Skip to main content

Dairy Fat Replacement in Low-Fat Cheese (LFC): A Review of Successful Technological Interventions

  • Chapter
  • First Online:
Book cover Dairy Fat Products and Functionality

Abstract

Worldwide dietary guidelines recommended that not more than 30% of the total daily energy intake should be derived from the dietary fat. Obesity, along with heart diseases such as hypertension and high blood pressure, are often attributed to the consumption of fat rich foods. Cheese prepared from whole milk is high in fat content and a rich source of dietary fat (Drake et al, 1999). Hence, demand for low fat cheese (LFC) has increased globally due to generalized conciousness about consumer health issues. Manufacturing low fat cheese with characteristics similar to that of full fat cheese (i.e. flavour and texture) has been a topic of interest in the cheese industries for many years. Role of fat in cheese is vital as it acts as a filler in the protein network of the cheese besides imparting creaminess, mouth fell and lubricity to the product. Hence, hard, rubbery, off flavoured and poor coloured cheese is produced due to removal of the fat. Several technologies have been proposed to manufacture LFC that has characteristics comparable to those of the full fat cheese. This book chapter reviews several different technological approaches and fat replacers used in producing LFC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal, S., Powers, J., Swanson, B., Chen, S., & Clark, S. (2008). Influence of salt-to-moisture ratio on starter culture and calcium lactate crystal formation. Journal of Dairy Science, 91(8), 2967–2980.

    Article  CAS  PubMed  Google Scholar 

  • Akkerman, M., Kristensen, L. S., Jespersen, L., Ryssel, M. B., Mackie, A., Larsen, N. N., et al. (2017). Interaction between sodium chloride and texture in semi-hard Danish cheese as affected by brining time, dl-starter culture, chymosin type and cheese ripening. International Dairy Journal, 70(Suppl C), 34–45.

    Article  CAS  Google Scholar 

  • Akoh, C. C. (1994). Carbohydrate polyesters as fat substitutes (Vol. 62). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Amelia, I., Drake, M., Nelson, B., & Barbano, D. M. (2013). A new method for the production of low-fat Cheddar cheese. Journal of Dairy Science, 96(8), 4870–4884.

    Article  CAS  PubMed  Google Scholar 

  • Amornkul, Y., & Henning, D. R. (2007). Utilization of microfiltration or lactoperoxidase system or both for manufacture of cheddar cheese from raw milk. Journal of Dairy Science, 90(11), 4988–5000.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, D. L., Mistry, V. V., Brandsma, R. L., & Baldwin, K. A. (1993). Reduced fat cheddar cheese from condensed milk. 1. Manufacture, composition, and ripening. Journal of Dairy Science, 76(10), 2832–2844.

    Article  CAS  Google Scholar 

  • Ardisson-Korat, A. V., & Rizvi, S. S. H. (2004). Vatless manufacturing of low-moisture part-skim mozzarella cheese from highly concentrated skim milk microfiltration retentates. Journal of Dairy Science, 87(11), 3601–3613.

    Article  CAS  PubMed  Google Scholar 

  • Ardö, Y., Mansson, H. L., Hedenberg, A., & Larsson, P. O. (1989). Studies of peptidolysis during early maturation and its influence on low-fat cheese quality. Milchwissenschaft-Milk Science International, 44(8), 485–495.

    Google Scholar 

  • Artz, W. E., Lai, L. L., & Hansen, S. L. (2007). Chapter 11 - The chemistry and nutrition of nonnutritive fats A2. In M. D. Erickson (Ed.), Deep frying (2nd ed., pp. 229–249). Urbana, IL: AOCS Press.

    Chapter  Google Scholar 

  • Awad, S., Hassan, A. N., & Halaweish, F. (2005). Application of exopolysaccharide-producing cultures in reduced-fat cheddar cheese: Composition and proteolysis. Journal of Dairy Science, 88(12), 4195–4203.

    Article  CAS  PubMed  Google Scholar 

  • Ayyash, M., Abu-Jdayil, B., Hamed, F., & Shaker, R. (2018). Rheological, textural, microstructural and sensory impact of exopolysaccharide-producing Lactobacillus plantarum isolated from camel milk on low-fat akawi cheese. LWT - Food Science and Technology, 87(Suppl C), 423–431.

