Dairy Fat Replacement in Low-Fat Cheese (LFC): A Review of Successful Technological Interventions

  • Bal Kumari Sharma Khanal
  • Nidhi BansalEmail author


Worldwide dietary guidelines recommended that not more than 30% of the total daily energy intake should be derived from the dietary fat. Obesity, along with heart diseases such as hypertension and high blood pressure, are often attributed to the consumption of fat rich foods. Cheese prepared from whole milk is high in fat content and a rich source of dietary fat (Drake et al, 1999). Hence, demand for low fat cheese (LFC) has increased globally due to generalized conciousness about consumer health issues. Manufacturing low fat cheese with characteristics similar to that of full fat cheese (i.e. flavour and texture) has been a topic of interest in the cheese industries for many years. Role of fat in cheese is vital as it acts as a filler in the protein network of the cheese besides imparting creaminess, mouth fell and lubricity to the product. Hence, hard, rubbery, off flavoured and poor coloured cheese is produced due to removal of the fat. Several technologies have been proposed to manufacture LFC that has characteristics comparable to those of the full fat cheese. This book chapter reviews several different technological approaches and fat replacers used in producing LFC.


  1. Agarwal, S., Powers, J., Swanson, B., Chen, S., & Clark, S. (2008). Influence of salt-to-moisture ratio on starter culture and calcium lactate crystal formation. Journal of Dairy Science, 91(8), 2967–2980.PubMedCrossRefGoogle Scholar
  2. Akkerman, M., Kristensen, L. S., Jespersen, L., Ryssel, M. B., Mackie, A., Larsen, N. N., et al. (2017). Interaction between sodium chloride and texture in semi-hard Danish cheese as affected by brining time, dl-starter culture, chymosin type and cheese ripening. International Dairy Journal, 70(Suppl C), 34–45.CrossRefGoogle Scholar
  3. Akoh, C. C. (1994). Carbohydrate polyesters as fat substitutes (Vol. 62). Boca Raton, FL: CRC Press.Google Scholar
  4. Amelia, I., Drake, M., Nelson, B., & Barbano, D. M. (2013). A new method for the production of low-fat Cheddar cheese. Journal of Dairy Science, 96(8), 4870–4884.PubMedCrossRefGoogle Scholar
  5. Amornkul, Y., & Henning, D. R. (2007). Utilization of microfiltration or lactoperoxidase system or both for manufacture of cheddar cheese from raw milk. Journal of Dairy Science, 90(11), 4988–5000.PubMedCrossRefGoogle Scholar
  6. Anderson, D. L., Mistry, V. V., Brandsma, R. L., & Baldwin, K. A. (1993). Reduced fat cheddar cheese from condensed milk. 1. Manufacture, composition, and ripening. Journal of Dairy Science, 76(10), 2832–2844.CrossRefGoogle Scholar
  7. Ardisson-Korat, A. V., & Rizvi, S. S. H. (2004). Vatless manufacturing of low-moisture part-skim mozzarella cheese from highly concentrated skim milk microfiltration retentates. Journal of Dairy Science, 87(11), 3601–3613.PubMedCrossRefGoogle Scholar
  8. Ardö, Y., Mansson, H. L., Hedenberg, A., & Larsson, P. O. (1989). Studies of peptidolysis during early maturation and its influence on low-fat cheese quality. Milchwissenschaft-Milk Science International, 44(8), 485–495.Google Scholar
  9. Artz, W. E., Lai, L. L., & Hansen, S. L. (2007). Chapter 11 - The chemistry and nutrition of nonnutritive fats A2. In M. D. Erickson (Ed.), Deep frying (2nd ed., pp. 229–249). Urbana, IL: AOCS Press.CrossRefGoogle Scholar
  10. Awad, S., Hassan, A. N., & Halaweish, F. (2005). Application of exopolysaccharide-producing cultures in reduced-fat cheddar cheese: Composition and proteolysis. Journal of Dairy Science, 88(12), 4195–4203.PubMedCrossRefGoogle Scholar
  11. Ayyash, M., Abu-Jdayil, B., Hamed, F., & Shaker, R. (2018). Rheological, textural, microstructural and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese. LWT - Food Science and Technology, 87(Suppl C), 423–431.CrossRefGoogle Scholar
  12. Banks, J. M. (2004). The technology of low-fat cheese manufacture. International Journal of Dairy Technology, 57(4), 199–207.CrossRefGoogle Scholar
  13. Banks, J. M., Brechany, E. Y., & Christie, W. W. (1989). The production of low fat cheddar type cheese. International Journal of Dairy Technology, 42(1), 6–9.CrossRefGoogle Scholar
  14. Banks, J. M., Roa, I., & Muir, D. D. (1998). Manipulation of the texture of low-fat chedder using a plant protease extracted from cynara cardunculus. Australian Journal of Dairy Technology, 53(2), 105.Google Scholar
  15. Benech, R. O., Kheadr, E. E., Lacroix, C., & Fliss, I. (2003). Impact of Nisin producing culture and liposome-encapsulated Nisin on ripening of Lactobacillus added-Cheddar cheese. Journal of Dairy Science, 86(6), 1895–1909.PubMedCrossRefGoogle Scholar
  16. Boivin-Piché, J., Vuillemard, J.-C., & St-Gelais, D. (2016). Technical note: Vitamin D-fortified cheddar type cheese produced from concentrated milk. Journal of Dairy Science, 99(6), 4140–4145.PubMedCrossRefGoogle Scholar
  17. Børsting, M. W., Qvist, K. B., Rasmussen, M., Vindeløv, J., Vogensen, F. K., & Ardö, Y. (2012). Impact of selected coagulants and starters on primary proteolysis and amino acid release related to bitterness and structure of reduced-fat cheddar cheese. Dairy Science & Technology, 92(5), 593–612.CrossRefGoogle Scholar
