Preparation and Applications of Milk Polar Lipids/MFGM

  • Kate M. Barry
  • Timothy G. Dinan
  • Philip M. Kelly


Milk fat is a mosaic encompassing a large variety of chemically different compounds including tri-glycerides (TG), di- glycerides (DG), and mono-glycerides (MG), cholesterol and cholesterol esters, free fatty acids (FA), glycolipids and phospholipids (PLs) (Jensen, 2002; Pimentel, Gomes, Pintado, et al., 2016). This diversity in lipid species owes to the complexity of the milk fat fraction within the whole milk matrix. A more simplistic categorisation of these different milk fat compounds is based on their individual polarity, i.e. polar or non-polar. Polar lipids are essential for the emulsification of fat in milk (Contarini & Povolo, 2013). PLs constitute the polar lipid fraction and while only accounting for between 0.2% and 1.0% of the total milk lipids (Lopez, 2011) they make a major functional contribution through their inherent ability to emulsify/stabilise the fat in milk.


  1. Affolter, M., Grass, L., Vanrobaeys, F., Casado B., & Kussmann, M. (2010). Qualitative and quantitative profiling of the bovine milk fat globule membrane proteome. Journal of Proteomics, 6, 1079–1088.CrossRefGoogle Scholar
  2. Akoh, C. C., & Min, D. B. (2008). Food lipids: Chemistry, nutrition and biotechnology. New York, NY: CRC Press.CrossRefGoogle Scholar
  3. Astaire, J. C., Ward, R., German, J. B., & Jiménez-Flores, R. (2003). Concentration of polar MFGM lipids from buttermilk by microfiltration and supercritical fluid extraction. Journal of Dairy Science, 86, 2297–2307.PubMedCrossRefGoogle Scholar
  4. Availli, A., & Contarini, G. (2005). Determination of phospholipids in dairy products by SPE/HPLC/ELSD. Journal of Chromatography. A, 1, 185–190.CrossRefGoogle Scholar
  5. Bargmann, W., & Knoop, A. (1959). Über die morpjologie der milchsekretion lichte-und elekronemikroskopische studien an der milchdrüse der ratte. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 49, 344–388.PubMedCrossRefGoogle Scholar
  6. Barry, K. M., Dinan, T. G., & Kelly, P. M. (2017a). Selective enrichment of dairy phospholipids in a buttermilk substrate through investigation of enzymatic hydrolysis of milk proteins in conjunction with ultrafiltration. International Dairy Journal, 68, 80–87.CrossRefGoogle Scholar
  7. Barry, K. M., Dinan, T. G., & Kelly, P. M. (2017b). Pilot scale production of a phospholipid-enriched dairy ingredient by means of an optimised integrated process employing enzymatic hydrolysis, ultrafiltration and super-critical fluid extraction. Innovative Food Science and Emerging Technologies, 41, 301–306.CrossRefGoogle Scholar
  8. Barry, K. M., Dinan, T. G., Murray, B. A., & Kelly, P. M. (2016). Comparison of dairy phospholipid preparative extraction protocols in combination with analysis by high performance liquid chromatography couple to a charged aerosol detector. International Dairy Journal, 56, 179–185.CrossRefGoogle Scholar
  9. Barry, K. M., Dinan, T. G., Stanton, C., & Kelly, P. M. (2018). Investigation of the neurotrophic effect of dairy phospholipids on cortical neuron outgrowth and stimulation. Journal of Functional Foods, 40, 60–67.CrossRefGoogle Scholar
  10. Bauer, H. (1971). Ultrastructural observations on the milk fat globule envelope of cow’s milk. Journal of Dairy Science, 55, 1375–1387.CrossRefGoogle Scholar
  11. Berra, B., Colombo, I., Scottocornola, E., & Giacosa, A. (2002). Dietary sphingolipids in colorectal cancer prevention. European Journal of Cancer Prevention, 1, 193–197.CrossRefGoogle Scholar
