pediococcus acidilactici UL5: Its impact on intestinal microbiota and Listeria monocytogenes in a model of the human terminal ileum. Microbial Ecology, 72(4), 931–942.PubMedCrossRefGoogle Scholar
  74. Florence, A. C. R., da Silva, R. C., De Santo, A. P., Gioielli, L. A., Tamime, A. Y., & de Oliveira, M. N. (2009). Increased CLA content in organic milk fermented by bifidobacteria or yoghurt cultures. Dairy Science & Technology, 89(6), 541–553.CrossRefGoogle Scholar
  75. Fruekilde, M. B., & Hoy, C. E. (2004). Lymphatic fat absorption varies among rats administered dairy products differing in physiochemical properties. The Journal of Nutrition, 134(5), 1110–1113.PubMedCrossRefGoogle Scholar
  76. Gallier, S., Cui, J., Olson, T. D., Rutherfurd, S. M., Ye, A., Moughan, P. J., et al. (2013). In vivo digestion of bovine milk fat globules: Effect of processing and interfacial structural changes. I. Gastric digestion. Food Chemistry, 141(3), 3273–3281.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Garcia, C., Antona, C., Robert, B., Lopez, C., & Armand, M. (2014). The size and interfacial composition of milk fat globules are key factors controlling triglycerides bioavailability in simulated human gastro-duodenal digestion. Food Hydrocolloids, 35(0), 494–504.CrossRefGoogle Scholar
  78. Gaudichon, C., Laurent, C., Mahe, S., Marks, L., Tome, D., & Krempf, M. (1994). Rate of [15N]leucine incorporation and determination of nitrogenous fractions from gastro-jejunal secretion in fasting humans. Reproduction, Nutrition, Development, 34(4), 349–359.PubMedCrossRefGoogle Scholar
  79. Gaudichon, C., Mahe, S., Roos, N., Benamouzig, R., Luengo, C., Huneau, J. F., et al. (1995). Exogenous and endogenous nitrogen flow rates and level of protein hydrolysis in the human jejunum after [15N]milk and [15N]yoghurt ingestion. The British Journal of Nutrition, 74(2), 251–260.PubMedCrossRefGoogle Scholar
  80. German, J. B. (2008). Milk fats: A different perspective. Sciences des Aliments, 28, 176–186.CrossRefGoogle Scholar
  81. German, J. B., Gibson, R. A., Krauss, R. M., Nestel, P., Lamarche, B., van Staveren, W. A., et al. (2009). A reappraisal of the impact of dairy foods and milk fat on cardiovascular disease risk. European Journal of Nutrition, 48(4), 191–203.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Gijsbers, L., Ding, E. L., Malik, V. S., de Goede, J., Geleijnse, J. M., & Soedamah-Muthu, S. S. (2016). Consumption of dairy foods and diabetes incidence: A dose-response meta-analysis of observational studies. The American Journal of Clinical Nutrition, 103(4), 1111–1124.PubMedCrossRefGoogle Scholar
  83. Golding, M., & Wooster, T. J. (2010). The influence of emulsion structure and stability on lipid digestion. Current Opinion in Colloid & Interface Science, 15(1), 90–101.CrossRefGoogle Scholar
  84. Graham, D. Y., & Sackman, J. W. (1983). Solubility of calcium soaps of long-chain fatty-acids in simulated intestinal environment. Digestive Diseases and Sciences, 28(8), 733–736.PubMedCrossRefGoogle Scholar
  85. Grundy, M. M.-L., Lapsley, K., & Ellis, P. R. (2016). A review of the impact of processing on nutrient bioaccessibility and digestion of almonds. International Journal of Food Science and Technology, 51(9), 1937–1946.PubMedCrossRefGoogle Scholar
  86. Guerra, A., Etienne-Mesmin, L., Livrelli, V., Denis, S., Blanquet-Diot, S., & Alric, M. (2012). Relevance and challenges in modeling human gastric and small intestinal digestion. Trends in Biotechnology, 30(11), 591–600.PubMedCrossRefGoogle Scholar
  87. Guinot, L., Rioux, L. E., Labrie, S., Britten, M., & Turgeon, S. L. (2019). Identification of texture parameters influencing commercial cheese matrix disintegration and lipid digestion using an in vitro static digestion model. Food Research International, 121, 269–277.PubMedCrossRefGoogle Scholar
  88. Guo, Q., Bellissimo, N., & Rousseau, D. (2017). Role of gel structure in controlling in vitro intestinal lipid digestion in whey protein emulsion gels. Food Hydrocolloids, 69(Supplement C), 264–272.CrossRefGoogle Scholar
  89. Guo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109–118.PubMedCrossRefGoogle Scholar
  90. Harwalkar, V. R., & Kalab, M. (1986). Relationship between microstructure and susceptibility to syneresis in yogurt made from reconstituted nonfat dry milk. Food Microstructure, 5(2), 287–294.Google Scholar
  91. Health Canada. (2015). Canadian Nutrient File. Retrieved November 29, 2017, from http://www.hc-sc.gc.ca/fn-an/nutrition/fiche-nutri-data/cnf_downloads-telechargement_fcen-eng.php
  92. Health Canada. (2016). Canada’s food guide. Retrieved November 23, 2017, from http://www.hc-sc.gc.ca/fn-an/food-guide-aliment/index-eng.php
  93. Heertje, I. (2014). Structure and function of food products: A review. Food Structure, 1(1), 3–23.CrossRefGoogle Scholar
  94. Hernández-Galán, L., Cattenoz, T., Le Feunteun, S., Canette, A., Briandet, R., Le-Guin, S., et al. (2017). Effect of dairy matrices on the survival of Streptococcus thermophilus, Brevibacterium aurantiacum and Hafnia alvei during digestion. Food Research International, 100, 477–488.PubMedCrossRefGoogle Scholar
