Advertisement

Lipidomic Characterization of the Milk Fat Globule Membrane Polar Lipids

  • Olimpio Montero
  • Javier FontechaEmail author
  • M. Pillar Castro-Gómez
  • Luis Miguel Rodríguez-Alcalá
Chapter
  • 114 Downloads

Abstract

The milk fat globule structure is of colloidal nature with a triacylglycerol (TAG) rich core surrounded by the milk fat globule membrane (MFGM), emulsified and dispersed into the aqueous phase. MFGM is a unique trilayer structure, with the inner monolayer stemming from the endoplasmic reticulum and the outer bilayer from the apical cells of the mammary gland. Therefore, as biological membrane, MFGM is a highly complex ensemble of self-associating lipids, mainly phospholipids (PL), into which a diverse array of proteins and other biomolecules are embedded. Although PL constitute a small percentage of the milk total lipids (0.5–2% in cow’s milk), they may represent a substantial part of the total lipids in buttermilk, the aqueous phase released during the elaboration of butter, owing to the presence of significant quantities of MFGM components in this by-product.

References

  1. Alexandre-Gouabau, M.-C., Moyon, T., Cariou, V., Antignac, J.-P., Qannari, E., Croyal, M., et al. (2018). Breast milk lipidome is associated with early growth trajectory in preterm infants. Nutrients, 10(2), 164.  https://doi.org/10.3390/nu10020164CrossRefPubMedCentralGoogle Scholar
  2. Ali, A. H., Zou, X., Huang, J., Abed, S. M., Tao, G., Jin, Q., et al. (2017). Profiling of phospholipids molecular species from different mammalian milk powders by using ultra-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry. Journal of Food Composition and Analysis, 62, 143–154.  https://doi.org/10.1016/j.jfca.2017.05.007CrossRefGoogle Scholar
  3. Astaire, J. C., Ward, R., German, J. B., & Jiménez-Flores, R. (2003). Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. Journal of Dairy Science, 86(7), 2297–2307.CrossRefGoogle Scholar
  4. Avalli, A., & Contarini, G. (2005). Determination of phospholipids in dairy products by SPE/HPLC/ELSD. Journal of Chromatography A, 1071(1–2), 185–190.  https://doi.org/10.1016/j.chroma.2005.01.072CrossRefGoogle Scholar
  5. Barry, K. M., Dinan, T. G., Murray, B. A., & Kelly, P. M. (2016). Comparison of dairy phospholipid preparative extraction protocols in combination with analysis by high performance liquid chromatography coupled to a charged aerosol detector. International Dairy Journal, 56, 179–185.  https://doi.org/10.1016/j.idairyj.2016.01.022CrossRefGoogle Scholar
  6. Bhinder, G., Allaire, J. M., Garcia, C., Lau, J. T., Chan, J. M., Ryz, N. R., et al. (2017). Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Scientific Reports, 7, 45274.  https://doi.org/10.1038/srep45274CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bourlieu, C., Cheillan, D., Blot, M., Daira, P., Trauchessec, M., Ruet, S., et al. (2018). Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: Emphasis on sphingolipid and ceramide isoforms. Food Chemistry, 240, 67–74.  https://doi.org/10.1016/J.FOODCHEM.2017.07.091CrossRefPubMedGoogle Scholar
  8. Buszewski, B., & Noga, S. (2012). Hydrophilic interaction liquid chromatography (HILIC)–a powerful separation technique. Analytical and Bioanalytical Chemistry, 402(1), 231–247.  https://doi.org/10.1007/s00216-011-5308-5CrossRefGoogle Scholar
  9. Canela, N., Herrero, P., Mariné, S., Nadal, P., Ras, M. R., Rodríguez, M. Á., et al. (2016). Analytical methods in sphingolipidomics: Quantitative and profiling approaches in food analysis. Journal of Chromatography A, 1428, 16–38.  https://doi.org/10.1016/j.chroma.2015.07.110CrossRefPubMedGoogle Scholar