  12. Bitman, J., & Wood, D. L. (1990). Changes in milk fat phospholipids during lactation. Journal of Dairy Science, 73, 1208–1216.PubMedCrossRefGoogle Scholar
  13. Bligh, E. G., & Dryer, W. (1959). A raid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.PubMedCrossRefGoogle Scholar
  14. Britten, M., Lamothe, S., & Robitaille, G. (2008). Effect of cream treatment on phospholipids and protein recovery in butter-making process. International Journal of Food Science and Technology, 43, 651–657.CrossRefGoogle Scholar
  15. Brown, D. A., & London, E. (2000). Structure and function of sphingolipids and cholesterol rich membrane rafts. The Journal of Biological Chemistry, 275, 17221–17224.PubMedCrossRefGoogle Scholar
  16. Burling, H., & Gaverholt, G. (2008). Milk-a new source for bioactive phospholipids for use in food formulations. Lipid Technology, 20, 229–231.CrossRefGoogle Scholar
  17. Caboni, M. F., Menotta, S., & Lercker, G. (1996). Separation and analysis of phospholipids in different foods with a light-scattering detector. Journal of the American Oil Chemists’ Society, 73, 1561–1566.CrossRefGoogle Scholar
  18. Calvano, C. D., de Ceglie, C., Aresta, A., Facchini L. A., & Zambonin C. G. (2013). MALDI-TOF mass spectrometric determination of intact phospholipids as markers of illegal bovine milk adulteration of high-quality milk. Analytical and Bioanalytical Chemistry, 405, 1641–1649.PubMedCrossRefGoogle Scholar
  19. Cequier-Sánchez, E., Rodríguez, C., Ravelo, Á., & Zárate, R. (2008). Dichloromethane as a solvent for lipid extraction and assessment of lipid classes and fatty acids from samples of different natures. Journal of Agricultural and Food Chemistry, 56, 4297–4303.PubMedCrossRefGoogle Scholar
  20. Chong, B. M., Reigan, P., Mayle-Combs, K. D., Orlicky, D. J., & McManaman, J. L. (2011). Determinants of adipophilin function in milk lipid formation and secretion. Trends in Endocrinology and Metabolism, 22, 211–217.PubMedCrossRefGoogle Scholar
  21. Christe, W. W. (2003). Lipids: Their structure and occurrence. In W. W. Christie (Ed.), Lipid analysis. Isolation, separation, identification and structural analysis of lipids (3rd ed., pp. 3–36). Bridgewater, UK: The Oily Press.Google Scholar
  22. Clare, D. A., Zheng, Z., Hassan, H. M., Swaisgood, H. E., & Catignani, G. L.(2008). Antimicrobial properties of milkfat globule membrane fractions. Journal of Food Protection, 71, 126–133.PubMedCrossRefGoogle Scholar
  23. Contarini, G., & Povolo, M. (2013). Phospholipids in milkfat: Composition, biological and technological significance, and analytical strategies. International Journal of Molecular Sciences, 14, 2808–2831.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Corredig, M., & Dalgleish, D. G. (1997). Isolates from industrial buttermilk: Emulsifying properties of materials derived from the milk fat globule membrane. Journal of Agricultural and Food Chemistry, 45, 4595–4600.CrossRefGoogle Scholar
  25. Corredig, M., Roesch, R. R., & Dalgleish, D. G. (2003). Production of a novel ingredient from buttermilk. Journal of Dairy Science, 86, 2744–2750.PubMedCrossRefGoogle Scholar
  26. Costa, M. R., Elias-Argote, X. E., Jiménez- Flores, R., & Gigante, M. L. (2010). Use of ultrafiltration and supercritical fluid extraction to obtain a whey buttermilk powder enriched in milk fat globule membrane phospholipids. International Dairy Journal, 20, 598–602.CrossRefGoogle Scholar
  27. Cultler, R. G., & Mattson, M. P. (2001). Sphingomyelin and ceramide as regulators of development and lifespan. Mechanisms of Ageing and Development, 122, 895–908.CrossRefGoogle Scholar