  95. Holmer-Jensen, J., Mortensen, L. S., Astrup, A., de Vrese, M., Holst, J. J., Thomsen, C., et al. (2013). Acute differential effects of dietary protein quality on postprandial lipemia in obese non- diabetic subjects. Nutrition Research, 33(1), 34–40.PubMedCrossRefGoogle Scholar
  96. Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860–867.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Hu, M., Li, Y., Decker, E. A., & McClements, D. J. (2010). Role of calcium and calcium-binding agents on the lipase digestibility of emulsified lipids using an in vitro digestion model. Food Hydrocolloids, 24(8), 719–725.CrossRefGoogle Scholar
  98. Huang, E. Y., Leone, V. A., Devkota, S., Wang, Y., Brady, M. J., & Chang, E. B. (2013). Composition of dietary fat source shapes gut microbiota architecture and alters host inflammatory mediators in mouse adipose tissue. JPEN Journal of Parenteral and Enteral Nutrition, 37(6), 746–754.PubMedCrossRefGoogle Scholar
  99. Hunt, J. N., & Knox, M. T. (1968). Control of gastric emptying. The American Journal of Digestive Diseases, 13(4), 372–375.PubMedCrossRefGoogle Scholar
  100. Islam, M. A., Devle, H., Comi, I., Ulleberg, E. K., Rukke, E.-O., Vegarud, G. E., et al. (2017). Ex vivo digestion of raw, pasteurised and homogenised milk – Effects on lipolysis and proteolysis. International Dairy Journal, 65, 14–19.CrossRefGoogle Scholar
  101. Ito, M., Oishi, K., Yoshida, Y., Okumura, T., Sato, T., Naito, E., et al. (2015). Effects of lactic acid bacteria on low-density lipoprotein susceptibility to oxidation and aortic fatty lesion formation in hyperlipidemic hamsters. Beneficial Microbes, 6(3), 287–293.PubMedCrossRefGoogle Scholar
  102. Ivanovic, N., Minic, R., Dimitrijevic, L., Radojevic Skodric, S., Zivkovic, I., & Djordjevic, B. (2015). Lactobacillus rhamnosus LA68 and Lactobacillus plantarum WCFS1 differently influence metabolic and immunological parameters in high fat diet-induced hypercholesterolemia and hepatic steatosis. Food & Function, 6(2), 558–565.CrossRefGoogle Scholar
  103. Izumi, H., Tsuda, M., Sato, Y., Kosaka, N., Ochiya, T., Iwamoto, H., et al. (2015). Bovine milk exosomes contain microRNA and mRNA and are taken up by human macrophages. Journal of Dairy Science, 98(5), 2920–2933.PubMedCrossRefGoogle Scholar
  104. Jacobsen, T., & Poulsen, O. M. (1992). Separation and characterization of 61- and 57-kDa lipases from Geotrichum candidum ATCC 66592. Canadian Journal of Microbiology, 38(1), 75–80.PubMedCrossRefGoogle Scholar
  105. Jacobsen, T., & Poulsen, O. M. (1995). Comparison of lipases from different strains of the fungus Geotrichum candidum. Biochimica et Biophysica Acta - Lipids and Lipid Metabolism, 1257(2), 96–102.CrossRefGoogle Scholar
  106. Jensen, R. G., & Newburg, D. S. (1995). Bovine milk lipids. In R. G. Jensen (Ed.), Handbook of milk composition (pp. 543–576). San Diego, CA: Academic.CrossRefGoogle Scholar
  107. Jo, S. Y., Choi, E. A., Lee, J. J., & Chang, H. C. (2015). Characterization of starter kimchi fermented with Leuconostoc kimchii GJ2 and its cholesterol-lowering effects in rats fed a high-fat and high- cholesterol diet. Journal of the Science of Food and Agriculture, 95(13), 2750–2756.PubMedCrossRefGoogle Scholar
  108. Jones, P. J. H., & Kubow, S. (2006). Lipids, sterols, and their metabolites. In M. E. Shils, M. Shike, A. C. Ross, B. Caballero, & R. Cousins (Eds.), Modern nutrition in health and disease (10th ed., pp. 92–122). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  109. Kawase, M., Hashimoto, H., Hosoda, M., Morita, H., & Hosono, A. (2000). Effect of administration of fermented milk containing whey protein concentrate to rats and healthy men on serum lipids and blood pressure. Journal of Dairy Science, 83(2), 255–263.PubMedCrossRefGoogle Scholar
  110. Keogh, J. B., Wooster, T. J., Golding, M., Day, L., Otto, B., & Clifton, P. M. (2011). Slowly and rapidly digested fat emulsions are equally satiating but their triglycerides are differentially absorbed and metabolized in humans. The Journal of Nutrition, 141(5), 809–815.PubMedCrossRefGoogle Scholar
  111. Kong, F., & Singh, R. P. (2008). Disintegration of solid foods in human stomach. Journal of Food Science, 73(5), R67–R80.PubMedCrossRefGoogle Scholar
  112. Kopf-Bolanz, K. A., Schwander, F., Gijs, M., Vergeres, G., Portmann, R., & Egger, L. (2012). Validation of an in vitro digestive system for studying macronutrient decomposition in humans. The Journal of Nutrition, 142(2), 245–250.PubMedCrossRefGoogle Scholar
  113. Labonte, M. E., Couture, P., Richard, C., Desroches, S., & Lamarche, B. (2013). Impact of dairy products on biomarkers of inflammation: A systematic review of randomized controlled nutritional intervention studies in overweight and obese adults. The American Journal of Clinical Nutrition, 97(4), 706–717.PubMedCrossRefGoogle Scholar
  114. Labonte, M. E., Cyr, A., Abdullah, M. M., Lepine, M. C., Vohl, M. C., Jones, P., et al. (2014). Dairy product consumption has no impact on biomarkers of inflammation among men and women with low-grade systemic inflammation. The Journal of Nutrition, 144(11), 1760–1767.PubMedCrossRefGoogle Scholar