  18. Brandsma, R. L., Mistry, V. V., Anderson, D. L., & Baldwin, K. A. (1994). Reduced fat cheddar cheese from condensed milk. 3. Accelerated ripening. Journal of Dairy Science, 77(4), 897–906.CrossRefGoogle Scholar
  19. Broadbent, J. R., Brighton, C., McMahon, D. J., Farkye, N. Y., Johnson, M. E., & Steele, J. L. (2013). Microbiology of cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter. Journal of Dairy Science, 96(7), 4212–4222.PubMedCrossRefGoogle Scholar
  20. Bryant, A., Ustunol, Z., & Steffe, J. (1995). Texture of cheddar cheese as influenced by fat reduction. Journal of Food Science, 60(6), 1216–1219.CrossRefGoogle Scholar
  21. Caron, A., St-Gelais, D., & Pouliot, Y. (1997). Coagulation of milk enriched with ultrafiltered or diafiltered microfiltered milk retentate powders. International Dairy Journal, 7(6-7), 445–451.CrossRefGoogle Scholar
  22. CDR. (2014). College of agriculture and life sciences, University of Wisconsin-Madison.Google Scholar
  23. Cerning, J. (1995). Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le Lait, 75(4-5), 463–472.CrossRefGoogle Scholar
  24. Chatli, M. K., Gandhi, N., & Singh, P. (2017). Efficacy of sodium alginate as fat replacer on the processing and storage quality of buffalo mozzarella cheese. Nutrition & Food Science, 47, 3.CrossRefGoogle Scholar
  25. Chavan, R. S., Khedkar, C. D., & Bhatt, S. (2016). Fat replacer. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of food and health (pp. 589–595). Oxford: Academic Press.CrossRefGoogle Scholar
  26. Chevanan, N., Muthukumarappan, K., Upreti, P., & Metzger, L. (2006). Effect of calcium and phosphorus, residual lactose and salt to moisture ratio on textural properties of cheddar cheese during ripening. Journal of Texture Studies, 37(6), 711–730.CrossRefGoogle Scholar
  27. Costa, N. E., Hannon, J. A., Guinee, T. P., Auty, M. A., McSweeney, P. L., & Beresford, T. P. (2010). Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat cheddar cheese. Journal of Dairy Science, 93(8), 3469–3486.PubMedCrossRefGoogle Scholar
  28. Dabour, N., Kheadr, E. E., Fliss, I., & LaPointe, G. (2005). Impact of ropy and capsular exopolysaccharide-producing strains of Lactococcus lactis subsp. cremoris on reduced-fat cheddar cheese production and whey composition. International Dairy Journal, 15(5), 459–471.CrossRefGoogle Scholar
  29. Dalby, A. (2009). Cheese a global history. London, UK: Reaktion Books.Google Scholar
  30. De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153–177.PubMedCrossRefGoogle Scholar
  31. De Vuyst, L., Zamfir, M., Mozzi, F., Adriany, T., Marshall, V., Degeest, B., et al. (2003). Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. International Dairy Journal, 13(8), 707–717.CrossRefGoogle Scholar
  32. Deegan, K. C., Heikintalo, N., Ritvanen, T., Putkonen, T., Rekonen, J., McSweeney, P. L. H., et al. (2013). Effects of low-pressure homogenisation on the sensory and chemical properties of Emmental cheese. Innovative Food Science & Emerging Technologies, 19, 104–114.CrossRefGoogle Scholar
  33. Deegan, K. C., Holopainen, U., McSweeney, P. L. H., Alatossava, T., & Tuorila, H. (2014). Characterisation of the sensory properties and market positioning of novel reduced-fat cheese. Innovative Food Science & Emerging Technologies, 21, 169–178.CrossRefGoogle Scholar
  34. Di Cagno, R., De Pasquale, I., De Angelis, M., Buchin, S., Rizzello, C. G., & Gobbetti, M. (2014). Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese. Journal of Dairy Science, 97(1), 72–84.PubMedCrossRefGoogle Scholar
  35. Diamantino, V. R., Beraldo, F. A., Sunakozawa, T. N., & Penna, A. L. B. (2014). Effect of octenyl succinylated waxy starch as a fat mimetic on texture, microstructure and physicochemical properties of Minas fresh cheese. LWT - Food Science and Technology, 56(2), 356–362.CrossRefGoogle Scholar
  36. Dissanayake, M., Kelly, A. L., & Vasiljevic, T. (2010). Gelling properties of microparticulated whey proteins. Journal of Agricultural and Food Chemistry, 58(11), 6825–6832.PubMedCrossRefGoogle Scholar
  37. Drake, M. A., Boylston, T. D., & Swanson, B. G. (1996). Fat mimetics in low-fat cheddar cheese. Journal of Food Science, 61(6), 1267–1270.CrossRefGoogle Scholar
  38. Drake, M. A., Drake, M. A., Truong, V. D., & Daubert, C. R. (1999). Rheological and sensory properties of reduced-fat processed cheeses containing lecithin. Journal of Food Science, 64(4), 744–747.CrossRefGoogle Scholar
  39. Drake, M. A., Herfett, W., Boylston, T. D., & Swanson, B. G. (1995). Sensory evaluation of reduced fat cheeses. Journal of Food Science, 60(5), 898–901.CrossRefGoogle Scholar
  40. Drake, M. A., Miracle, R. E., & McMahon, D. J. (2010). Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses. Journal of Dairy Science, 93(11), 5069–5081.PubMedCrossRefGoogle Scholar
  41. Duguid, J. P., & Duguid, J. P. (1951). The demonstration of bacterial capsules and slime. Journal of Pathology and Bacteriology, 63(4), 673–685.PubMedCrossRefGoogle Scholar
  42. El-Gawad, A., Ahmed, N. S., El-Abd, M., & El-Rafee, S. A. (2012). Effect of homogenization on the properties and microstructure of Mozzarella cheese from buffalo milk. Acta scientiarum polonorum. Technologia Alimentaria, 11(2), 121–135.Google Scholar