    Article  CAS  Google Scholar 

  • Banks, J. M. (2004). The technology of low-fat cheese manufacture. International Journal of Dairy Technology, 57(4), 199–207.

    Article  Google Scholar 

  • Banks, J. M., Brechany, E. Y., & Christie, W. W. (1989). The production of low fat cheddar type cheese. International Journal of Dairy Technology, 42(1), 6–9.

    Article  Google Scholar 

  • Banks, J. M., Roa, I., & Muir, D. D. (1998). Manipulation of the texture of low-fat chedder using a plant protease extracted from cynara cardunculus. Australian Journal of Dairy Technology, 53(2), 105.

    Google Scholar 

  • Benech, R. O., Kheadr, E. E., Lacroix, C., & Fliss, I. (2003). Impact of Nisin producing culture and liposome-encapsulated Nisin on ripening of Lactobacillus added-Cheddar cheese. Journal of Dairy Science, 86(6), 1895–1909.

    Article  CAS  PubMed  Google Scholar 

  • Boivin-Piché, J., Vuillemard, J.-C., & St-Gelais, D. (2016). Technical note: Vitamin D-fortified cheddar type cheese produced from concentrated milk. Journal of Dairy Science, 99(6), 4140–4145.

    Article  PubMed  CAS  Google Scholar 

  • Børsting, M. W., Qvist, K. B., Rasmussen, M., Vindeløv, J., Vogensen, F. K., & Ardö, Y. (2012). Impact of selected coagulants and starters on primary proteolysis and amino acid release related to bitterness and structure of reduced-fat cheddar cheese. Dairy Science & Technology, 92(5), 593–612.

    Article  CAS  Google Scholar 

  • Brandsma, R. L., Mistry, V. V., Anderson, D. L., & Baldwin, K. A. (1994). Reduced fat cheddar cheese from condensed milk. 3. Accelerated ripening. Journal of Dairy Science, 77(4), 897–906.

    Article  CAS  Google Scholar 

  • Broadbent, J. R., Brighton, C., McMahon, D. J., Farkye, N. Y., Johnson, M. E., & Steele, J. L. (2013). Microbiology of cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter. Journal of Dairy Science, 96(7), 4212–4222.

    Article  CAS  PubMed  Google Scholar 

  • Bryant, A., Ustunol, Z., & Steffe, J. (1995). Texture of cheddar cheese as influenced by fat reduction. Journal of Food Science, 60(6), 1216–1219.

    Article  CAS  Google Scholar 

  • Caron, A., St-Gelais, D., & Pouliot, Y. (1997). Coagulation of milk enriched with ultrafiltered or diafiltered microfiltered milk retentate powders. International Dairy Journal, 7(6-7), 445–451.

    Article  CAS  Google Scholar 

  • CDR. (2014). College of agriculture and life sciences, University of Wisconsin-Madison.

    Google Scholar 

  • Cerning, J. (1995). Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Le Lait, 75(4-5), 463–472.

    Article  CAS  Google Scholar 

  • Chatli, M. K., Gandhi, N., & Singh, P. (2017). Efficacy of sodium alginate as fat replacer on the processing and storage quality of buffalo mozzarella cheese. Nutrition & Food Science, 47, 3.

    Article  Google Scholar 

  • Chavan, R. S., Khedkar, C. D., & Bhatt, S. (2016). Fat replacer. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of food and health (pp. 589–595). Oxford: Academic Press.

    Chapter  Google Scholar 

  • Chevanan, N., Muthukumarappan, K., Upreti, P., & Metzger, L. (2006). Effect of calcium and phosphorus, residual lactose and salt to moisture ratio on textural properties of cheddar cheese during ripening. Journal of Texture Studies, 37(6), 711–730.