  115. Lai, H. C., & Ney, D. M. (1998). Gastric digestion modifies absorption of butterfat into lymph chylomicrons in rats. The Journal of Nutrition, 128(12), 2403–2410.PubMedCrossRefGoogle Scholar
  116. Lamarche, B. (2008). Review of the effect of dairy products on non-lipid risk factors for cardiovascular disease. Journal of the American College of Nutrition, 27(6), 741s–746s.PubMedCrossRefGoogle Scholar
  117. Lambert, J. E., & Parks, E. J. (2012). Postprandial metabolism of meal triglyceride in humans. Biochimica et Biophysica Acta, 1821(5), 721–726.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Lamothe, S., Corbeil, M.-M., Turgeon, S. L., & Britten, M. (2012). Influence of cheese matrix on lipid digestion in a simulated gastro-intestinal environment. Food & Function, 3(7), 724–731.CrossRefGoogle Scholar
  119. Lamothe, S., Rémillard, N., Tremblay, J., & Britten, M. (2017). Influence of dairy matrices on nutrient release in a simulated gastrointestinal environment. Food Research International, 92, 138–146.PubMedCrossRefGoogle Scholar
  120. Laugerette, F., Vors, C., Peretti, N., & Michalski, M. C. (2011). Complex links between dietary lipids, endogenous endotoxins and metabolic inflammation. Biochimie, 93(1), 39–45.PubMedCrossRefGoogle Scholar
  121. Le Huerou-Luron, I., Bouzerzour, K., Ferret-Bernard, S., Menard, O., Le Normand, L., Perrier, C., et al. (2016). A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European Journal of Nutrition, 57(2), 463–476.PubMedCrossRefGoogle Scholar
  122. Lecomte, M., Couedelo, L., Meugnier, E., Plaisancie, P., Letisse, M., Benoit, B., et al. (2016). Dietary emulsifiers from milk and soybean differently impact adiposity and inflammation in association with modulation of colonic goblet cells in high-fat fed mice. Molecular Nutrition & Food Research, 60(3), 609–620.CrossRefGoogle Scholar
  123. Li, R., Dudemaine, P. L., Zhao, X., Lei, C., & Ibeagha-Awemu, E. M. (2016). Comparative analysis of the miRNome of bovine milk fat, whey and cells. PLoS One, 11(4), e0154129.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Liang, L., Qi, C., Wang, X.-G., Jin, Q., & McClements, D. J. (2017). Influence of homogenization and thermal processing on the gastrointestinal fate of bovine milk fat: In vitro digestion study. Journal of Agricultural and Food Chemistry, 65(50), 11109–11117.PubMedCrossRefGoogle Scholar
  125. Libby, P. (2002). Inflammation in atherosclerosis. Nature, 420(6917), 868–874.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Lopez, C. (2011). Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science, 16(5), 391–404.CrossRefGoogle Scholar
  127. Lopez, C., Briard-Bion, V., Camier, B., & Gassi, J. Y. (2006). Milk fat thermal properties and solid fat content in emmental cheese: A differential scanning calorimetry study. Journal of Dairy Science, 89(8), 2894–2910.CrossRefPubMedGoogle Scholar
  128. Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science and Technology, 95(6), 863–893.PubMedCrossRefGoogle Scholar
  129. Lopez-Miranda, J., Williams, C., & Lairon, D. (2007). Dietary, physiological, genetic and pathological influences on postprandial lipid metabolism. The British Journal of Nutrition, 98(03), 458–473.PubMedCrossRefGoogle Scholar
  130. Lorenzen, J. K., & Astrup, A. (2011). Dairy calcium intake modifies responsiveness of fat metabolism and blood lipids to a high-fat diet. The British Journal of Nutrition, 105(12), 1823–1831.PubMedCrossRefGoogle Scholar
  131. Lorenzen, J. K., Jensen, S. K., & Astrup, A. (2014). Milk minerals modify the effect of fat intake on serum lipid profile: Results from an animal and a human short-term study. The British Journal of Nutrition, 111(08), 1412–1420.PubMedCrossRefGoogle Scholar
  132. Lorenzen, J. K., Nielsen, S., Holst, J. J., Tetens, I., Rehfeld, J. F., & Astrup, A. (2007). Effect of dairy calcium or supplementary calcium intake on postprandial fat metabolism, appetite, and subsequent energy intake. The American Journal of Clinical Nutrition, 85(3), 678–687.PubMedCrossRefGoogle Scholar
  133. Lovegrove, J. A., & Givens, D. I. (2016). Dairy food products: Good or bad for cardiometabolic disease? Nutrition Research Reviews, 29(2), 249–267.PubMedCrossRefGoogle Scholar
  134. Mariotti, F., Valette, M., Lopez, C., Fouillet, H., Famelart, M.-H., Mathé, V., et al. (2015). Casein compared with whey proteins affects the Organization of dietary fat during digestion and attenuates the postprandial triglyceride response to a mixed high-fat meal in healthy, overweight men. The Journal of Nutrition, 145(12), 2657–2664.PubMedCrossRefGoogle Scholar
  135. Masson, C. (2013). The effects of constituents and the food matrix of dairy products on postprandial metabolism in overweight subjects. Maastricht: Maastricht University.Google Scholar
  136. Mat, D. J. L., Le Feunteun, S., Michon, C., & Souchon, I. (2016). In vitro digestion of foods using pH-stat and the INFOGEST protocol: Impact of matrix structure on digestion kinetics of macronutrients, proteins and lipids. Food Research International, 88, 226–233.CrossRefGoogle Scholar