  43. El-Gawad, M. A. A., & Ahmed, N. S. (2011). Cheese yield as affected by some parameters review. Acta Scientiarum Polonorum. Technologia Alimentaria, 10(2), 131–153.Google Scholar
  44. Emmons, D. B., Emmons, D. B., Kalab, M., Larmond, E., & Lowrie, R. J. (1980). Milk gel structure. X. Texture and Microstructure in Cheddar cheese made from whole milk and from homogenized low-fat milk. Journal of Texture Studies, 11(1), 15–34.CrossRefGoogle Scholar
  45. Farkye, N. Y., & Guinee, T. P. (2017). Chapter 28 - Low-fat and low-sodium cheeses cheese (4th ed.pp. 699–714). San Diego, CA: Academic Press.Google Scholar
  46. FDA. (2017). Code of federal regulations, chapter 21.Google Scholar
  47. Felfoul, I., Bornaz, S., Baccouche, A., Sahli, A., & Attia, H. (2015). Low-fat Gouda cheese made from bovine milk-olive oil emulsion: Physicochemical and sensory attributes. Journal of Food Science and Technology, 52(10), 6749–6755. Scholar
  48. Fenelon, M., & Guinee, T. (1997). The compositional, textural and maturation characteristics of reduced-fat cheddar made from milk containing added dairy-Lo. Milchwissenschaft, 52(7), 385–389.Google Scholar
  49. Fenelon, M. A., Ryan, M. P., Rea, M. C., Guinee, T. P., Ross, R. P., Hill, C., et al. (1999). Elevated temperature ripening of reduced fat cheddar made with or without lacticin 3147-producing starter culture. Journal of Dairy Science, 82(1), 10–22.CrossRefGoogle Scholar
  50. Fox, P. F. (2011). Cheese: overview. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 533–543). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  51. Fox, P. F., & McSweeney, P. L. H. (2017). Chapter 1 - Cheese: An overview. In P. L. H. McSweeney, P. F. Fox, P. D. Cotter, & D. W. Everett (Eds.), Cheese (4th ed., pp. 5–21). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  52. Gancel, F., & Novel, G. (1994). Exopolysaccharide production by Streptococcus salivarius ssp. thermophilu cultures. 1. Conditions of production. Journal of Dairy Science, 77(3), 685–688.CrossRefGoogle Scholar
  53. Guinee, T. P., Fenelon, M. A., Mulholland, E. O., O’Kennedy, B. T., O’Brien, N., & Reville, W. J. (1998). The influence of milk pasteurization temperature and pH at curd milling on the composition, texture and maturation of reduced fat cheddar cheese. International Journal of Dairy Technology, 51(1), 1–10.CrossRefGoogle Scholar
  54. Hahn, N. I. (1997). Replacing fat with food technology. Journal of the American Dietetic Association, 97(1), 15–16.CrossRefGoogle Scholar
  55. Hassan, A. N., Awad, S., & Mistry, V. V. (2007). Reduced fat process cheese made from young reduced fat cheddar cheese manufactured with exopolysaccharide-producing cultures. Journal of Dairy Science, 90(8), 3604–3612.PubMedCrossRefGoogle Scholar
  56. Heino, A., Uusi-Rauva, J., & Outinen, M. (2010). Pre-treatment methods of Edam cheese milk. Effect on cheese yield and quality. LWT - Food Science and Technology, 43(4), 640–646.CrossRefGoogle Scholar
  57. Henning, D. R., Baer, R. J., Hassan, A. N., & Dave, R. (2006). Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads. Journal of Dairy Science, 89(4), 1179–1188.CrossRefPubMedGoogle Scholar
  58. Hou, J., Hannon, J. A., McSweeney, P. L., Beresford, T. P., & Guinee, T. P. (2014). Effect of curd washing on cheese proteolysis, texture, volatile compounds, and sensory grading in full fat cheddar cheese. International Dairy Journal, 34(2), 190–198.CrossRefGoogle Scholar
  59. Huppertz, T., Düsterhöft, E.-M., & Engels, W. (2017). Pre-treatment of cheese-milk reference module in food science. London, UK: Elsevier.Google Scholar
  60. Ibáñez, R. A., Waldron, D. S., & McSweeney, P. L. (2016). Effect of pectin on the composition, microbiology, texture, and functionality of reduced-fat cheddar cheese. Dairy Science & Technology, 96(3), 297–316.CrossRefGoogle Scholar
  61. Iordache, M., & Jelen, P. (2003). High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innovative Food Science & Emerging Technologies, 4(4), 367–376.CrossRefGoogle Scholar
  62. Ismail, M., Ammar, E.-T., & El-Metwally, R. (2011). Improvement of low fat mozzarella cheese properties using denatured whey protein. International Journal of Dairy Technology, 64(2), 207–217.CrossRefGoogle Scholar
  63. Jana, A. H., & Upadhyay, K. G. (1992). Homogenization of milk for cheese making – A review. Australian Journal of Dairy Technology, 47(1), 72–79.Google Scholar
  64. Jimenez-Guzman, J., Flores-Najera, A., Cruz-Guerrero, A. E., & Garcia-Garibay, M. (2009). Use of an exopolysaccharide-producing strain of Streptococcus thermophilus in the manufacture of Mexican Panela cheese. LWT- Food Science and Technology, 42(9), 1508–1512.CrossRefGoogle Scholar
  65. Johnson, M. E. (2011). Cheese: Low-fat and reduced-fat cheese. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 833–842). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  66. Johnson, M. E. (2016). Cheese: Low-fat and reduced-fat cheese reference module in food science. London, UK: Elsevier.Google Scholar