    Article  Google Scholar 

  • CODEX. (2013). General standard for cheese. Retrieved from http://www.google.com.au/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCUQFjAB&url=http%3A%2F%2Fwww.codexalimentarius.org%2Finput%2Fdownload%2Fstandards%2F186%2FCXS_263e.pdf&ei=YYKLVIXzPIqk8QXP7oLYCQ&usg=AFQjCNH3B5pBiab-pEBV1UdI9c9fnllYJw&bvm=bv.81828268

  • Costa, N. E., Hannon, J. A., Guinee, T. P., Auty, M. A., McSweeney, P. L., & Beresford, T. P. (2010). Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat cheddar cheese. Journal of Dairy Science, 93(8), 3469–3486.

    Article  CAS  PubMed  Google Scholar 

  • Dabour, N., Kheadr, E. E., Fliss, I., & LaPointe, G. (2005). Impact of ropy and capsular exopolysaccharide-producing strains of Lactococcus lactis subsp. cremoris on reduced-fat cheddar cheese production and whey composition. International Dairy Journal, 15(5), 459–471.

    Article  CAS  Google Scholar 

  • Dalby, A. (2009). Cheese a global history. London, UK: Reaktion Books.

    Google Scholar 

  • De Vuyst, L., & Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews, 23(2), 153–177.

    Article  PubMed  Google Scholar 

  • De Vuyst, L., Zamfir, M., Mozzi, F., Adriany, T., Marshall, V., Degeest, B., et al. (2003). Exopolysaccharide-producing Streptococcus thermophilus strains as functional starter cultures in the production of fermented milks. International Dairy Journal, 13(8), 707–717.

    Article  CAS  Google Scholar 

  • Deegan, K. C., Heikintalo, N., Ritvanen, T., Putkonen, T., Rekonen, J., McSweeney, P. L. H., et al. (2013). Effects of low-pressure homogenisation on the sensory and chemical properties of Emmental cheese. Innovative Food Science & Emerging Technologies, 19, 104–114.

    Article  CAS  Google Scholar 

  • Deegan, K. C., Holopainen, U., McSweeney, P. L. H., Alatossava, T., & Tuorila, H. (2014). Characterisation of the sensory properties and market positioning of novel reduced-fat cheese. Innovative Food Science & Emerging Technologies, 21, 169–178.

    Article  Google Scholar 

  • Di Cagno, R., De Pasquale, I., De Angelis, M., Buchin, S., Rizzello, C. G., & Gobbetti, M. (2014). Use of microparticulated whey protein concentrate, exopolysaccharide-producing Streptococcus thermophilus, and adjunct cultures for making low-fat Italian Caciotta-type cheese. Journal of Dairy Science, 97(1), 72–84.

    Article  PubMed  CAS  Google Scholar 

  • Diamantino, V. R., Beraldo, F. A., Sunakozawa, T. N., & Penna, A. L. B. (2014). Effect of octenyl succinylated waxy starch as a fat mimetic on texture, microstructure and physicochemical properties of Minas fresh cheese. LWT - Food Science and Technology, 56(2), 356–362.

    Article  CAS  Google Scholar 

  • Dissanayake, M., Kelly, A. L., & Vasiljevic, T. (2010). Gelling properties of microparticulated whey proteins. Journal of Agricultural and Food Chemistry, 58(11), 6825–6832.

    Article  CAS  PubMed  Google Scholar 

  • Drake, M. A., Boylston, T. D., & Swanson, B. G. (1996). Fat mimetics in low-fat cheddar cheese. Journal of Food Science, 61(6), 1267–1270.

    Article  CAS  Google Scholar 

  • Drake, M. A., Drake, M. A., Truong, V. D., & Daubert, C. R. (1999). Rheological and sensory properties of reduced-fat processed cheeses containing lecithin. Journal of Food Science, 64(4), 744–747.

    Article  CAS  Google Scholar 

  • Drake, M. A., Herfett, W., Boylston, T. D., & Swanson, B. G. (1995). Sensory evaluation of reduced fat cheeses. Journal of Food Science, 60(5), 898–901.

    Article  CAS  Google Scholar 

  • Drake, M. A., Miracle, R. E., & McMahon, D. J. (2010). Impact of fat reduction on flavor and flavor chemistry of Cheddar cheeses. Journal of Dairy Science, 93(11), 5069–5081.