  28. de Chaves, E. P., & Sipione, S. (2009). Sphingolipids and gangliosides of the nervous system in membrane function and dysfunction. FEBES Letters, 584, 1748–1759.CrossRefGoogle Scholar
  29. Deeth, H. C. (1997). The role of phospholipids in the stability of milk fat globules. Australian Journal of Dairy Technology, 52, 44–46.Google Scholar
  30. Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & van Camp, J. (2008) Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18, 436–457.CrossRefGoogle Scholar
  31. Donato, P., Cacciola, F., Cichello, F., Russo, M., Dugo, P., & Mondello, L. (2011). Determination of phospholipids in milk samples by means of hydrophilic interaction liquid chromatography coupled to evaporative light scattering and mass spectrometry detection. Journal of Chromatography. A, 1218, 6476–6482.PubMedCrossRefGoogle Scholar
  32. Evers, J. M., Haverkamp, R. G., Holroyd, S. E., Jameson, G. B., Mackenzie, D. D. S., & McCarthy, O. J. (2008). Heterogeneity of milk fat globule membrane structure and composition as observed using fluorescence microscopy techniques. International Dairy Journal, 18, 1081–1089.CrossRefGoogle Scholar
  33. Fagan, P., & Wijesundera, C. (2004). Liquid chromatographic analysis of milk phospholipids with online pre-concentration. Journal of Chromatography. A, 1054, 241–249.PubMedCrossRefGoogle Scholar
  34. FAOSTAT. (2015). World cow butter production. Retreived from
  35. Farhang, B., Kakuda, Y., & Corredig, M. (2012). Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Science & Technology, 92, 353–366.CrossRefGoogle Scholar
  36. Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissue. The Journal of Biological Chemistry, 226, 497–509.PubMedGoogle Scholar
  37. Fong, B. Y., & Norris, C. S. (2009). Quantification of milk fat globule membrane proteins using selected reaction monitoring mass spectrometry. Journal of Agricultural and Food Chemistry, 57, 6021–6028.PubMedCrossRefGoogle Scholar
  38. Fox, P. F., & McSweeney, P. L. H. (1998). Dairy chemistry and biochemistry. New York, NY: Springer.Google Scholar
  39. Fuchs, B., Süß, R., Teuber, K., Eibisch, M., & Schiller, J. (2011). Lipid analysis by thin-layer chromatography-A review of the current state. Journal of Chromatography. A, 1218, 2754–2774.PubMedCrossRefGoogle Scholar
  40. Gallier, S., Gordon, K. C., & Singh, H. (2012). Chemical and structural characterisation of almond oil bodies and bovine milk fat globules. Food Chemistry, 132, 1996–2006.CrossRefGoogle Scholar
  41. Gallier, S., Gragson, D., Cabral, C., Jiménez-Flores, R., & Everett, D. W. (2010). Composition and fatty acid distribution of bovine milk phospholipids from processed milk products. Journal of Agricultural and Food Chemistry, 58, 10503–10511.Google Scholar
  42. Garcia, C., Lutz, N. W., Confort-Gouny, S., Cozzone, P. J., Armand, M, & Bernard, M. (2012). Phospholipid fingerprints of milk from different mammalians determined by 31P NMR: Towards specific interest in human health. Food Chemistry, 165, 1777–1783.Google Scholar
  43. Gentner, P. R., Bauer, M., & Dieterich, I. (1981). Thin-layer chromatography of phospholipids: Separation of major phospholipid classes of milk without previous isolation from total lipid extracts. Journal of Chromatography. A, 206, 200–204.CrossRefGoogle Scholar
  44. Guan, J., MacGibbon, A., Fong, B., Zhang, R., Liu, K., Rowan, A., et al. (2015). Long-term supplementation with beta serum concentrate (BSC), a complex of milk lipids, during post-natal brain development improves memory in rats. Nutrients, 7, 4526–4541.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gülseren, I., Guri, A., & Corredig, M. (2012). Encapsulation of tea polyphenols in nanoliposomes prepared with milk phospholipids and their effect on the viability of HT-29 human carcinoma cells. Food Digestion, 3, 36–45.CrossRefGoogle Scholar