  67. Johnson, M. E., & Chen, C. M. (1995). Technology of manufacturing reduced-fat cheddar cheese. Advances in Experimental Medicine and Biology, 367, 331–337.PubMedCrossRefGoogle Scholar
  68. Jooyandeh, H., Goudarzi, M., Rostamabadi, H., & Hojjati, M. (2017). Effect of Persian and almond gums as fat replacers on the physicochemical, rheological, and microstructural attributes of low-fat Iranian White cheese. Food Science & Nutrition, 5(3), 669–677.CrossRefGoogle Scholar
  69. Karaman, A. D., & Akalın, A. S. (2013). Improving quality characteristics of reduced and low fat Turkish white cheeses using homogenized cream. LWT - Food Science and Technology, 50(2), 503–510.CrossRefGoogle Scholar
  70. Karaman, A. D., Benli, M., & Akalin, A. S. (2012). Microstructure of industrially produced reduced and low fat Turkish white cheese as influenced by the homogenization of cream. Grasas y Aceites, 63(3), 267–273.CrossRefGoogle Scholar
  71. Katsiari, M. C., & Voutsinas, L. P. (1994). Manufacture of low-fat feta cheese. Food Chemistry, 49(1), 53–60.CrossRefGoogle Scholar
  72. Kavas, G., Oysun, G., Kinik, O., & Uysal, H. (2004). Effect of some fat replacers on chemical, physical and sensory attributes of low-fat white pickled cheese. Food Chemistry, 88(3), 381–388.CrossRefGoogle Scholar
  73. Kelly, A. L., Huppertz, T., & Sheehan, J. J. (2008). Pre-treatment of cheese milk: Principles and developments. Dairy Science and Technology, 88(4-5), 549–572.CrossRefGoogle Scholar
  74. Khanal, B. K. S., Bhandari, B., Prakash, S., & Bansal, N. (2017). Effect of sodium alginate addition on physical properties of rennet milk gels. Food Biophysics, 12(2), 141–150.CrossRefGoogle Scholar
  75. Khanal, B. K. S., Bhandari, B., Prakash, S., Liu, D., Zhou, P., & Bansal, N. (2018). Modifying textural and microstructural properties of low fat Cheddar cheese using sodium alginate. Food Hydrocolloids, 83, 97–108.CrossRefGoogle Scholar
  76. Khanal, B. K. S., Budiman, C., Hodson, M. P., Plan, M. R. R., Prakash, S., Bhandari, B., et al. (2019). Physico-chemical and biochemical properties of low fat cheddar cheese made from micron to nano sized milk fat emulsions. Journal of Food Engineering, 242, 94–105.CrossRefGoogle Scholar
  77. Khanal, B. K. S., Bhandari, B., Prakash, S., & Bansal, N. (2020). Simulated oral processing, in vitro digestibility and sensory perception of low fat Cheddar cheese containing sodium alginate. Journal of Food Engineering, 270, 109749.CrossRefGoogle Scholar
  78. Kheadr, E. E., Vachon, J. F., Paquin, P., & Fliss, I. (2002). Effect of dynamic high pressure on microbiological, rheological and microstructural quality of Cheddar cheese. International Dairy Journal, 12(5), 435–446.CrossRefGoogle Scholar
  79. Khosrowshahi, A., Madadlou, A., Ebrahim zadeh Mousavi, M., & Emam-Djomeh, Z. (2006). Monitoring the Chemical and textural changes during ripening of Iranian white cheese made with different concentrations of starter. Journal of Dairy Science, 89(9), 3318–3325.PubMedCrossRefGoogle Scholar
  80. Koca, N., & Metin, M. (2004). Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. International Dairy Journal, 14(4), 365–373.CrossRefGoogle Scholar
  81. Konuklar, G., Inglett, G. E., Carriere, C. J., & Felker, F. C. (2004). Use of a beta-glucan hydrocolloidal suspension in the manufacture of low-fat cheddar cheese: manufacture, composition, yield and microstructure. International Journal of Food Science and Technology, 39(1), 109–119.CrossRefGoogle Scholar
  82. Kosikowski, F. V., & Mistry, V. V. (1990). Microfiltration, ultrafiltration, and centrifugation separation and sterilization processes for improving milk and cheese quality. Journal of Dairy Science, 73(6), 1411–1419.CrossRefGoogle Scholar
  83. Kumar, R. (2012). An investigation into improvement of low fat cheddar cheese by the addition of hydrocolloids. (Masters Thesis), University of Minnesota, USA.Google Scholar
  84. Kumar, S. S., Balasubramanian, S., Biswas, A. K., Chatli, M. K., Devatkal, S. K., & Sahoo, J. (2011). Efficacy of soy protein isolate as a fat replacer on physico-chemical and sensory characteristics of low-fat paneer. Journal of Food Science and Technology, 48(4), 498–501.PubMedCrossRefGoogle Scholar
  85. Lashkari, H., Khosrowshahi Asl, A., Madadlou, A., & Alizadeh, M. (2014). Chemical composition and rheology of low-fat Iranian white cheese incorporated with guar gum and gum arabic as fat replacers. Journal of Food Science and Technology, 51(10), 2584–2591.PubMedCrossRefGoogle Scholar
  86. Lawrence, R. C., Creamer, L. K., & Gilles, J. (1987). Texture development during cheese ripening. Journal of Dairy Science, 70(8), 1748–1760.CrossRefGoogle Scholar
  87. Lelievre, J., Creamer, L. K., & Tate, K. L. (1990). Inhibition of calf vell and microbial rennet action by whey-protein concentrate. Milchwissenschaft-Milk Science International, 45(2), 71–75.Google Scholar
  88. Lemay, A., Paquin, P., & Lacroix, C. (1994). Influence of microfluidization of milk on Cheddar cheese composition, color, texture, and yield. Journal of Dairy Science, 77(10), 2870–2879.CrossRefGoogle Scholar
  89. Lo, C. G., & Bastian, E. D. (1998). Incorporation of native and denatured whey proteins into cheese curd for manufacture of reduced fat, havarti-type cheese. Journal of Dairy Science, 81(1), 16–24.CrossRefGoogle Scholar