    Article  CAS  PubMed  Google Scholar 

  • Duguid, J. P., & Duguid, J. P. (1951). The demonstration of bacterial capsules and slime. Journal of Pathology and Bacteriology, 63(4), 673–685.

    Article  CAS  PubMed  Google Scholar 

  • El-Gawad, A., Ahmed, N. S., El-Abd, M., & El-Rafee, S. A. (2012). Effect of homogenization on the properties and microstructure of Mozzarella cheese from buffalo milk. Acta scientiarum polonorum. Technologia Alimentaria, 11(2), 121–135.

    Google Scholar 

  • El-Gawad, M. A. A., & Ahmed, N. S. (2011). Cheese yield as affected by some parameters review. Acta Scientiarum Polonorum. Technologia Alimentaria, 10(2), 131–153.

    Google Scholar 

  • Emmons, D. B., Emmons, D. B., Kalab, M., Larmond, E., & Lowrie, R. J. (1980). Milk gel structure. X. Texture and Microstructure in Cheddar cheese made from whole milk and from homogenized low-fat milk. Journal of Texture Studies, 11(1), 15–34.

    Article  Google Scholar 

  • Farkye, N. Y., & Guinee, T. P. (2017). Chapter 28 - Low-fat and low-sodium cheeses cheese (4th ed.pp. 699–714). San Diego, CA: Academic Press.

    Google Scholar 

  • FDA. (2017). Code of federal regulations, chapter 21.

    Google Scholar 

  • Felfoul, I., Bornaz, S., Baccouche, A., Sahli, A., & Attia, H. (2015). Low-fat Gouda cheese made from bovine milk-olive oil emulsion: Physicochemical and sensory attributes. Journal of Food Science and Technology, 52(10), 6749–6755. https://doi.org/10.1007/s13197-015-1736-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenelon, M., & Guinee, T. (1997). The compositional, textural and maturation characteristics of reduced-fat cheddar made from milk containing added dairy-Lo. Milchwissenschaft, 52(7), 385–389.

    CAS  Google Scholar 

  • Fenelon, M. A., Ryan, M. P., Rea, M. C., Guinee, T. P., Ross, R. P., Hill, C., et al. (1999). Elevated temperature ripening of reduced fat cheddar made with or without lacticin 3147-producing starter culture. Journal of Dairy Science, 82(1), 10–22.

    Article  CAS  Google Scholar 

  • Fox, P. F. (2011). Cheese: overview. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 533–543). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Fox, P. F., & McSweeney, P. L. H. (2017). Chapter 1 - Cheese: An overview. In P. L. H. McSweeney, P. F. Fox, P. D. Cotter, & D. W. Everett (Eds.), Cheese (4th ed., pp. 5–21). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Gancel, F., & Novel, G. (1994). Exopolysaccharide production by Streptococcus salivarius ssp. thermophilu cultures. 1. Conditions of production. Journal of Dairy Science, 77(3), 685–688.

    Article  CAS  Google Scholar 

  • Guinee, T. P., Fenelon, M. A., Mulholland, E. O., O’Kennedy, B. T., O’Brien, N., & Reville, W. J. (1998). The influence of milk pasteurization temperature and pH at curd milling on the composition, texture and maturation of reduced fat cheddar cheese. International Journal of Dairy Technology, 51(1), 1–10.

    Article  Google Scholar 

  • Hahn, N. I. (1997). Replacing fat with food technology. Journal of the American Dietetic Association, 97(1), 15–16.

    Article  Google Scholar 

  • Hassan, A. N., Awad, S., & Mistry, V. V. (2007). Reduced fat process cheese made from young reduced fat cheddar cheese manufactured with exopolysaccharide-producing cultures. Journal of Dairy Science, 90(8), 3604–3612.

    Article  CAS  PubMed  Google Scholar 

  • Heino, A., Uusi-Rauva, J., & Outinen, M. (2010). Pre-treatment methods of Edam cheese milk. Effect on cheese yield and quality. LWT - Food Science and Technology, 43(4), 640–646.