  46. Hara, A., & Radin, N. S. (1978). Lipid extraction of tissues with a low-toxicity solvent. Analytical Biochemistry, 90, 420–246.PubMedCrossRefGoogle Scholar
  47. Harmon, C. M., & Abumrad, N. A. (1993). Binding of sulfosuccinimidyl fatty acids to adipocyte membrane proteins: Isolation and ammo-terminal sequence of an 88-kD protein implicated in transport of long-chain fatty acids. The Journal of Membrane Biology, 133, 43–49.PubMedCrossRefGoogle Scholar
  48. Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84, 245–258.CrossRefPubMedGoogle Scholar
  49. Hertervig, E., Nilsson, A., Cheng, Y., & Duan, R. D. (2003). Purified intestinal alkaline sphingomyelinase inhibits proliferation without inducing apoptosis in HT-29 colon carcinoma cells. Journal of Cancer Research and Clinical Oncology, 129, 577–582.PubMedCrossRefGoogle Scholar
  50. Hirmo, S., Kelm, S., Iwersen, M., Hotta, K., Goso, Y., Ishihara, K., et al (1998). Inhibition of helicobacter pylorisialic acid-specific hemagglutination by human gastrointestinal mucins and milk glycoproteins. Pathogens and Disease, 20, 275–281.Google Scholar
  51. Holzmüller, W., & Kulozik, U. (2016). Technical difficulties and future challenges in isolating membrane material from milk fat globules in industrial settings- A critical review. International Dairy Journal, 61, 51–66.CrossRefGoogle Scholar
  52. Holzmüller, W., Müller, M., Himbert, D., & Kulozik, U. (2016). Impact of cream washing on fat globules and milk fat globule membrane proteins. International Dairy Journal, 59, 52–61.CrossRefGoogle Scholar
  53. IDF. (1987). Dried milk, dried whey, dried buttermilk and dried butter serum. Determination of fat content (Röse Gottlieb reference method). Brussels, Belgium: International IDF Standard 9C.Google Scholar
  54. Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to december 2000. Journal of Dairy Science, 85, 295–350.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Kanno, C. (1989). Emulsifying properties of bovine milk fat globule membrane in milk fat emulsion: Conditions for the reconstitution of milk fat globules. Journal of Food Science, 57, 1534–1539.CrossRefGoogle Scholar
  56. Kasinos, M., Le, T. T., & Van der Meeren, P. (2014). Improved heat stability of recombined evaporated milk emulsions upon addition of enriched dairy by-products. Food Hydrocolloids, 34, 112–118.CrossRefGoogle Scholar
  57. Keenan, T. W., & Dylewski, D. P. (1995). Intracellular origin of the milk lipid globules and the nature and structure of the milk lipid globule membrane. In P. F. Fox (Ed.), Advanced dairy chemistry 2: Lipids (2nd ed., pp. 89–130). London, UK: Chapman and Hall.Google Scholar
  58. Keenan, T. W., & Mather, I. H. (2006). Intracellular origin of milk fat globules and the nature of the milk fat globule membrane. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry 2: Lipids (3rd ed., pp. 137–171). New York, NY: Springer.CrossRefGoogle Scholar
  59. Kielbowicz, G., Micek, P., & Wawrzenczyk, C. (2013). A new liquid chromatography method with charge aerosol detector (CAD) for the determination of phospholipid classes. Application to milk phospholipids. Talanta, 105, 28–363.PubMedCrossRefGoogle Scholar
  60. Konrad, G., Kleinschmidt, T., & Lorenz, C. (2013). Ultrafiltration of whey buttermilk to obtain a phospholipid concentrate. International Dairy Journal, 30, 39–44.CrossRefGoogle Scholar