  90. Lobato-Calleros, C., Lobato Calleros, C., Vernon Carter, E. J., Sanchez Garcia, J., & Garcia Galindo, H. S. (1999). Textural characteristics of cheese analogs incorporating fat replacers. Journal of Texture Studies, 30(5), 533–548.CrossRefGoogle Scholar
  91. Lobato-Calleros, C., Lobato-Calleros, C., Robles-Martinez, J. C., Caballero-Perez, J. F., & Vernon-Carter, E. J. (2000). Fat replacers in low-fat Mexican manchego cheese. Journal of Texture Studies, 32(1), 1–14.CrossRefGoogle Scholar
  92. Logan, A., Day, L., Pin, A., Auldist, M., Leis, A., Puvanenthiran, A., et al. (2014). Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food and Bioprocess Technology, 7(11), 3175–3185.CrossRefGoogle Scholar
  93. Logan, A., Leis, A., Day, L., Øiseth, S. K., Puvanenthiran, A., & Augustin, M. A. (2015). Rennet gelation properties of milk: Influence of natural variation in milk fat globule size and casein micelle size. International Dairy Journal, 46, 71–77.CrossRefGoogle Scholar
  94. Logan, A., Xu, M., Day, L., Singh, T., Moore, S. C., Mazzonetto, M., et al. (2017). Milk fat globule size affects cheddar cheese properties. International Dairy Journal, 70(Suppl C), 46–54.CrossRefGoogle Scholar
  95. Lucca, P. A., & Tepper, B. J. (1994). Fat replacers and the functionality of fat in foods. Trends in Food Science & Technology, 5(1), 12–19.CrossRefGoogle Scholar
  96. Lucey, J., Johnson, M., & Horne, D. (2003). Invited review: Perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science, 86(9), 2725–2743.CrossRefPubMedGoogle Scholar
  97. Lynch, K. M., Coffey, A., & Arendt, E. K. (2017). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International, 110, 52–61.PubMedCrossRefGoogle Scholar
  98. Lynch, K. M., McSweeney, P. L. H., Arendt, E. K., Uniacke-Lowe, T., Galle, S., & Coffey, A. (2014). Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. International Dairy Journal, 34(1), 125–134.CrossRefGoogle Scholar
  99. Madadlou, A., Mousavi, M. E., Khosrowshahiasl, A., Emam-Djome, Z., & Zargaran, M. (2007). Effect of cream homogenization on textural characteristics of low-fat Iranian white cheese. International Dairy Journal, 17(5), 547–554.CrossRefGoogle Scholar
  100. Marshall, V. M., & Tamime, A. Y. (1997). Starter cultures employed in the manufacture of biofermented milks. International Journal of Dairy Technology, 50(1), 35–41.CrossRefGoogle Scholar
  101. McCarthy, A. L., O’Connor, T. P., & O’Brien, N. M. (2014). Cheese in the context of diet and nutrition. In V. R. Preddy, R. R. Watson, & V. B. Patel (Eds.), Handbook of cheese in health: Production, nutrition and medical sciences (Vol. 1, pp. 15–26). Wageningen, Netherlands: Wageningen Academic Publishers.Google Scholar
  102. McCarthy, C. M., Wilkinson, M. G., & Guinee, T. P. (2017b). Effect of coagulant type and level on the properties of half-salt, half-fat Cheddar cheese made with or without adjunct starter: Improving texture and functionality. International Dairy Journal, 75(Suppl C), 30–40.CrossRefGoogle Scholar
  103. McCarthy, C. M., Wilkinson, M. G., & Guinee, T. P. (2017c). Effect of calcium reduction on the properties of half-fat Cheddar-style cheeses with full-salt or half-salt. International Dairy Journal, 73(Suppl C), 38–49.CrossRefGoogle Scholar
  104. McElhatton, A., & El Idrissi, M. M. (2016). Traditional polish curd cheeses. In Modernization of traditional food processes and products (pp. 4–12). Boston, MA: Springer.CrossRefGoogle Scholar
  105. McMahon, D. J., Alleyne, M. C., Fife, R. L., & Oberg, C. J. (1996). Use of fat replacers in low fat mozzarella cheese. Journal of Dairy Science, 79(11), 1911–1921.CrossRefGoogle Scholar
  106. McSweeney, P. L. H., Ottogalli, G., & Fox, P. F. (2017). Chapter 31. In Diversity and classification of cheese varieties: An overview cheese (4th ed., pp. 781–808). San Diego, CA: Academic Press.Google Scholar
  107. Merrill, R. K., Oberg, C. J., & McMahon, D. J. (1994). A method for manufacturing reduced fat mozzarella Cheese1. Journal of Dairy Science, 77(7), 1783–1789.CrossRefGoogle Scholar
  108. Metzger, L. E., & Mistry, V. V. (1995). A new approach using homogenization of cream in the manufacture of reduced fat cheddar cheese. 2. Microstructure, fat globule distribution, and free oil. Journal of Dairy Science, 78(9), 1883–1895.CrossRefGoogle Scholar
  109. Metzger, L. E., Barbano, D. M., Rudan, M. A., & Kindstedt, P. S. (2000). Effect of Milk Preacidification on low fat mozzarella cheese I. Composition and Yield. Journal of Dairy Science, 83(4), 648–658.PubMedCrossRefGoogle Scholar
  110. Michalski, M.-C., Camier, B., Briard, V., Leconte, N., Gassi, J.-Y., Goudédranche, H., et al. (2004). The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Le Lait, 84(4), 343–358.CrossRefGoogle Scholar
  111. Michalski, M.-C., Camier, B., Gassi, J.-Y., Briard-Bion, V., Leconte, N., Famelart, M.-H., et al. (2007). Functionality of smaller vs control native milk fat globules in Emmental cheeses manufactured with adapted technologies. Food Research International, 40(1), 191–202.CrossRefGoogle Scholar