    Article  CAS  Google Scholar 

  • Henning, D. R., Baer, R. J., Hassan, A. N., & Dave, R. (2006). Major advances in concentrated and dry milk products, cheese, and milk fat-based spreads. Journal of Dairy Science, 89(4), 1179–1188.

    Article  CAS  PubMed  Google Scholar 

  • Hou, J., Hannon, J. A., McSweeney, P. L., Beresford, T. P., & Guinee, T. P. (2014). Effect of curd washing on cheese proteolysis, texture, volatile compounds, and sensory grading in full fat cheddar cheese. International Dairy Journal, 34(2), 190–198.

    Article  CAS  Google Scholar 

  • Huppertz, T., Düsterhöft, E.-M., & Engels, W. (2017). Pre-treatment of cheese-milk reference module in food science. London, UK: Elsevier.

    Google Scholar 

  • Ibáñez, R. A., Waldron, D. S., & McSweeney, P. L. (2016). Effect of pectin on the composition, microbiology, texture, and functionality of reduced-fat cheddar cheese. Dairy Science & Technology, 96(3), 297–316.

    Article  CAS  Google Scholar 

  • Iordache, M., & Jelen, P. (2003). High pressure microfluidization treatment of heat denatured whey proteins for improved functionality. Innovative Food Science & Emerging Technologies, 4(4), 367–376.

    Article  CAS  Google Scholar 

  • Ismail, M., Ammar, E.-T., & El-Metwally, R. (2011). Improvement of low fat mozzarella cheese properties using denatured whey protein. International Journal of Dairy Technology, 64(2), 207–217.

    Article  CAS  Google Scholar 

  • Jana, A. H., & Upadhyay, K. G. (1992). Homogenization of milk for cheese making – A review. Australian Journal of Dairy Technology, 47(1), 72–79.

    Google Scholar 

  • Jimenez-Guzman, J., Flores-Najera, A., Cruz-Guerrero, A. E., & Garcia-Garibay, M. (2009). Use of an exopolysaccharide-producing strain of Streptococcus thermophilus in the manufacture of Mexican Panela cheese. LWT- Food Science and Technology, 42(9), 1508–1512.

    Article  CAS  Google Scholar 

  • Johnson, M. E. (2011). Cheese: Low-fat and reduced-fat cheese. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 833–842). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Johnson, M. E. (2016). Cheese: Low-fat and reduced-fat cheese reference module in food science. London, UK: Elsevier.

    Google Scholar 

  • Johnson, M. E., & Chen, C. M. (1995). Technology of manufacturing reduced-fat cheddar cheese. Advances in Experimental Medicine and Biology, 367, 331–337.

    Article  CAS  PubMed  Google Scholar 

  • Jooyandeh, H., Goudarzi, M., Rostamabadi, H., & Hojjati, M. (2017). Effect of Persian and almond gums as fat replacers on the physicochemical, rheological, and microstructural attributes of low-fat Iranian White cheese. Food Science & Nutrition, 5(3), 669–677.

    Article  CAS  Google Scholar 

  • Karaman, A. D., & Akalın, A. S. (2013). Improving quality characteristics of reduced and low fat Turkish white cheeses using homogenized cream. LWT - Food Science and Technology, 50(2), 503–510.

    Article  CAS  Google Scholar 

  • Karaman, A. D., Benli, M., & Akalin, A. S. (2012). Microstructure of industrially produced reduced and low fat Turkish white cheese as influenced by the homogenization of cream. Grasas y Aceites, 63(3), 267–273.

    Article  CAS  Google Scholar 

  • Katsiari, M. C., & Voutsinas, L. P. (1994). Manufacture of low-fat feta cheese. Food Chemistry, 49(1), 53–60.

    Article  CAS  Google Scholar 

  • Kavas, G., Oysun, G., Kinik, O., & Uysal, H. (2004). Effect of some fat replacers on chemical, physical and sensory attributes of low-fat white pickled cheese. Food Chemistry, 88(3), 381–388.

    Article  CAS  Google Scholar 

  • Kelly, A. L., Huppertz, T., & Sheehan, J. J. (2008). Pre-treatment of cheese milk: Principles and developments. Dairy Science and Technology, 88(4-5), 549–572.