  61. Kuchta-Noctor, A. M., Murray, B. A., Stanton, C., Devery, R., & Kelly, P. M. (2016). Anticancer activity of buttermilk against SW480 colon cancer cells is associated with caspase-independent cell death and attenuation of Wnt, Akt, and ERK signalling. Nutrition and Cancer, 68, 1234–1246.PubMedCrossRefGoogle Scholar
  62. Le, T. T., Debyser, G., Gilbert, W., Struijs, K., van Camp, J., de Wiele, T. V., et al. (2013). Distribution and isolation of milk fat globule membrane proteins during dairy processing as revealed by proteomic analysis. International Dairy Journal, 32, 110–120.CrossRefGoogle Scholar
  63. Le, T. T., Miocinovic, J., Nguyen, T. M., Rombaut, R., van Camp, J., & Dewettinck, K. (2011). Improved solvent extraction procedure and high-performance liquid chromatography-evaporative light-scattering detector method for analysis of polar lipids from dairy materials. Journal of Agricultural and Food Chemistry, 59, 10407–10413.PubMedCrossRefGoogle Scholar
  64. Lopez, C. (2011). Milk fat globules enveloped by their own biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science, 16, 391–404.CrossRefGoogle Scholar
  65. Lopez, C., Briard-Bion, V., Ménard, O., Rousseau, F., Pradel, P., & Besle, J. M. (2008). Phospholipid, Sphingolipid, and fatty acid composition of the milk fat globule membrane are modified by diet. Journal of Agricultural and Food Chemistry, 56, 5226–5236.CrossRefPubMedGoogle Scholar
  66. Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., et al. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125, 355–368.CrossRefGoogle Scholar
  67. Lopez, C., & Ménard, O. (2011). Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids and Surfaces. B, Biointerfaces, 83, 29–41.PubMedCrossRefGoogle Scholar
  68. MacGibbon, A. K. H., & Taylor, M. W. (2006). Composition and structure of bovine milk lipids. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry 2: Lipids (3rd ed., pp. 1–42). New York, NY: Springer.Google Scholar
  69. MacKenzie, A., Vyssotski, M., & Nekrasov, E. (2009). Quantitative analysis of dairy phospholipids by 31P NMR. Journal of the American Oil Chemists’ Society, 86, 757–763.CrossRefGoogle Scholar
  70. Mather, I. H. (2000). A review and proposed nomenclature for major proteins of the milk-fat globule membrane. Journal of Dairy Science, 83, 203–247.CrossRefPubMedGoogle Scholar
  71. Mather, I. H., & Keenan, T. W. (1998). Origin and secretion of milk lipids. Journal of Mammary Gland Biology and Neoplasia, 3, 259–273.PubMedCrossRefGoogle Scholar
  72. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A., & Schwudke, D. (2008). Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. Journal of Lipid Research, 49, 1137–1146.PubMedPubMedCentralCrossRefGoogle Scholar
  73. McPherson, A. V., & Kitchen, B. J. (1983). Reviews of the progress of dairy science: The bovine milk fat globule membrane–its formation, composition, structure and behaviour in milk and dairy products. The Journal of Dairy Research, 50, 107–133.CrossRefGoogle Scholar
  74. Morin, P., Britten, M., Jiménez- Flores, R., & Pouliot, Y. (2007). Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components. Journal of Dairy Science, 90, 2132–2140.PubMedCrossRefGoogle Scholar
  75. Morin, P., Jiménez- Flores, R., & Pouliot, Y. (2007). Effect of processing on the composition and microstructure of buttermilk and its milk fat globule membranes. International Dairy Journal, 17, 1179–1187.CrossRefGoogle Scholar
  76. Morin, P., Jiménez-Flores, R., & Pouliot, Y. (2004). Effect of temperature and pore size on the fractionation of fresh and reconstituted buttermilk by microfiltration. Journal of Dairy Science, 87, 267–273.PubMedCrossRefGoogle Scholar