  112. Michalski, M. C., Cariou, R., Michel, F., & Garnier, C. (2002). Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. Journal of Dairy Science, 85(10), 2451–2461.CrossRefPubMedGoogle Scholar
  113. Michalski, M.-C., Gassi, J.-Y., Famelart, M.-H., Leconte, N., Camier, B., Michel, F., et al. (2003). The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Le Lait, 83(2), 131–143.CrossRefGoogle Scholar
  114. Miočinović, J., Puđa, P., Radulović, Z., Pavlović, V., Miloradović, Z., Radovanović, M., et al. (2011). Development of low fat UF cheese technology. Mljekarstvo, 61(1), 33.Google Scholar
  115. Mirzaei, H., Pourjafar, H., & Homayouni, A. (2012). Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chemistry, 132(4), 1966–1970.CrossRefGoogle Scholar
  116. Mistry, V. V. (2001). Low fat cheese technology. International Dairy Journal, 11(4–7), 413–422.CrossRefGoogle Scholar
  117. Mistry, V. V., Metzger, L. E., & Maubois, J. L. (1996). Use of ultrafiltered sweet buttermilk in the manufacture of reduced fat cheddar cheese. Journal of Dairy Science, 79(7), 1137–1145.CrossRefGoogle Scholar
  118. Mistry, V. V., Mistry, V. V., & Maubois, J. L. (1993). Application of membrane separation technology to cheese production. In Cheese: Chemistry, physics and microbiology (pp. 261–267). London, UK: Elsevier Science & Technology Books.Google Scholar
  119. Mounsey, J. S., & O’Riordan, E. D. (2007). Modification of imitation cheese structure and rheology using pre-gelatinised starches. European Food Research and Technology, 226(5), 1039–1046.CrossRefGoogle Scholar
  120. Moynihan, A. C., Govindasamy-Lucey, S., Jaeggi, J. J., Johnson, M. E., Lucey, J. A., & McSweeney, P. L. (2014). Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim mozzarella cheese. Journal of Dairy Science, 97(1), 85–96.PubMedCrossRefGoogle Scholar
  121. Nauth, K. R., & Hayashi, D. K. (1995). Method for manufacture of low fat pasta filata cheese: United States Patent, 5431931.Google Scholar
  122. Neocleous, M., Barbano, D. M., & Rudan, M. A. (2002a). Impact of low concentration factor microfiltration on the composition and aging of cheddar cheese. Journal of Dairy Science, 85(10), 2425–2437.PubMedCrossRefGoogle Scholar
  123. Neocleous, M., Barbano, D. M., & Rudan, M. A. (2002b). Impact of low concentration factor microfiltration on milk component recovery and cheddar cheese yield. Journal of Dairy Science, 85(10), 2415–2424.PubMedCrossRefGoogle Scholar
  124. Nepomuceno, R. S. A. C., Costa Junior, L. C. G., & Costa, R. G. B. (2016). Exopolysaccharide-producing culture in the manufacture of Prato cheese. LWT - Food Science and Technology, 72, 383–389.CrossRefGoogle Scholar
  125. O’Connor, T. P., & O’Brien, N. M. (2011). Butter and other milk fat products: Fat replacers. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 528–532). San Diego, CA: Academic Press.CrossRefGoogle Scholar
  126. O’Mahony, J. A., Auty, M. A., & McSweeney, P. L. (2005). The manufacture of miniature cheddar-type cheeses from milks with different fat globule size distributions. Journal of Dairy Research, 72(3), 338–348.CrossRefPubMedGoogle Scholar
  127. Ohren, J. A., & Tuckey, S. (1969). Relation of flavor development in cheddar cheese to chemical changes in the fat of the cheese. Journal of Dairy Science, 52(5), 598–607.CrossRefGoogle Scholar
  128. Oliveira, N. M., Dourado, F. Q., Peres, A. M., Silva, M. V., Maia, J. M., & Teixeira, J. A. (2010). Effect of guar gum on the physicochemical, thermal, rheological and textural properties of green edam cheese. Food and Bioprocess Technology, 4(8), 1414–1421.CrossRefGoogle Scholar
  129. Oluk, A. C., Guven, M., & Hayaloglu, A. A. (2014). Proteolysis texture and microstructure of low-fat Tulum cheese affected by exopolysaccharide-producing cultures during ripening. International Journal of Food Science and Technology, 49(2), 435–443.CrossRefGoogle Scholar
  130. Perry, D. B., McMahon, D. J., & Oberg, C. J. (1997). Effect of exopolysaccharide-producing cultures on moisture retention in low fat mozzarella cheese. Journal of Dairy Science, 80(5), 799–805.CrossRefGoogle Scholar
  131. Petersen, B. L., Dave, R. I., McMahon, D. J., Oberg, C. J., & Broadbent, J. R. (2000). Influence of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus on mozzarella cheese and cheese whey. Journal of Dairy Science, 83(9), 1952–1956.PubMedCrossRefGoogle Scholar
  132. Plug, H., & Haring, P. (1993). The role of ingredient-flavour interactions in the development of fat-free foods. Trends in Food Science & Technology, 4(5), 150–152.CrossRefGoogle Scholar
  133. Poduval, V. S., & Mistry, V. V. (1999). Manufacture of reduced fat mozzarella cheese using Ultrafiltered sweet buttermilk and homogenized cream. Journal of Dairy Science, 82(1), 1–9.CrossRefGoogle Scholar
  134. Position of the American Dietetic Association: Fat Replacers. (2005). Journal of the American Dietetic Association, 105(2), 266–275.CrossRefGoogle Scholar
  135. Rahimi, J., Khosrowshahi, A., Madadlou, A., & Aziznia, S. (2007). Texture of low-fat Iranian White cheese as influenced by gum tragacanth as a fat replacer. Journal of Dairy Science, 90(9), 4058–4070.PubMedCrossRefGoogle Scholar