  137. McIntosh, F. M., Shingfield, K. J., Devillard, E., Russell, W. R., & Wallace, R. J. (2009). Mechanism of conjugated linoleic acid and vaccenic acid formation in human faecal suspensions and pure cultures of intestinal bacteria. Microbiology, 155(Pt 1), 285–294.PubMedCrossRefGoogle Scholar
  138. McIntyre, I., Osullivan, M., & Oriordan, D. (2017). Altering the level of calcium changes the physical properties and digestibility of casein-based emulsion gels. Food & Function, 8(4), 1641–1651.CrossRefGoogle Scholar
  139. Mekki, N., Charbonnier, M., Borel, P., Leonardi, J., Juhel, C., Portugal, H., et al. (2002). Butter differs from olive oil and sunflower oil in its effects on postprandial lipemia and triacylglycerol-rich lipoproteins after single mixed meals in healthy young men. The Journal of Nutrition, 132(12), 3642–3649.PubMedCrossRefGoogle Scholar
  140. Melnik, B. C., & Schmitz, G. (2017). Milk’s role as an epigenetic regulator in health and disease. Diseases, 5(1), 12.PubMedCentralCrossRefGoogle Scholar
  141. Meyer, J. H., Mayer, E. A., Jehn, D., Gu, Y., Fink, A. S., & Fried, M. (1986). Gastric processing and emptying of fat. Gastroenterology, 90(5 Pt 1), 1176–1187.PubMedCrossRefGoogle Scholar
  142. Michalski, M. C. (2007). On the supposed influence of milk homogenization on the risk of CVD, diabetes and allergy. The British Journal of Nutrition, 97(4), 598–610.PubMedCrossRefGoogle Scholar
  143. Michalski, M.-C. (2009). Specific molecular and colloidal structures of milk fat affecting lipolysis, absorption and postprandial lipemia. European Journal of Lipid Science and Technology, 111(5), 413–431.CrossRefGoogle Scholar
  144. Michalski, M.-C., Briard, V., Desage, M., & Geloen, A. (2005). The dispersion state of milk fat influences triglyceride metabolism in the rat. European Journal of Nutrition, 44(7), 436–444.CrossRefPubMedGoogle Scholar
  145. Michalski, M. C., Camier, B., Briard, V., Leconte, N., Gassi, J. Y., Goudedranche, H., et al. (2004). The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Le Lait, 84(4), 343–358.CrossRefGoogle Scholar
  146. Michalski, M. C., Camier, B., Gassi, J. Y., Briard-Bion, V., Leconte, N., Famelart, M. H., et al. (2007). Functionality of smaller vs control native milk fat globules in Emmental cheeses manufactured with adapted technologies. Food Research International, 40(1), 191–202.CrossRefGoogle Scholar
  147. Michalski, M. C., Cariou, R., Michel, F., & Garnier, C. (2002). Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. Journal of Dairy Science, 85(10), 2451–2461.CrossRefPubMedGoogle Scholar
  148. Michalski, M. C., Gassi, J. Y., Famelart, M. H., Leconte, N., Camier, B., Michel, F., et al. (2003). The size of native milk fat globules affects physico-chemical and sensory properties of camembert cheese. Le Lait, 83(2), 131–143.CrossRefGoogle Scholar
  149. Michalski, M. C., Genot, C., Gayet, C., Lopez, C., Fine, F., Joffre, F., et al. (2013). Multiscale structures of lipids in foods as parameters affecting fatty acid bioavailability and lipid metabolism. Progress in Lipid Research, 52(4), 354–373.PubMedCrossRefGoogle Scholar
  150. Michalski, M.-C., & Januel, C. (2006). Does homogenization affect the human health properties of cow’s milk? Trends in Food Science and Technology, 17(8), 423–437.CrossRefGoogle Scholar
  151. Michalski, M. C., Leconte, N., Briard-Bion, V., Fauquant, J., Maubois, J. L., & Goudedranche, H. (2006). Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. Journal of Dairy Science, 89(10), 3778–3790.CrossRefPubMedGoogle Scholar
  152. Michalski, M. C., Soares, A. F., Lopez, C., Leconte, N., Briard, V., & Geloen, A. (2006). The supramolecular structure of milk fat influences plasma triacylglycerols and fatty acid profile in the rat. European Journal of Nutrition, 45(4), 215–224.CrossRefPubMedGoogle Scholar
  153. Milard, M., Laugerette, F., Durand, A., Buisson, C., Meugnier, E., Loizon, E., et al. (2019). Milk polar lipids in a high-fat diet can prevent body weight gain: Modulated abundance of gut bacteria in relation with fecal loss of specific fatty acids. Molecular Nutrition & Food Research, 63(4), e1801078.  https://doi.org/10.1002/mnfr.201801078CrossRefGoogle Scholar
  154. Milard, M., Penhoat, A., Durand, A., Buisson, C., Loizon, E., Meugnier, E., et al. (2019). Acute effects of milk polar lipids on intestinal tight junction expression: Towards animpact of sphingomyelin through the regulation of IL-8 secretion? The Journal of Nutritional Biochemistry, 65, 128–138.PubMedCrossRefGoogle Scholar
  155. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., et al. (2014). A standardised static in vitro digestion method suitable for food - an international consensus. Food & Function, 5(6), 1113–1124.CrossRefGoogle Scholar
  156. Mohamadshahi, M., Veissi, M., Haidari, F., Javid, A. Z., Mohammadi, F., & Shirbeigi, E. (2014). Effects of probiotic yogurt consumption on lipid profile in type 2 diabetic patients: A randomized controlled clinical trial. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 19(6), 531–536.Google Scholar