  77. Morin, P., Pouliot, Y., & Jiménez-Flores, R. (2006). A comparative study of the fractionation of regular buttermilk and whey buttermilk by microfiltration. Journal of Food Engineering, 77, 521–528.CrossRefGoogle Scholar
  78. Morrison, W. R., Jack, E. L., & Smith, L. M. (1965). Fatty acids of bovine milk glycolipids and phospholipids and their specific distribution in the diacylglycerophospholipids. Journal of the American Chemical Society, 45, 1142–1147.Google Scholar
  79. Mudd, A. T., Alexander, L. S., Berding, K., Waworuntu, R. V., Berg, B. M., Donovan, S. M., et al. (2016). Dietary prebiotics, milk fat globule membrane, and lactoferrin affects structural neurodevelopment in the young piglet. Frontiers in Pediatrics, 4, 1–10.Google Scholar
  80. Nguyen, H. T. H., Ong, L., Hoque, A., Kentish, S. E., Williamson, N., Ang, C.-S., et al. (2017). A proteomic characterization shows differences in the milk fat globule membrane of buffalo and bovine milk. Food Bioscience, 19, 7–16.CrossRefGoogle Scholar
  81. Noh, S. K., & Koo, S. I. (2004). Milk sphingomyelin is more effective than egg sphingomyelin in inhibiting intestinal absorption of cholesterol and fat in rats. The Journal of Nutrition, 134, 2611–2616.CrossRefPubMedGoogle Scholar
  82. Nyberg, L., Duan, R. D., & Nilsson, A. (2000). A mutual inhibitory effect on absorption of sphingomyelin and cholesterol. The Journal of Nutritional Biochemistry, 11, 244–249.CrossRefPubMedGoogle Scholar
  83. O’Mahoney, J. A., & Fox, P. F. (2014). Milk an overview. In M. Boland, H. Singh, & A. Thompson (Eds.), Milk proteins: From expression to food (2nd ed., pp. 19–73). San Diego, CA: Elsevier.Google Scholar
  84. Oshida, K., Shimizu, T., Takase, M., Tamura, Y., Shimizu, T., & Yamashiro, Y. (2003). Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatric Research, 53, 589–593.PubMedCrossRefGoogle Scholar
  85. Parodi, P. W. (2003). Anti-cancer agents in milkfat. Australian Journal of Dairy Technology, 58, 114–118.Google Scholar
  86. Pepeu, G., Pepeu, I. M., & Amanducci, I. (1996). A review of phosphatidylserine pharmacological and clinical effects. I. Phosphatidylserine a drug for the ageing brain? Pharmaceutical Research, 33, 73–80.CrossRefGoogle Scholar
  87. Phan, T. T. Q., Asaduzzaman, M., Le, T. T., Fredrick, E., Van der Meeren, P., & Dewettinck, K. (2013). Composition and emulsifying properties of a milk fat globule membrane enriched material. International Dairy Journal, 29, 99–106.CrossRefGoogle Scholar
  88. Pimentel, L., Gomes, A., Pintado, M., & Rodríguez-Alcalá, L. M. (2016). Isolation and analysis of phospholipids in dairy foods. Journal of Analytical Methods in Chemistry, 2016, 9827369.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Poppitt, S. D., McGregor, R. A., Wiessing, K. R., Goyal, V. K., Chitkara, A. J., Gupta, S., et al. (2014). Bovine complex milk lipid containing gangliosides for prevention of rotavirus infection and diarrhoea in northern Indian infants. Journal of Pediatric Gastroenterology and Nutrition, 56, 167–171.CrossRefGoogle Scholar
  90. Reinhardt, T. A., & Lippolis, J. D. (2006). Bovine milk fat globule membrane proteome. The Journal of Dairy Research, 73, 406–416.PubMedCrossRefGoogle Scholar
  91. Restuccia, D., Spizzirri, G., Puoci, F., Cirillo, G., Vinci, G., & Picci, N. (2011). Determination of phospholipids in food samples. Food Review International, 28, 1–46.CrossRefGoogle Scholar
  92. Riccio, P. (2004). The proteins of the milk fat globule membrane in the balance. Trends in Food Science and Technology, 15, 458–461.CrossRefGoogle Scholar