  10. Castro-Gómez, M. P., Holgado, F., Rodríguez-Alcalá, L. M., Montero, O., & Fontecha, J. (2015). Comprehensive study of the lipid classes of krill oil by fractionation and identification of Triacylglycerols, Diacylglycerols, and phospholipid molecular species by using UPLC/QToF-MS. Food Analytical Methods, 8(10), 2568–2580.  https://doi.org/10.1007/s12161-015-0150-6CrossRefGoogle Scholar
  11. Castro-Gómez, P., Montero, O., & Fontecha, J. (2017). In-depth lipidomic analysis of molecular species of triacylglycerides, diacylglycerides, glycerophospholipids, and sphingolipids of buttermilk by GC-MS/FID, HPLC-ELSD, and UPLC-QTOF-MS. International Journal of Molecular Sciences, 18(3), 605.  https://doi.org/10.3390/ijms18030605CrossRefPubMedCentralGoogle Scholar
  12. Castro-Gómez, P., Rodríguez-Alcalá, L. M., Monteiro, K. M., Ruiz, A. L. T. G., Carvalho, J. E., & Fontecha, J. (2016). Antiproliferative activity of buttermilk lipid fractions isolated using food grade and non-food grade solvents on human cancer cell lines. Food Chemistry, 212, 695–702.  https://doi.org/10.1016/j.foodchem.2016.06.030CrossRefPubMedGoogle Scholar
  13. Castro-Perez, J., Roddy, T. P., Nibbering, N. M. M., Shah, V., McLaren, D. G., Previs, S., et al. (2011). Localization of fatty acyl and double bond positions in phosphatidylcholines using a dual stage CID fragmentation coupled with ion mobility mass spectrometry. Journal of the American Society for Mass Spectrometry, 22(9), 1552–1567.  https://doi.org/10.1007/s13361-011-0172-2CrossRefPubMedPubMedCentralGoogle Scholar
  14. Christiansen, K. (1975). Lipid extraction procedure for in vitro studies of glyceride synthesis with labeled fatty acids. Analytical Biochemistry, 66(1), 93–99.  https://doi.org/10.1016/0003-2697(75)90728-9CrossRefPubMedGoogle Scholar
  15. Ciucanu, I., & Kerek, F. (1984). A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research, 131(2), 209–217.  https://doi.org/10.1016/0008-6215(84)85242-8CrossRefGoogle Scholar
  16. Conway, V., Couture, P., Gauthier, S., Pouliot, Y., & Lamarche, B. (2014). Effect of buttermilk consumption on blood pressure in moderately hypercholesterolemic men and women. Nutrition (Burbank, Los Angeles County, Calif.), 30(1), 116–119.  https://doi.org/10.1016/j.nut.2013.07.021CrossRefGoogle Scholar
  17. Craige Trenerry, V., Akbaridoust, G., Plozza, T., Rochfort, S., Wales, W. J., Auldist, M., et al. (2013). Ultra-high-performance liquid chromatography-ion trap mass spectrometry characterisation of milk polar lipids from dairy cows fed different diets. Food Chemistry, 141(2), 1451–1460.  https://doi.org/10.1016/j.foodchem.2013.04.023CrossRefPubMedGoogle Scholar
  18. Crespo, M. C., Tomé-Carneiro, J., Gómez-Coronado, D., Burgos-Ramos, E., Garciá-Serrano, A., Martín-Hernández, R., et al. (2018). Modulation of miRNA expression in aged rat hippocampus by buttermilk and krill oil. Scientific Reports, 8(1).  https://doi.org/10.1038/s41598-018-22148-5
  19. Donato, P., Cacciola, F., Cichello, F., Russo, M., Dugo, P., & Mondello, L. (2011). Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. Journal of Chromatography A, 1218(37), 6476–6482.  https://doi.org/10.1016/j.chroma.2011.07.036CrossRefPubMedGoogle Scholar
  20. Ejsing, C. S., Sampaio, J. L., Surendranath, V., Duchoslav, E., Ekroos, K., Klemm, R. W., et al. (2009). Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proceedings of the National Academy of Sciences, 106(7), 2136–2141.  https://doi.org/10.1073/pnas.0811700106CrossRefGoogle Scholar
  21. Et-Thakafy, O., Guyomarc’h, F., & Lopez, C. (2017). Lipid domains in the milk fat globule membrane: Dynamics investigated in situ in milk in relation to temperature and time. Food Chemistry, 220, 352–361.  https://doi.org/10.1016/j.foodchem.2016.10.017CrossRefGoogle Scholar