  157. Mortensen, L. S., Hartvigsen, M. L., Brader, L. J., Astrup, A., Schrezenmeir, J., Holst, J. J., et al. (2009). Differential effects of protein quality on postprandial lipemia in response to a fat-rich meal in type 2 diabetes: Comparison of whey, casein, gluten, and cod protein. The American Journal of Clinical Nutrition, 90(1), 41–48.PubMedCrossRefGoogle Scholar
  158. Mu, H., & Hoy, C. E. (2004). The digestion of dietary triacylglycerols. Progress in Lipid Research, 43(2), 105–133.CrossRefPubMedGoogle Scholar
  159. Mu, H., & Porsgaard, T. (2005). The metabolism of structured triacylglycerols. Progress in Lipid Research, 44(6), 430–448.PubMedCrossRefGoogle Scholar
  160. Mullally, M. M., Mehra, R., & FitzGerald, R. J. (1998). Thermal effects on the conformation and susceptibility of beta-lactoglobulin to hydrolysis by gastric and pancreatic endoproteinases. Irish Journal of Agricultural and Food Research, 37(1), 51–60.Google Scholar
  161. Murphy, E. A., Velazquez, K. T., & Herbert, K. M. (2015). Influence of high-fat diet on gut microbiota: A driving force for chronic disease risk. Current Opinion in Clinical Nutrition and Metabolic Care, 18(5), 515–520.PubMedPubMedCentralCrossRefGoogle Scholar
  162. Nestel, P. J. (2008). Effects of dairy fats within different foods on plasma lipids. Journal of the American College of Nutrition, 27(6), 735S–740S.PubMedCrossRefGoogle Scholar
  163. Nestel, P. J., Mellett, N., Pally, S., Wong, G., Barlow, C. K., Croft, K., et al. (2013). Effects of low- fat or full-fat fermented and non-fermented dairy foods on selected cardiovascular biomarkers in overweight adults. The British Journal of Nutrition, 110(12), 2242–2249.PubMedCrossRefGoogle Scholar
  164. Nordestgaard, B. G., Benn, M., Schnohr, P., & Tybjærg-Hansen, A. (2007). Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. Journal of the American Medical Association, 298(3), 299–308.PubMedCrossRefGoogle Scholar
  165. Norris, G. H., Jiang, C., Ryan, J., Porter, C. M., & Blesso, C. N. (2016). Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. The Journal of Nutritional Biochemistry, 30, 93–101.CrossRefPubMedGoogle Scholar
  166. Norris, G. H., Milard, M., Michalski, M. C., & Blesso, C. N. (2019). Protective properties of milk sphingomyelin against dysfunctional lipid metabolism, gut dysbiosis, and inflammation. The Journal of Nutritional Biochemistry, 73, 108244.  https://doi.org/10.1016/j.jnutbio.2019.108224CrossRefGoogle Scholar
  167. Nuora, A., Tupasela, T., Tahvonen, R., Rokka, S., Marnila, P., Viitanen, M., et al. (2018). Effect of homogenised and pasteurised versus native cows’ milk on gastrointestinal symptoms, intestinal pressure and postprandial lipid metabolism. International Dairy Journal, 79, 15–23.CrossRefGoogle Scholar
  168. Ohlsson, L., Burling, H., & Nilsson, A. (2009). Long term effects on human plasma lipoproteins of a formulation enriched in butter milk polar lipid. Lipids in Health and Disease, 8, 44.PubMedPubMedCentralCrossRefGoogle Scholar
  169. Pal, S., Ellis, V., & Dhaliwal, S. (2010). Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. The British Journal of Nutrition, 104(5), 716–723.PubMedCrossRefGoogle Scholar
  170. Pal, S., & Radavelli-Bagatini, S. (2013). The effects of whey protein on cardiometabolic risk factors. Obesity Reviews, 14(4), 324–343.PubMedCrossRefGoogle Scholar
  171. Pan, D. D., Zeng, X. Q., & Yan, Y. T. (2011). Characterisation of lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. Journal of the Science of Food and Agriculture, 91(3), 512–518.PubMedCrossRefGoogle Scholar
  172. Panagiotakos, D. B., Pitsavos, C. H., Zampelas, A. D., Chrysohoou, C. A., & Stefanadis, C. I. (2010). Dairy products consumption is associated with decreased levels of inflammatory markers related to cardiovascular disease in apparently healthy adults: The ATTICA study. Journal of the American College of Nutrition, 29(4), 357–364.PubMedCrossRefGoogle Scholar
  173. Payne, A. N., Zihler, A., Chassard, C., & Lacroix, C. (2012). Advances and perspectives in in vitro human gut fermentation modeling. Trends in Biotechnology, 30(1), 17–25.PubMedCrossRefGoogle Scholar
  174. Pei, R., Martin, D. A., DiMarco, D. M., & Bolling, B. W. (2017). Evidence for the effects of yogurt on gut health and obesity. Critical Reviews in Food Science and Nutrition, 57(8), 1569–1583.PubMedCrossRefGoogle Scholar
  175. Pereira, D. I., & Gibson, G. R. (2002). Effects of consumption of probiotics and prebiotics on serum lipid levels in humans. Critical Reviews in Biochemistry and Molecular Biology, 37(4), 259–281.PubMedCrossRefGoogle Scholar
  176. Pessione, E., & Cirrincione, S. (2016). Bioactive molecules released in food by lactic acid bacteria: Encrypted peptides and biogenic amines. Frontiers in Microbiology, 7, 876.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Pimpin, L., Wu, J. H. Y., Haskelberg, H., Del Gobbo, L., & Mozaffarian, D. (2016). Is butter back? A systematic review and meta-analysis of butter consumption and risk of cardiovascular disease, diabetes, and total mortality. PLoS One, 11(6), e0158118.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Qin, L. Q., Xu, J. Y., Han, S. F., Zhang, Z. L., Zhao, Y. Y., & Szeto, I. M. (2015). Dairy consumption and risk of cardiovascular disease: An updated meta-analysis of prospective cohort studies. Asia Pacific Journal of Clinical Nutrition, 24(1), 90–100.PubMedGoogle Scholar