  93. Robenek, H., Hofnagel, O., Buers, I., Lorkowski, S., Schnoor, M., Robenek, M. J., et al (2006). Butyrophilin controls milk fat globule secretion. Proceedings of the National Academy of Sciences of the United States of America, 103, 10385–10390.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Rodrigues-Alcalá, L. M., & Fontech, J. (2010). Major lipid classes separation of buttermilk, and cows, goats and ewes milk by high performance liquid chromatography with an evaporative light scattering detector focused on the phospholipid fraction. Journal of Chromatography. A, 1217, 3063–3066.CrossRefGoogle Scholar
  95. Roesch, R. R., Rincon, A., & Corredig, M. (2004). Emulsifying properties of fractions prepared form commercial buttermilk by microfiltration. Journal of Dairy Science, 87, 4080–4087.PubMedCrossRefGoogle Scholar
  96. Rombaut, R., Dejonckheere, V., & Dewettinck, K. (2006). Microfiltration of butter serum upon casein micelle destabilisation. Journal of Dairy Science, 89, 1915–1925.PubMedCrossRefGoogle Scholar
  97. Rombaut, R., Dejonckheere, V., & Dewettinck, K. (2007). Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey. Journal of Dairy Science, 90, 1662–1673.PubMedCrossRefGoogle Scholar
  98. Rombaut, R., Dewettick, K., & van Camp, J. (2007). Phospho- and sphingolipid content of selected dairy products as determined by HPLC coupled to an evaporative light scattering detector (HPLC-ELSD). Journal of Food Composition and Analysis, 20, 308–312.CrossRefGoogle Scholar
  99. Rombaut, R., & Dewettinck, K. (2006). Properties, analysis and purification of milk polar lipids. International Dairy Journal, 16, 1362–1373.CrossRefGoogle Scholar
  100. Rombaut, R., van Camp, J., & Dewettick, K. (2005). Analysis of phosphor- and sphingolipids on dairy products by a new HPLC method. Journal of Dairy Science, 88, 482–488.PubMedCrossRefGoogle Scholar
  101. Sachdeva, S., & Buchheim, W. (1997). Recovery of phospholipids from buttermilk using membrane processing. Kieler Milchwirtschaftliche Forschungsberichte, 49, 47–68.Google Scholar
  102. Sánchez-Juanes, F., Alonso, J. M., Zancada, L., & Hueso, P. (2009). Distribution and fatty acid content of phospholipids from bovine milk and bovine milk fat globule membranes. International Dairy Journal, 19, 237–278.CrossRefGoogle Scholar
  103. Singh, H. (2006). The milk fat globule membrane-A biophysical system for food applications. Current Opinion in Colloid & Interface Science, 11, 154–163.CrossRefGoogle Scholar
  104. Singh, H., & Gallier, S. (2017). Nature’s complex emulsion: The fat globules of milk. Food Hydrocolloids, 68, 81–89.CrossRefGoogle Scholar
  105. Smoczyński, M. (2017). Role of phospholipid flux during milk secretion in the mammary gland. Journal of Mammary Gland Biology and Neoplasia, 22, 117–129.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Spence, A. J., Jiménez-Flores, R., Qian, M., & Goddik, L. (2009). Phospholipid enrichment in sweet and whey cream buttermilk powders using supercritical fluid extraction. Journal of Dairy Science, 92, 2373–2381.PubMedCrossRefGoogle Scholar
  107. Spitsberg, V. L., & Gorewit, R. C. (2002). Isolation, purification and characterization of fatty-acid-binding protein form milk fat globule membrane. Effect of bovine growth hormone treatment. Pakistan Journal of Nutrition, 1, 43–48.CrossRefGoogle Scholar
  108. Sprong, C., Hulstein, M. F. E., & van der Meer, R. (2001). Bactericidal activities of milk lipids. Antimicrobial Agents and Chemotherapy, 45, 1298–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  109. Surel, O., & Flamelart, M. H. (1995). Ability of ceramic membranes to reject lipids of dairy products. Australian Journal of Dairy Technology, 88, 2289–2294.Google Scholar