    Article  CAS  Google Scholar 

  • Khanal, B. K. S., Bhandari, B., Prakash, S., & Bansal, N. (2017). Effect of sodium alginate addition on physical properties of rennet milk gels. Food Biophysics, 12(2), 141–150.

    Article  Google Scholar 

  • Khanal, B. K. S., Bhandari, B., Prakash, S., Liu, D., Zhou, P., & Bansal, N. (2018). Modifying textural and microstructural properties of low fat Cheddar cheese using sodium alginate. Food Hydrocolloids, 83, 97–108.

    Article  CAS  Google Scholar 

  • Khanal, B. K. S., Budiman, C., Hodson, M. P., Plan, M. R. R., Prakash, S., Bhandari, B., et al. (2019). Physico-chemical and biochemical properties of low fat cheddar cheese made from micron to nano sized milk fat emulsions. Journal of Food Engineering, 242, 94–105.

    Article  CAS  Google Scholar 

  • Khanal, B. K. S., Bhandari, B., Prakash, S., & Bansal, N. (2020). Simulated oral processing, in vitro digestibility and sensory perception of low fat Cheddar cheese containing sodium alginate. Journal of Food Engineering, 270, 109749.

    Article  CAS  Google Scholar 

  • Kheadr, E. E., Vachon, J. F., Paquin, P., & Fliss, I. (2002). Effect of dynamic high pressure on microbiological, rheological and microstructural quality of Cheddar cheese. International Dairy Journal, 12(5), 435–446.

    Article  CAS  Google Scholar 

  • Khosrowshahi, A., Madadlou, A., Ebrahim zadeh Mousavi, M., & Emam-Djomeh, Z. (2006). Monitoring the Chemical and textural changes during ripening of Iranian white cheese made with different concentrations of starter. Journal of Dairy Science, 89(9), 3318–3325.

    Article  CAS  PubMed  Google Scholar 

  • Koca, N., & Metin, M. (2004). Textural, melting and sensory properties of low-fat fresh kashar cheeses produced by using fat replacers. International Dairy Journal, 14(4), 365–373.

    Article  CAS  Google Scholar 

  • Konuklar, G., Inglett, G. E., Carriere, C. J., & Felker, F. C. (2004). Use of a beta-glucan hydrocolloidal suspension in the manufacture of low-fat cheddar cheese: manufacture, composition, yield and microstructure. International Journal of Food Science and Technology, 39(1), 109–119.

    Article  CAS  Google Scholar 

  • Kosikowski, F. V., & Mistry, V. V. (1990). Microfiltration, ultrafiltration, and centrifugation separation and sterilization processes for improving milk and cheese quality. Journal of Dairy Science, 73(6), 1411–1419.

    Article  Google Scholar 

  • Kumar, R. (2012). An investigation into improvement of low fat cheddar cheese by the addition of hydrocolloids. (Masters Thesis), University of Minnesota, USA.

    Google Scholar 

  • Kumar, S. S., Balasubramanian, S., Biswas, A. K., Chatli, M. K., Devatkal, S. K., & Sahoo, J. (2011). Efficacy of soy protein isolate as a fat replacer on physico-chemical and sensory characteristics of low-fat paneer. Journal of Food Science and Technology, 48(4), 498–501.

    Article  CAS  PubMed  Google Scholar 

  • Lashkari, H., Khosrowshahi Asl, A., Madadlou, A., & Alizadeh, M. (2014). Chemical composition and rheology of low-fat Iranian white cheese incorporated with guar gum and gum arabic as fat replacers. Journal of Food Science and Technology, 51(10), 2584–2591.

    Article  CAS  PubMed  Google Scholar 

  • Lawrence, R. C., Creamer, L. K., & Gilles, J. (1987). Texture development during cheese ripening. Journal of Dairy Science, 70(8), 1748–1760.

    Article  CAS  Google Scholar 

  • Lelievre, J., Creamer, L. K., & Tate, K. L. (1990). Inhibition of calf vell and microbial rennet action by whey-protein concentrate. Milchwissenschaft-Milk Science International, 45(2), 71–75.