  179. Ramadan, Q., Jafarpoorchekab, H., Huang, C., Silacci, P., Carrara, S., Koklu, G., et al. (2013). NutriChip: Nutrition analysis meets microfluidics. Lab on a Chip, 13(2), 196–203.PubMedCrossRefGoogle Scholar
  180. Ramprasath, V. R., Jones, P. J., Buckley, D. D., Woollett, L. A., & Heubi, J. E. (2013). Effect of dietary sphingomyelin on absorption and fractional synthetic rate of cholesterol and serum lipid profile in humans. Lipids in Health and Disease, 12, 125.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Raziani, F., Tholstrup, T., Kristensen, M. D., Svanegaard, M. L., Ritz, C., Astrup, A., et al. (2016). High intake of regular-fat cheese compared with reduced-fat cheese does not affect LDL cholesterol or risk markers of the metabolic syndrome: A randomized controlled trial. The American Journal of Clinical Nutrition, 104(4), 973–981.PubMedCrossRefGoogle Scholar
  182. Reis, M. G., Roy, N. C., Bermingham, E. N., Ryan, L., Bibiloni, R., Young, W., et al. (2013). Impact of dietary dairy polar lipids on lipid metabolism of mice fed a high-fat diet. Journal of Agricultural and Food Chemistry, 61(11), 2729–2738.PubMedCrossRefGoogle Scholar
  183. Rohm, H., & Schmid, W. (1993). Influence of dry-matter fortification on flow properties of yogurt 1. Evaluation of flow curves. Milchwissenschaft, 48(10), 556–560.Google Scholar
  184. Rosqvist, F., Smedman, A., Lindmark-Mansson, H., Paulsson, M., Petrus, P., Straniero, S., et al. (2015). Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: A randomized study. The American Journal of Clinical Nutrition, 102(1), 20–30.PubMedCrossRefGoogle Scholar
  185. Russell, D. A., Ross, R. P., Fitzgerald, G. F., & Stanton, C. (2011). Metabolic activities and probiotic potential of bifidobacteria. International Journal of Food Microbiology, 149(1), 88–105.PubMedCrossRefGoogle Scholar
  186. Sanders, T. A., Filippou, A., Berry, S. E., Baumgartner, S., & Mensink, R. P. (2011). Palmitic acid in the sn-2 position of triacylglycerols acutely influences postprandial lipid metabolism. The American Journal of Clinical Nutrition, 94(6), 1433–1441.PubMedCrossRefGoogle Scholar
  187. Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E., & Vernon-Carter, E. J. (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14(2), 151–159.CrossRefGoogle Scholar
  188. Sanggaard, K. M., Holst, J. J., Rehfeld, J. F., Sandstrom, B., Raben, A., & Tholstrup, T. (2004). Different effects of whole milk and a fermented milk with the same fat and lactose content on gastric emptying and postprandial lipaemia, but not on glycaemic response and appetite. The British Journal of Nutrition, 92(3), 447–459.PubMedCrossRefGoogle Scholar
  189. Sautier, C., Dieng, K., Flament, C., Doucet, C., Suquet, J. P., & Lemonnier, D. (1983). Effects of whey protein, casein, soya-bean and sunflower proteins on the serum, tissue and faecal steroids in rats. The British Journal of Nutrition, 49(3), 313–319.PubMedCrossRefGoogle Scholar
  190. Schiffrin, E. J., Parlesak, A., Bode, C., Bode, J. C., van’t Hof, M. A., Grathwohl, D., et al. (2009). Probiotic yogurt in the elderly with intestinal bacterial overgrowth: Endotoxaemia and innate immune functions. The British Journal of Nutrition, 101(7), 961–966.PubMedCrossRefGoogle Scholar
  191. Schwab, U., Lauritzen, L., Tholstrup, T., Haldorssoni, T., Riserus, U., Uusitupa, M., et al. (2014). Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: A systematic review. Food & Nutrition Research, 58, 25145.CrossRefGoogle Scholar
  192. Sethi, S., Gibney, M. J., & Williams, C. M. (1993). Postprandial lipoprotein metabolism. Nutrition Research Reviews, 6(01), 161–183.PubMedCrossRefGoogle Scholar
  193. Shani-Levi, C., Alvito, P., Andrés, A., Assunção, R., Barberá, R., Blanquet-Diot, S., et al. (2017). Extending in vitro digestion models to specific human populations: Perspectives, practical tools and bio- relevant information. Trends in Food Science & Technology, 60(Supplement C), 52–63.CrossRefGoogle Scholar
  194. Snow, D. R., Ward, R., Olsen, A., Jimenez-Flores, R., & Hintze, K. J. (2011). Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. Journal of Dairy Science, 94(5), 2201–2212.PubMedCrossRefGoogle Scholar
  195. Soedamah-Muthu, S. S., Verberne, L. D., Ding, E. L., Engberink, M. F., & Geleijnse, J. M. (2012). Dairy consumption and incidence of hypertension: A dose-response meta-analysis of prospective cohort studies. Hypertension, 60(5), 1131–1137.PubMedCrossRefGoogle Scholar
  196. Soerensen, K. V., Thorning, T. K., Astrup, A., Kristensen, M., & Lorenzen, J. K. (2014). Effect of dairy calcium from cheese and milk on fecal fat excretion, blood lipids, and appetite in young men. The American Journal of Clinical Nutrition, 99, 984–991.PubMedCrossRefGoogle Scholar