  22. Fischbeck, A., Krüger, M., Blaas, N., & Humpf, H.-U. (2009). Analysis of sphingomyelin in meat based on hydrophilic interaction liquid chromatography coupled to electrospray ionization−tandem mass spectrometry (HILIC-HPLC-ESI-MS/MS). Journal of Agricultural and Food Chemistry, 57(20), 9469–9474.  https://doi.org/10.1021/jf9025376CrossRefPubMedGoogle Scholar
  23. Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. The Journal of Biological Chemistry, 226(1), 497–509. http://www.jbc.orgPubMedPubMedCentralGoogle Scholar
  24. Fong, B., Norris, C., Lowe, E., & McJarrow, P. (2009). Liquid chromatography-high-resolution mass spectrometry for quantitative analysis of gangliosides. Lipids, 44(9), 867–874.  https://doi.org/10.1007/s11745-009-3327-1CrossRefGoogle Scholar
  25. Fong, B., Norris, C., & McJarrow, P. (2011). Liquid chromatography-high-resolution electrostatic ion-trap mass spectrometric analysis of GD3 ganglioside in dairy products. International Dairy Journal, 21(1), 42–47.  https://doi.org/10.1016/j.idairyj.2010.07.001CrossRefGoogle Scholar
  26. Gallo, M., & Ferranti, P. (2016). The evolution of analytical chemistry methods in foodomics. Journal of Chromatography A, 1428, 3–15.  https://doi.org/10.1016/j.chroma.2015.09.007CrossRefPubMedGoogle Scholar
  27. Hakomori, S. (1990). Bifunctional role of glycosphingolipids. Modulators for transmembrane signaling and mediators for cellular interactions. In Journal of Biological Chemistry, 265(31), 18713–18716.Google Scholar
  28. Han, X., & Gross, R. W. (2005). Shotgun lipidomics: Electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrometry Reviews, 24(3), 367–412.  https://doi.org/10.1002/mas.20023CrossRefPubMedGoogle Scholar
  29. Holzmüller, W., & Kulozik, U. (2016). Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. International Dairy Journal, 63, 88–91.  https://doi.org/10.1016/j.idairyj.2016.08.002CrossRefGoogle Scholar
  30. Ikeda, K., Shimizu, T., & Taguchi, R. (2008). Targeted analysis of ganglioside and sulfatide molecular species by LC/ESI-MS/MS with theoretically expanded multiple reaction monitoring. Journal of Lipid Research, 49(12), 2678–2689.  https://doi.org/10.1194/jlr.D800038-JLR200CrossRefPubMedGoogle Scholar
  31. Ikeda, K., & Taguchi, R. (2010). Highly sensitive localization analysis of gangliosides and sulfatides including structural isomers in mouse cerebellum sections by combination of laser microdissection and hydrophilic interaction liquid chromatography/electrospray ionization mass spectrom. Rapid Communications in Mass Spectrometry, 24(20), 2957–2965.  https://doi.org/10.1002/rcm.4716CrossRefPubMedGoogle Scholar
  32. Kolarovic, L., & Fournier, N. C. (1986). A comparison of extraction methods for the isolation of phospholipids from biological sources. Analytical Biochemistry, 156(1), 244–250.  https://doi.org/10.1016/0003-2697(86)90179-XCrossRefPubMedGoogle Scholar
  33. Koletzko, B. (2017). Human milk lipids. Annals of Nutrition and Metabolism, 69(2), 28–40.  https://doi.org/10.1159/000452819CrossRefGoogle Scholar
  34. Konrad, G., Kleinschmidt, T., & Lorenz, C. (2013). Ultrafiltration of whey buttermilk to obtain a phospholipid concentrate. International Dairy Journal, 30(1), 39–44.  https://doi.org/10.1016/j.idairyj.2012.11.007CrossRefGoogle Scholar
  35. Le, T. T., Debyser, G., Gilbert, W., Struijs, K., Van Camp, J., Van de Wiele, T., et al. (2013). Distribution and isolation of milk fat globule membrane proteins during dairy processing as revealed by proteomic analysis. International Dairy Journal, 32(2), 110–120.  https://doi.org/10.1016/j.idairyj.2013.05.002CrossRefGoogle Scholar