    CAS  Google Scholar 

  • Lemay, A., Paquin, P., & Lacroix, C. (1994). Influence of microfluidization of milk on Cheddar cheese composition, color, texture, and yield. Journal of Dairy Science, 77(10), 2870–2879.

    Article  Google Scholar 

  • Lo, C. G., & Bastian, E. D. (1998). Incorporation of native and denatured whey proteins into cheese curd for manufacture of reduced fat, havarti-type cheese. Journal of Dairy Science, 81(1), 16–24.

    Article  CAS  Google Scholar 

  • Lobato-Calleros, C., Lobato Calleros, C., Vernon Carter, E. J., Sanchez Garcia, J., & Garcia Galindo, H. S. (1999). Textural characteristics of cheese analogs incorporating fat replacers. Journal of Texture Studies, 30(5), 533–548.

    Article  Google Scholar 

  • Lobato-Calleros, C., Lobato-Calleros, C., Robles-Martinez, J. C., Caballero-Perez, J. F., & Vernon-Carter, E. J. (2000). Fat replacers in low-fat Mexican manchego cheese. Journal of Texture Studies, 32(1), 1–14.

    Article  Google Scholar 

  • Logan, A., Day, L., Pin, A., Auldist, M., Leis, A., Puvanenthiran, A., et al. (2014). Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food and Bioprocess Technology, 7(11), 3175–3185.

    Article  CAS  Google Scholar 

  • Logan, A., Leis, A., Day, L., Øiseth, S. K., Puvanenthiran, A., & Augustin, M. A. (2015). Rennet gelation properties of milk: Influence of natural variation in milk fat globule size and casein micelle size. International Dairy Journal, 46, 71–77.

    Article  CAS  Google Scholar 

  • Logan, A., Xu, M., Day, L., Singh, T., Moore, S. C., Mazzonetto, M., et al. (2017). Milk fat globule size affects cheddar cheese properties. International Dairy Journal, 70(Suppl C), 46–54.

    Article  CAS  Google Scholar 

  • Lucca, P. A., & Tepper, B. J. (1994). Fat replacers and the functionality of fat in foods. Trends in Food Science & Technology, 5(1), 12–19.

    Article  CAS  Google Scholar 

  • Lucey, J., Johnson, M., & Horne, D. (2003). Invited review: Perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science, 86(9), 2725–2743.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, K. M., Coffey, A., & Arendt, E. K. (2017). Exopolysaccharide producing lactic acid bacteria: Their techno-functional role and potential application in gluten-free bread products. Food Research International, 110, 52–61.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, K. M., McSweeney, P. L. H., Arendt, E. K., Uniacke-Lowe, T., Galle, S., & Coffey, A. (2014). Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. International Dairy Journal, 34(1), 125–134.

    Article  CAS  Google Scholar 

  • Madadlou, A., Mousavi, M. E., Khosrowshahiasl, A., Emam-Djome, Z., & Zargaran, M. (2007). Effect of cream homogenization on textural characteristics of low-fat Iranian white cheese. International Dairy Journal, 17(5), 547–554.

    Article  CAS  Google Scholar 

  • Marshall, V. M., & Tamime, A. Y. (1997). Starter cultures employed in the manufacture of biofermented milks. International Journal of Dairy Technology, 50(1), 35–41.

    Article  Google Scholar 

  • McCarthy, A. L., O’Connor, T. P., & O’Brien, N. M. (2014). Cheese in the context of diet and nutrition. In V. R. Preddy, R. R. Watson, & V. B. Patel (Eds.), Handbook of cheese in health: Production, nutrition and medical sciences (Vol. 1, pp. 15–26). Wageningen, Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • McCarthy, C. M., Wilkinson, M. G., & Guinee, T. P. (2017b). Effect of coagulant type and level on the properties of half-salt, half-fat Cheddar cheese made with or without adjunct starter: Improving texture and functionality. International Dairy Journal, 75(Suppl C), 30–40.

    Article  CAS  Google Scholar 

  • McCarthy, C. M., Wilkinson, M. G., & Guinee, T. P. (2017c). Effect of calcium reduction on the properties of half-fat Cheddar-style cheeses with full-salt or half-salt. International Dairy Journal, 73(Suppl C), 38–49.