  197. Sprong, R. C., Hulstein, M. F., & Van der Meer, R. (2001). Bactericidal activities of milk lipids. Antimicrobial Agents and Chemotherapy, 45(4), 1298–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  198. Sprong, R. C., Hulstein, M. F. E., & van der Meer, R. (2002). Bovine milk fat components inhibit food-borne pathogens. International Dairy Journal, 12(2–3), 209–215.CrossRefGoogle Scholar
  199. Stenson, W. F. (2006). The esophagus and stomach. In M. E. Shils, M. Shike, A. C. Ross, B. Caballero, & R. Cousins (Eds.), Modern nutrition in health and disease (10th ed., pp. 1179–1188). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
  200. Sun, J., & Buys, N. (2015). Effects of probiotics consumption on lowering lipids and CVD risk factors: A systematic review and meta-analysis of randomized controlled trials. Annals of Medicine, 47(6), 430–440.PubMedCrossRefGoogle Scholar
  201. Tholstrup, T. (2006). Dairy products and cardiovascular disease. Current Opinion in Lipidology, 17(1), 1–10.PubMedGoogle Scholar
  202. Tholstrup, T., Hoy, C. E., Andersen, L. N., Christensen, R. D., & Sandstrom, B. (2004). Does fat in milk, butter and cheese affect blood lipids and cholesterol differently? Journal of the American College of Nutrition, 23(2), 169–176.PubMedCrossRefGoogle Scholar
  203. Thompson, L. U., Jenkins, D. J., Amer, M. A., Reichert, R., Jenkins, A., & Kamulsky, J. (1982). The effect of fermented and unfermented milks on serum cholesterol. The American Journal of Clinical Nutrition, 36(6), 1106–1111.PubMedCrossRefGoogle Scholar
  204. Thorning, T. K., Bertram, H. C., Bonjour, J.-P., de Groot, L., Dupont, D., Feeney, E., et al. (2017). Whole dairy matrix or single nutrients in assessment of health effects: Current evidence and knowledge gaps. The American Journal of Clinical Nutrition, 105(5), 1033–1045.PubMedCrossRefGoogle Scholar
  205. Thorning, T. K., Raben, A., Bendsen, N. T., Jørgensen, H. H., Kiilerich, P., Ardö, Y., et al. (2016). Importance of the fat content within the cheese-matrix for blood lipid profile, faecal fat excretion, and gut microbiome in growing pigs. International Dairy Journal, 61, 67–75.CrossRefGoogle Scholar
  206. Timmen, H., & Precht, D. (1984). Zum Einfluss unterschiedlicher technologischer Behandlung von Milch auf die Verdauungsvorgange im Magen. V. Lipolyse im Magen. [influence of different technological treatments of milk on digestion in the stomach. V. Lipolysis in the stomach]. Milchwissenschaft, 39(5), 276–280.Google Scholar
  207. Title, A. C., Denzler, R., & Stoffel, M. (2015). Uptake and function studies of maternal Milk-derived MicroRNAs. The Journal of Biological Chemistry, 290(39), 23680–23691.PubMedPubMedCentralCrossRefGoogle Scholar
  208. Tsuchiya, A., Almiron-Roig, E., Lluch, A., Guyonnet, D., & Drewnowski, A. (2006). Higher satiety ratings following yogurt consumption relative to fruit drink or dairy fruit drink. Journal of the American Dietetic Association, 106(4), 550–557.PubMedCrossRefGoogle Scholar
  209. Tunick, M. H., Ren, D. X., Van Hekken, D. L., Bonnaillie, L., Paul, M., Kwoczak, R., et al. (2016). Effect of heat and homogenization on in vitro digestion of milk. Journal of Dairy Science, 99(6), 4124–4139.PubMedPubMedCentralCrossRefGoogle Scholar
  210. Turgeon, S. L., & Brisson, G. (2019). The dairy matrix: Bioaccessibility and bioavailability of nutrients and physiological effects. Journal of Dairy Science (accepted).  https://doi.org/10.3168/jds.2019-17308
  211. Turgeon, S. L., & Rioux, L.-E. (2011). Food matrix impact on macronutrients nutritional properties. Food Hydrocolloids, 25(8), 1915–1924.CrossRefGoogle Scholar
  212. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity- associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027–1031.PubMedCrossRefGoogle Scholar
  213. US Department of Health and Human Services, US Department of Agriculture. (2015). 2015–2020 Dietary Guidelines for Americans. Retrieved December, 2015, from http://health.gov/dietaryguidelines/2015/guidelines/
  214. Vallières, C. (2016). Effet de réduction en sodium sur la texture et la bioaccessibilité des protéines d’un fromage à pâte molle à croûte fleurie. Mémoire (M. Sc.), Université Laval, Québec, QC, CanadaGoogle Scholar
  215. van Avesaat, M., Troost, F. J., Ripken, D., Hendriks, H. F., & Masclee, A. A. (2015). Ileal brake activation: Macronutrient-specific effects on eating behavior? International Journal of Obesity, 39(2), 235–243.PubMedCrossRefGoogle Scholar
  216. Van Hekken, D. L., Tunick, M. H., Ren, D. X., & Tomasula, P. M. (2017). Comparing the effect of homogenization and heat processing on the properties and in vitro digestion of milk from organic and conventional dairy herds. Journal of Dairy Science, 100(8), 6042–6052.PubMedCrossRefGoogle Scholar
  217. Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31–40.PubMedCrossRefGoogle Scholar
  218. Vors, C., Capolino, P., Guerin, C., Meugnier, E., Pesenti, S., Chauvin, M.-A., et al. (2012). Coupling in vitro gastrointestinal lipolysis and Caco-2 cell cultures for testing the absorption of different food emulsions. Food & Function, 3(5), 537–546.CrossRefGoogle Scholar