  36. Lee, H., An, H. J., Lerno Jr., L. A., German, J. B., & Lebrilla, C. B. (2011). Rapid profiling of bovine and human milk gangliosides by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. International Journal of Mass Spectrometry, 305(2–3), 138–150.  https://doi.org/10.1016/j.ijms.2010.10.020CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li, Q., Zhao, Y., Zhu, D., Pang, X., Liu, Y., Frew, R., et al. (2017). Lipidomics profiling of goat milk, soymilk and bovine milk by UPLC-Q-Exactive orbitrap mass spectrometry. Food Chemistry, 224, 302–309.  https://doi.org/10.1016/j.foodchem.2016.12.083CrossRefPubMedGoogle Scholar
  38. Lintonen, T. P. I., Baker, P. R. S., Suoniemi, M., Ubhi, B. K., Koistinen, K. M., Duchoslav, E., et al. (2014). Differential mobility spectrometry-driven shotgun lipidomics. Analytical Chemistry, 86(19), 9662–9669.  https://doi.org/10.1021/ac5021744CrossRefPubMedGoogle Scholar
  39. Lopez, C., Blot, M., Briard-Bion, V., Cirié, C., & Graulet, B. (2017). Butter serums and buttermilks as sources of bioactive lipids from the milk fat globule membrane: Differences in their lipid composition and potentialities of cow diet to increase n-3 PUFA. Food Research International, 100, 864–872.  https://doi.org/10.1016/J.FOODRES.2017.08.016CrossRefPubMedGoogle Scholar
  40. Lopez, C., Madec, M. N., & Jimenez-Flores, R. (2010). Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chemistry, 120(1), 22–33.  https://doi.org/10.1016/j.foodchem.2009.09.065CrossRefGoogle Scholar
  41. Lu, J., Pickova, J., Vázquez-Gutiérrez, J. L., & Langton, M. (2018). Influence of seasonal variation and ultra high temperature processing on lipid profile and fat globule structure of Swedish cow milk. Food Chemistry, 239, 848–857.  https://doi.org/10.1016/J.FOODCHEM.2017.07.018CrossRefPubMedGoogle Scholar
  42. Luo, J., Huang, Z., Liu, H., Zhang, Y., & Ren, F. (2018). Yak milk fat globules from the Qinghai-Tibetan plateau: Membrane lipid composition and morphological properties. Food Chemistry, 245, 731–737.  https://doi.org/10.1016/J.FOODCHEM.2017.12.001CrossRefGoogle Scholar
  43. Ma, L., MacGibbon, A. K. H., Jan Mohamed, H. J. B., Loy, S., Rowan, A., McJarrow, P., et al. (2015). Determination of ganglioside concentrations in breast milk and serum from Malaysian mothers using a high performance liquid chromatography-mass spectrometry-multiple reaction monitoring method. International Dairy Journal, 49, 62–71.  https://doi.org/10.1016/j.idairyj.2015.05.006CrossRefGoogle Scholar
  44. Maccarone, A. T., Duldig, J., Mitchell, T. W., Blanksby, S. J., Duchoslav, E., & Campbell, J. L. (2014). Characterization of acyl chain position in unsaturated phosphatidylcholines using differential mobility-mass spectrometry. Journal of Lipid Research, 55(8), 1668–1677.  https://doi.org/10.1194/jlr.M046995CrossRefPubMedPubMedCentralGoogle Scholar
  45. Malisan, F., & Testi, R. (2002). GD3 ganglioside and apoptosis. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1585(2–3), 179–187.  https://doi.org/10.1016/S1388-1981(02)00339-6CrossRefGoogle Scholar
  46. Markham, J. E. (2013). Detection and quantification of plant sphingolipids by LC-MS. In Methods in molecular biology (Clifton, N.J.), 1009, 93–101.  https://doi.org/10.1007/978-1-62703-401-2_10Google Scholar
  47. Montero, O., Velasco, M., Rodríguez-Lázaro, D., & Hernández, M. (2013). Analysis of cheese small molecules by UPLC-QToF-MS and multivariate statistical methods using several extraction procedures. Food Analytical Methods, 6(6), 1497–1507.  https://doi.org/10.1007/s12161-013-9661-1CrossRefGoogle Scholar
  48. Morin, P., Jiménez-Flores, R., & Pouliot, Y. (2007). Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. International Dairy Journal 17(10), 1179–1187.  https://doi.org/10.1016/j.idairyj.2007.03.010CrossRefGoogle Scholar