  136. Reedy, J. (2016). How the US low-fat diet recommendations of 1977 contributed to the declining health of Americans. (Honors Scholar Thesis), University of Connecticut, Storrs, CT.Google Scholar
  137. Rodriguez, J. (1998). Recent advances in the development of low-fat cheeses. Trends in Food Science & Technology, 9(6), 249–254.CrossRefGoogle Scholar
  138. Rodriguez, J., Requena, T., Fontecha, J., Goudedranche, H., & Juarez, M. (1999). Effect of different membrane separation technologies (ultrafiltration and microfiltration) on the texture and microstructure of semihard low-fat cheeses. Journal of Agriculture and Food Chemistry, 47(2), 558–565.CrossRefGoogle Scholar
  139. Rogers, N. R., Drake, M. A., Daubert, C. R., McMahon, D. J., Bletsch, T. K., & Foegeding, E. A. (2009). The effect of aging on low-fat, reduced-fat, and full-fat cheddar cheese texture. Journal of Dairy Science, 92(10), 4756–4772.PubMedCrossRefGoogle Scholar
  140. Romeih, E. A., Michaelidou, A., Biliaderis, C. G., & Zerfiridis, G. K. (2002). Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: Chemical, physical and sensory attributes. International Dairy Journal, 12(6), 525–540.CrossRefGoogle Scholar
  141. Rowney, M. K., Hickey, M. W., Roupas, P., & Everett, D. W. (2003). The effect of homogenization and milk fat fractions on the functionality of mozzarella cheese. Journal of Dairy Science, 86(3), 712–718.CrossRefPubMedGoogle Scholar
  142. Rudan, M. A., Barbano, D. M., Guo, M. R., & Kindstedt, P. S. (1998). Effect of the modification of fat particle size by homogenization on composition, proteolysis, functionality, and appearance of reduced fat mozzarella cheese. Journal of Dairy Science, 81(8), 2065–2076.CrossRefGoogle Scholar
  143. Rudan, M. A., Barbano, D. M., & Kindstedt, P. S. (1998). Effect of fat replacer (Salatrim®) on chemical composition, proteolysis, functionality, appearance, and yield of reduced fat mozzarella cheese. Journal of Dairy Science, 81(8), 2077–2088.CrossRefGoogle Scholar
  144. Ryhänen, E.-L., Pihlanto-Leppälä, A., & Pahkala, E. (2001). A new type of ripened, low-fat cheese with bioactive properties. International Dairy Journal, 11(4–7), 441–447.CrossRefGoogle Scholar
  145. Rynne, N. M., Beresford, T. P., Kelly, A. L., & Guinee, T. P. (2004). Effect of milk pasteurization temperature and in situ whey protein denaturation on the composition, texture and heat-induced functionality of half-fat Cheddar cheese. International Dairy Journal, 14(11), 989–1001.CrossRefGoogle Scholar
  146. Saboya, L. V., & Maubois, J.-L. (2000). Current developments of microfiltration technology, in the dairy industry. Le Lait, 80(6), 541–553.CrossRefGoogle Scholar
  147. Sahan, N., Yasar, K., Hayaloglu, A. A., Karaca, O. B., & Kaya, A. (2008). Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese. Journal of Dairy Research, 75(01), 1–7.PubMedCrossRefGoogle Scholar
  148. Salvatore, E., Pirisi, A., & Corredig, M. (2011). Gelation properties of casein micelles during combined renneting and bacterial fermentation: Effect of concentration by ultrafiltration. International Dairy Journal, 21(11), 848–856.CrossRefGoogle Scholar
  149. Sanli, T., Gursel, A., Sanli, E., Acar, E., & Benli, M. (2013). The effect of using an exopolysaccharide-producing culture on the physicochemical properties of low-fat and reduced-fat Kasar cheeses. International Journal of Dairy Technology, 66(4), 535–542.Google Scholar
  150. Schenkel, P., Samudrala, R., & Hinrichs, J. (2013). The effect of adding whey protein particles as inert filler on thermophysical properties of fat-reduced semihard cheese type Gouda. International Journal of Dairy Technology, 66(2), 220–230.CrossRefGoogle Scholar
  151. Scott, R., Robinson, R. K., & Wilbey, R. A. (1998). Introduction to cheese making. In R. Scott (Ed.), Cheesemaking practice (2nd ed., pp. 37–43). Gaithersburg, MD: Aspen Publication.CrossRefGoogle Scholar
  152. Setser, C. S., & Racette, W. L. (1992). Macromolecule replacers in food products. Critical Reviews in Food Science and Nutrition, 32(3), 275–297.PubMedCrossRefGoogle Scholar
  153. Shamil, S., Wyeth, L. J., & Kilcast, D. (1991). Flavour release and perception in reduced-fat foods. Food Quality and Preference, 3(1), 51–60.CrossRefGoogle Scholar
  154. Sipahioglu, O., Alvarez, V., & Solano-Lopez, C. (1999). Structure, physico-chemical and sensory properties of feta cheese made with tapioca starch and lecithin as fat mimetics. International Dairy Journal, 9(11), 783–789.CrossRefGoogle Scholar
  155. Skeie, S., Alseth, G. M., Østlie, H., Abrahamsen, R. K., Johansen, A. G., & Øyaas, J. (2013). Improvement of the quality of low-fat cheese using a two-step strategy. International Dairy Journal, 33(2), 153–162.CrossRefGoogle Scholar
  156. Soltani, M., Boran, O. S., & Hayaloglu, A. A. (2016). Effect of various blends of camel chymosin and microbial rennet (Rhizomucor miehei) on microstructure and rheological properties of Iranian UF White cheese. LWT - Food Science and Technology, 68(Supplement C), 724–728.CrossRefGoogle Scholar
  157. Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., & Gras, S. L. (2015a). Effect of calcium chloride addition and draining pH on the microstructure and texture of full fat cheddar cheese during ripening. Food Chemistry, 181, 111–118.PubMedCrossRefGoogle Scholar