  219. Vors, C., Gayet-Boyer, C., & Michalski, M.-C. (2015). Produits laitiers et inflammation métabolique: Quels liens en phase postprandiale et à long terme ? Cahiers de Nutrition et de Diététique, 50(1), 25–38.CrossRefGoogle Scholar
  220. Vors, C., Joumard-Cubizolles, L., Lecomte, M., Combe, E., Ouchchane, L., Drai, J., et al. (2020). Milk polar lipids reduce lipid cardiovascular risk factors in overweight postmenopausal women: Towards a gut sphingomyelin-cholesterol interplay. Gut, 69, 487–501.  https://doi.org/10.1136/gutjnl-2018-318155PubMedPubMedCentralCrossRefGoogle Scholar
  221. Vors, C., Nazare, J. A., Michalski, M. C., & Laville, M. (2014). Intérêt de la phase postprandiale pour la santé de l’Homme. Obésité, 9(1), 31–41.CrossRefGoogle Scholar
  222. Vors, C., Pineau, G., Gabert, L., Drai, J., Louche-Pelissier, C., Defoort, C., et al. (2013). Modulating absorption and postprandial handling of dietary fatty acids by structuring fat in the meal: A randomized crossover clinical trial. The American Journal of Clinical Nutrition, 97(1), 23–36.PubMedCrossRefGoogle Scholar
  223. Wang, T. Y., Liu, M., Portincasa, P., & Wang, D. Q. (2013). New insights into the molecular mechanism of intestinal fatty acid absorption. European Journal of Clinical Investigation, 43(11), 1203–1223.PubMedPubMedCentralGoogle Scholar
  224. Wat, E., Tandy, S., Kapera, E., Kamili, A., Chung, R. W. S., Brown, A., et al. (2009). Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis, 205(1), 144–150.CrossRefPubMedGoogle Scholar
  225. Weiland, A., Bub, A., Barth, S. W., Schrezenmeir, J., & Pfeuffer, M. (2016). Effects of dietary milk- and soya- phospholipids on lipid-parameters and other risk indicators for cardiovascular diseases in overweight or obese men - two double-blind, randomised, controlled, clinical trials. Journal of Nutritional Science, 5, e21.PubMedPubMedCentralCrossRefGoogle Scholar
  226. Westphal, S., Kastner, S., Taneva, E., Leodolter, A., Dierkes, J., & Luley, C. (2004). Postprandial lipid and carbohydrate responses after the ingestion of a casein-enriched mixed meal. The American Journal of Clinical Nutrition, 80, 284–290.PubMedCrossRefGoogle Scholar
  227. Xie, N., Cui, Y., Yin, Y. N., Zhao, X., Yang, J. W., Wang, Z. G., et al. (2011). Effects of two lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complementary and Alternative Medicine, 11, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  228. Yakoob, M. Y., Shi, P., Hu, F. B., Campos, H., Rexrode, K. M., Orav, E. J., et al. (2014). Circulating biomarkers of dairy fat and risk of incident stroke in U.S. men and women in 2 large prospective cohorts. The American Journal of Clinical Nutrition, 100(6), 1437–1447.PubMedPubMedCentralCrossRefGoogle Scholar
  229. Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2016a). The formation and breakdown of structured clots from whole milk during gastric digestion. Food & Function, 7(10), 4259–4266.CrossRefGoogle Scholar
  230. Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2016b). Formation of a structured clot during the gastric digestion of milk: Impact on the rate of protein hydrolysis. Food Hydrocolloids, 52, 478–486.CrossRefGoogle Scholar
  231. Ye, A., Cui, J., Dalgleish, D., & Singh, H. (2017). Effect of homogenization and heat treatment on the behavior of protein and fat globules during gastric digestion of milk. Journal of Dairy Science, 100, 36–47.CrossRefPubMedGoogle Scholar
  232. Ye, A., Cui, J., & Singh, H. (2010). Effect of the fat globule membrane on in vitro digestion of milk fat globules with pancreatic lipase. International Dairy Journal, 20(12), 822–829.CrossRefGoogle Scholar
  233. Zhang, X., & Beynen, A. C. (1993). Lowering effect of dietary milk-whey protein v. casein on plasma and liver cholesterol concentrations in rats. The British Journal of Nutrition, 70(1), 139–146.PubMedCrossRefGoogle Scholar
  234. Zhou, A. L., Hintze, K. J., Jimenez-Flores, R., & Ward, R. E. (2012). Dietary fat composition influences tissue lipid profile and gene expression in Fischer-344 rats. Lipids, 47(12), 1119–1130.PubMedCrossRefGoogle Scholar
  235. Zhou, A. L., & Ward, R. E. (2019). Milk polar lipids modulate lipid metabolism, gut permeability, and systemic inflammation in high-fat-fed C57BL/6J ob/ob mice, a model of severe obesity. Journal of Dairy Science, 102(6), 4816–4831.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Marie-Caroline Michalski
    • 1
    • 2
  • Laurie-Eve Rioux
    • 3
  • Sylvie L. Turgeon
    • 3
    Email author
  1. 1.INRAE, CarMeN laboratory, UMR1397, INSERM, U1060, Université Claude Bernard Lyon 1, INSA-Lyon, Université de LyonPierre-BéniteFrance
  2. 2.Centre de Recherche en Nutrition Humaine Rhône-Alpes, Univ-Lyon, CarMeN Laboratory, Université Claude Bernard Lyon1, Hospices Civils de Lyon, CENS, FCRIN/FORCE NetworkPierre-BéniteFrance
  3. 3.STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université LavalQuébec CityCanada

Personalised recommendations