  110. Thompson, A. K., & Singh, H. (2006). Preparation of liposomes from milk fat globule membrane phospholipids using a microfluidizer. Journal of Dairy Science, 89, 410–419.PubMedCrossRefGoogle Scholar
  111. Timby, N., Domellöf, E., Hernell, O., Lönnerdal, B., & Domellöf, M. (2014). Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomised controlled trial. The American Journal of Clinical Nutrition, 99, 860–868.PubMedCrossRefGoogle Scholar
  112. Timby, N., Hernell, O., Vaarala, O., Melin, M., Lönnerdal, B., & Domellöf, M. (2015). Infections in infants fed formula supplemented with bovine milk globule membranes. Journal of Pediatric Gastroenterology and Nutrition, 60, 348–389.CrossRefGoogle Scholar
  113. Tran Le, T., El-Bakry, M., Neirynck, N., Bogus, M., Hoa, H. D., & Van der Meeren. P. (2007). Hydrophilic lecithins protect milk proteins against heat induced aggregation. Colloids and Surfaces. B, Biointerfaces, 60, 167–173.Google Scholar
  114. Van Meer, G., & Lisman, Q. (2002). Sphingolipid transport: Rafts and translocators. The Journal of Biological Chemistry, 277, 25855–25858.PubMedCrossRefGoogle Scholar
  115. Vanderghem, C., Francis, F., Danthine, S., Deroanne, C., Paquot, M., De Pauw, E., & Blecker, C. (2011). Study of the susceptibility of the bovine milk fat globule membrane proteins to enzymatic hydrolysis and organization of some of the proteins. International Dairy Journal, 21, 312–318.CrossRefGoogle Scholar
  116. Verardo, V., Gómez-Caravaca, A. M., Arráez-Román, D., & Hettinga, K. (2017). Recent advances in phospholipids from colostrum, milk and dairy by-products. International Journal of Molecular Sciences, 18, 173–196.PubMedCentralCrossRefGoogle Scholar
  117. Vorbach, C., Scriven, A., & Capecchi, M. R. (2002). The housekeeping gene xanthine oxidoreductase is necessary for milk fat droplet enveloping and secretion: Gene sharing in the lactating mammary gland. Genes & Development, 16, 3223–3235.CrossRefGoogle Scholar
  118. Walstra, P. (1985). Some comments on the isolation of fat globule membrane material. The Journal of Dairy Research, 52, 309–312.CrossRefGoogle Scholar
  119. Walstra, P., & Jenness, R. (1984). Dairy chemistry and physics. New York, NY: Wiley.Google Scholar
  120. Wat, E., Tandy, S., Kaper, E., Kamili, A., Chung R. W., Brown A., et al. (2009). Dietary phospholipid-rich dairy milk extract reduces hepatomegaly, hepatic steatosis and hyperlipidemia in mice fed a high-fat diet. Atherosclerosis, 205, 144–150.PubMedCrossRefGoogle Scholar
  121. Watanabe, S., Takahashi, T., Tanaka, L., Haruta-Ono, Y., Shiota, M., Hosokawa, M., et al. (2011). The effect of milk polar lipids separated from butter serum on the lipid levels in the liver and the plasma of obese-model mouse (KK-Ay). Journal of Functional Foods, 3, 313–320.CrossRefGoogle Scholar
  122. Wu, C. C., Howell, K. E., Neville, M. C., Yates, J. R. 3rd, & McManaman. J. L. (2000). Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanisms in mammary epithelial cells. Electrophoresis, 21, 3470–3482.Google Scholar
  123. Zou, X., Guo, Z., Jin, Q., Huang, J., Cheong, L., Xu X., et al. (2015). Composition and microstructure of colostrum and mature bovine milk fat globule membrane. Food Chemistry, 185, 362–370.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Kate M. Barry
    • 1
    • 2
  • Timothy G. Dinan
    • 2
    • 3
  • Philip M. Kelly
    • 1
  1. 1.Teagasc Food Research Centre, Moorepark, Fermoy, CoCorkIreland
  2. 2.Department of PsychiatryUniversity College CorkCorkIreland
  3. 3.Alimentary Pharmabiotic CentreUniversity College CorkCorkIreland

Personalised recommendations