  49. Murphy, R. C., & Harrison, K. A. (1994). Fast atom bombardment mass spectrometry of phospholipids. In Mass Spectrometry Reviews, 13(1), 57–75.  https://doi.org/10.1002/mas.1280130105CrossRefGoogle Scholar
  50. Pimentel, L., Fontes, A. L., Salsinha, S., Machado, M., Correia, I., Gomes, A. M., et al. (2018). Suitable simple and fast methods for selective isolation of phospholipids as a tool for their analysis. Electrophoresis, 39(15), 1835–1845.  https://doi.org/10.1002/elps.201700425CrossRefGoogle Scholar
  51. Pimentel, L., Gomes, A., Pintado, M., & Rodríguez-Alcalá, L. M. (2016). Isolation and analysis of phospholipids in dairy foods. Journal of Analytical Methods in Chemistry, 2016, 12, (Article ID 9827369), https://doi.org/10.1155/2016/9827369CrossRefGoogle Scholar
  52. Pulfer, M., & Murphy, R. C. (2003). Electrospray mass spectrometry of phospholipids. Mass Spectrometry Reviews, 22(5), 332–364.  https://doi.org/10.1002/mas.10061CrossRefPubMedGoogle Scholar
  53. Reis, A., Rudnitskaya, A., Blackburn, G. J., Mohd Fauzi, N., Pitt, A. R., & Spickett, C. M. (2013). A comparison of five lipid extraction solvent systems for lipidomic studies of human LDL. Journal of Lipid Research, 54(7), 1812–1824.  https://doi.org/10.1194/jlr.M034330CrossRefPubMedPubMedCentralGoogle Scholar
  54. Rivas-Serna, I. M., Polakowski, R., Shoemaker, G. K., Mazurak, V. C., & Clandinin, M. T. (2015). Profiling gangliosides from milk products and other biological membranes using LC/MS. Journal of Food Composition and Analysis, 44, 45–55.  https://doi.org/10.1016/j.jfca.2015.06.006CrossRefGoogle Scholar
  55. Rodríguez-Alcalá, L. M., & Fontecha, J. (2010). Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. Journal of Chromatography A, 1217(18), 3063–3066.  https://doi.org/10.1016/j.chroma.2010.02.073CrossRefPubMedGoogle Scholar
  56. Rodríguez-Alcalá, L. M., Castro-Gómez, M. P., Pimentel, L. L., & Fontecha, J. (2017). Milk fat components with potential anticancer activity - A review. Bioscience Reports, 37(6), BSR20170705. https://doi.org/10.1042/BSR20170705
  57. Rogers, T. S., Demmer, E., Rivera, N., Gertz, E. R., German, J. B., Smilowitz, J. T., et al. (2017). The role of a dairy fraction rich in milk fat globule membrane in the suppression of postprandial inflammatory markers and bone turnover in obese and overweight adults: An exploratory study. Nutrition & Metabolism, 14(1), 36.  https://doi.org/10.1186/s12986-017-0189-zCrossRefGoogle Scholar
  58. Rombaut, R., Dejonckheere, V., & Dewettinck, K. (2006). Microfiltration of butter serum upon casein micelle destabilization. Journal of Dairy Science, 89(6), 1915–1925.  https://doi.org/10.3168/jds.S0022-0302(06)72259-7CrossRefPubMedPubMedCentralGoogle Scholar
  59. Šala, M., Lísa, M., Campbell, J. L., & Holčapek, M. (2016). Determination of triacylglycerol regioisomers using differential mobility spectrometry. Rapid Communications in Mass Spectrometry, 30(2), 256–264.  https://doi.org/10.1002/rcm.7430CrossRefPubMedGoogle Scholar
  60. Sánchez-Juanes, F., Alonso, J. M. M., Zancada, L., & Hueso, P. (2009). Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. International Dairy Journal, 19(5), 273–278.  https://doi.org/10.1016/j.idairyj.2008.11.006CrossRefGoogle Scholar
  61. Sanchez-Juanes, F., Alonso, J. M., Zancada, L., & Hueso, P. (2009). Glycosphingolipids from bovine milk and milk fat globule membranes: A comparative study. Adhesion to enterotoxigenic Escherichia coli strains. Biological Chemistry, 390(1), 31–40.Google Scholar
  62. Shvartsburg, A. A., Isaac, G., Leveque, N., Smith, R. D., & Metz, T. O. (2011). Separation and classification of lipids using differential ion mobility spectrometry. Journal of the American Society for Mass Spectrometry, 22(7), 1146–1155.  https://doi.org/10.1007/s13361-011-0114-zCrossRefGoogle Scholar