  158. Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., & Gras, S. L. (2015b). Effect of rennet on the composition, proteolysis and microstructure of reduced-fat cheddar cheese during ripening. Dairy Science & Technology, 95(5), 665–686.CrossRefGoogle Scholar
  159. Stankey, J. A., Lu, Y. J., Abdalla, A., Govindasamy-Lucey, S., Jaeggi, J. J., Mikkelsen, B. O., et al. (2017). Low-fat Cheddar cheese made using microparticulated whey proteins: Effect on yield and cheese quality. International Journal of Dairy Technology, 70(4), 481–491.CrossRefGoogle Scholar
  160. St-gelais, D., Piette, M., & Belanger, G. (1995). Production of cheddar cheese using milk enriched with microfluidized milk retentate - A preliminary study. Milchwissenschaft-Milk Science International, 50(11), 614–619.Google Scholar
  161. St-Gelais, D., Roy, D., & Audet, P. (1998). Manufacture and composition of low fat cheddar cheese from milk enriched with different protein concentrate powders. Food Research International, 31(2), 137–145.CrossRefGoogle Scholar
  162. St-Gelais, D., Passey, C. A., Haché, S., & Roy, P. (1997). Production of low-fat Cheddar cheese from low and high mineral retentate powders and different fractions of milkfat globules. International Dairy Journal, 7(11), 733–741.CrossRefGoogle Scholar
  163. Tang, W., Dong, M., Wang, W., Han, S., Rui, X., Chen, X., et al. (2017). Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydrate Polymers, 173, 654–664.PubMedCrossRefGoogle Scholar
  164. Thomann, S., Schenkel, P., & Hinrichs, J. (2008). The impact of homogenization and microfiltration on rennet-induced gel formation. Journal of Texture Studies, 39(4), 326–344.CrossRefGoogle Scholar
  165. Totosaus, A., & Guemes-Vera, N. (2008). Effect of κ- and λ-Carrageenans as fat-replacers in low-fat oaxaca cheese. International Journal of Food Properties, 11(3), 656–668.CrossRefGoogle Scholar
  166. Tunick, M. H., Mackey, K. L., Shieh, J. J., Smith, P. W., Cooke, P., & Malin, E. L. (1993). Rheology and microstructure of low-fat mozzarella cheese. International Dairy Journal, 3(7), 649–662.CrossRefGoogle Scholar
  167. Tunick, M. H., Van Hekken, D. L., Cooke, P. H., Smith, P. W., & Malin, E. L. (2000). Effect of high pressure microfluidization on microstructure of mozzarella cheese. LWT - Food Science and Technology, 33(8), 538–544.CrossRefGoogle Scholar
  168. USDA. (2016). New Dietary guidelies to encourage healthy eating patterns to prevent chronic diseases. Washington, DC: HHS Press.Google Scholar
  169. Van Hekken, D. L., Tunick, M. H., Malin, E. L., & Holsinger, V. H. (2007). Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk. LWT - Food Science and Technology, 40(1), 89–98.CrossRefGoogle Scholar
  170. Vélez, M. A., Hynes, E. R., Meinardi, C. A., Wolf, V. I., & Perotti, M. C. (2017). Cheese milk low homogenization enhanced early lipolysis and volatiles compounds production in hard cooked cheeses. Food Research International, 96, 215–225.PubMedCrossRefGoogle Scholar
  171. Volikakis, P., Biliaderis, C. G., Vamvakas, C., & Zerfiridis, G. K. (2004). Effects of a commercial oat-β-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Research International, 37(1), 83–94.CrossRefGoogle Scholar
  172. Waungana, A., Singh, H., & Bennett, R. J. (1998). Rennet coagulation properties of skim milk concentrated by ultrafiltration: effects of heat treatment and pH adjustment. Food Research International, 31(9), 645–651.CrossRefGoogle Scholar
  173. WHO. (2015). Healthy diet. Fact sheet No. 394. Retrieved from
  174. Ye, A., Hewitt, S., & Taylor, S. (2009). Characteristics of rennet–casein-based model processed cheese containing maize starch: Rheological properties, meltabilities and microstructures. Food Hydrocolloids, 23(4), 1220–1227.CrossRefGoogle Scholar
  175. Zafar, S. B., Siddiqui, N. N., Shahid, F., Qader, S. A. U., & Aman, A. (2017). Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. Journal, Genetic Engineering & Biotechnology, 16(1), 17–22.CrossRefGoogle Scholar
  176. Zahra, S., Mohammad, H., Sahel, S., & Mohammad Ali, S. (2013). The influence of malt extraction adding to UF fresh low fat cheese on its textural properties. International Journal of Science and Engineering, 6(1), 52–55.Google Scholar
  177. Zalazar, C. A., Zalazar, C. S., Bernal, S., Bertola, N., Bevilacqua, A., & Zaritzky, N. (2002). Effect of moisture level and fat replacer on physicochemical, rheological and sensory properties of low fat soft cheeses. International Dairy Journal, 12(1), 45–50.CrossRefGoogle Scholar
  178. Zamora, A., Ferragut, V., Jaramillo, P. D., Guamis, B., & Trujillo, A. J. (2007). Effects of ultra-high pressure homogenization on the cheese-making properties of milk. Journal of Dairy Science, 90(1), 13–23.PubMedCrossRefGoogle Scholar
  179. Zisu, B. (2005). Impact of pre-acidification, fat replacers and exopolysaccharide producing starter cultures on functionality of low fat mozzarella cheese. (PhD Thesis), Victoria University, Werribee Campus, VIC, Australia.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Agriculture and Food Sciences, The University of QueenslandSt LuciaAustralia

Personalised recommendations