  63. Simón-Manso, Y., Lowenthal, M. S., Kilpatrick, L. E., Sampson, M. L., Telu, K. H., Rudnick, P. A., et al. (2013). Metabolite profiling of a NIST standard reference material for human plasma (SRM 1950): GC-MS, LC-MS, NMR, and clinical laboratory analyses, libraries, and web-based resources. Analytical Chemistry, 85(24), 11725–11731.  https://doi.org/10.1021/ac402503mCrossRefPubMedGoogle Scholar
  64. Sisu, E., Flangea, C., Serb, A., Rizzi, A., & Zamfir, A. D. (2011). High-performance separation techniques hyphenated to mass spectrometry for ganglioside analysis. In Electrophoresis, 32(13), 1591–1609.  https://doi.org/10.1002/elps.201100067
  65. Sokol, E., Ulven, T., Faergeman, N. J., & Ejsing, C. S. (2015). Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MS supALL/sup. European Journal of Lipid Science and Technology, 117(6), 751–759.  https://doi.org/10.1002/ejlt.201400575CrossRefPubMedPubMedCentralGoogle Scholar
  66. Sørensen, L. K. (2006). A liquid chromatography/tandem mass spectrometric approach for the determination of gangliosides GD3 and GM3 in bovine milk and infant formulae. Rapid Communications in Mass Spectrometry, 20(24), 3625–3633.  https://doi.org/10.1002/rcm.2775CrossRefPubMedGoogle Scholar
  67. Ståhlman, M., Ejsing, C. S., Tarasov, K., Perman, J., Borén, J., & Ekroos, K. (2009). High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry. In Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 877(26), 2664–2672.  https://doi.org/10.1016/j.jchromb.2009.02.037CrossRefPubMedGoogle Scholar
  68. Svennerholm, L., & Fredman, P. (1980). A procedure for the quantitative isolation of brain gangliosides. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 617(1), 97–109.  https://doi.org/10.1016/0005-2760(80)90227-1CrossRefGoogle Scholar
  69. Tavazzi, I., Fontannaz, P., Lee, L. Y., & Giuffrida, F. (2018). Quantification of glycerophospholipids and sphingomyelin in human milk and infant formula by high performance liquid chromatography coupled with mass spectrometer detector. Journal of Chromatography B: Analytical Technologies in the Biomedical & Life Sciences, 1072, 235–243. http://10.0.3.248/j.jchromb.2017.10.067CrossRefGoogle Scholar
  70. Verardo, V., Gómez-Caravaca, A. M., Arráez-Román, D., & Hettinga, K. (2017). Recent advances in phospholipids from colostrum, milk and dairy by-products. International Journal of Molecular Sciences, 18(1), 173.  https://doi.org/10.3390/ijms18010173CrossRefPubMedPubMedCentralGoogle Scholar
  71. Zarei, M., Müthing, J., Peter-Katalinić, J., & Bindila, L. (2010). Separation and identification of GM1b pathway Neu5Ac- and Neu5Gc gangliosides by on-line nanoHPLC-QToF MS and tandem MS: Toward glycolipidomics screening of animal cell lines. Glycobiology, 20(1), 118–126.  https://doi.org/10.1093/glycob/cwp154CrossRefPubMedGoogle Scholar
  72. Zhao, Y.-Y., Xiong, Y., & Curtis, J. M. (2011). Measurement of phospholipids by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry: The determination of choline containing compounds in foods. Journal of Chromatography A, 1218(32), 5470–5479.  https://doi.org/10.1016/j.chroma.2011.06.025CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Olimpio Montero
    • 1
  • Javier Fontecha
    • 2
    Email author
  • M. Pillar Castro-Gómez
    • 2
  • Luis Miguel Rodríguez-Alcalá
    • 3
  1. 1.Spanish National Research Council, CSICValladolidSpain
  2. 2.Institute of Food Science Research (CIAL, CSIC-UAM)MadridSpain
  3. 3.Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de BiotecnologiaPortoPortugal

Personalised recommendations