    Article  CAS  Google Scholar 

  • McElhatton, A., & El Idrissi, M. M. (2016). Traditional polish curd cheeses. In Modernization of traditional food processes and products (pp. 4–12). Boston, MA: Springer.

    Chapter  Google Scholar 

  • McMahon, D. J., Alleyne, M. C., Fife, R. L., & Oberg, C. J. (1996). Use of fat replacers in low fat mozzarella cheese. Journal of Dairy Science, 79(11), 1911–1921.

    Article  CAS  Google Scholar 

  • McSweeney, P. L. H., Ottogalli, G., & Fox, P. F. (2017). Chapter 31. In Diversity and classification of cheese varieties: An overview cheese (4th ed., pp. 781–808). San Diego, CA: Academic Press.

    Google Scholar 

  • Merrill, R. K., Oberg, C. J., & McMahon, D. J. (1994). A method for manufacturing reduced fat mozzarella Cheese1. Journal of Dairy Science, 77(7), 1783–1789.

    Article  CAS  Google Scholar 

  • Metzger, L. E., & Mistry, V. V. (1995). A new approach using homogenization of cream in the manufacture of reduced fat cheddar cheese. 2. Microstructure, fat globule distribution, and free oil. Journal of Dairy Science, 78(9), 1883–1895.

    Article  CAS  Google Scholar 

  • Metzger, L. E., Barbano, D. M., Rudan, M. A., & Kindstedt, P. S. (2000). Effect of Milk Preacidification on low fat mozzarella cheese I. Composition and Yield. Journal of Dairy Science, 83(4), 648–658.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M.-C., Camier, B., Briard, V., Leconte, N., Gassi, J.-Y., Goudédranche, H., et al. (2004). The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Le Lait, 84(4), 343–358.

    Article  CAS  Google Scholar 

  • Michalski, M.-C., Camier, B., Gassi, J.-Y., Briard-Bion, V., Leconte, N., Famelart, M.-H., et al. (2007). Functionality of smaller vs control native milk fat globules in Emmental cheeses manufactured with adapted technologies. Food Research International, 40(1), 191–202.

    Article  CAS  Google Scholar 

  • Michalski, M. C., Cariou, R., Michel, F., & Garnier, C. (2002). Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. Journal of Dairy Science, 85(10), 2451–2461.

    Article  CAS  PubMed  Google Scholar 

  • Michalski, M.-C., Gassi, J.-Y., Famelart, M.-H., Leconte, N., Camier, B., Michel, F., et al. (2003). The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Le Lait, 83(2), 131–143.

    Article  CAS  Google Scholar 

  • Miočinović, J., Puđa, P., Radulović, Z., Pavlović, V., Miloradović, Z., Radovanović, M., et al. (2011). Development of low fat UF cheese technology. Mljekarstvo, 61(1), 33.

    Google Scholar 

  • Mirzaei, H., Pourjafar, H., & Homayouni, A. (2012). Effect of calcium alginate and resistant starch microencapsulation on the survival rate of Lactobacillus acidophilus La5 and sensory properties in Iranian white brined cheese. Food Chemistry, 132(4), 1966–1970.

    Article  CAS  Google Scholar 

  • Mistry, V. V. (2001). Low fat cheese technology. International Dairy Journal, 11(4–7), 413–422.

    Article  CAS  Google Scholar 

  • Mistry, V. V., Metzger, L. E., & Maubois, J. L. (1996). Use of ultrafiltered sweet buttermilk in the manufacture of reduced fat cheddar cheese. Journal of Dairy Science, 79(7), 1137–1145.

    Article  CAS  Google Scholar 

  • Mistry, V. V., Mistry, V. V., & Maubois, J. L. (1993). Application of membrane separation technology to cheese production. In Cheese: Chemistry, physics and microbiology (pp. 261–267). London, UK: Elsevier Science & Technology Books.

    Google Scholar 

  • Mounsey, J. S., & O’Riordan, E. D. (2007). Modification of imitation cheese structure and rheology using pre-gelatinised starches. European Food Research and Technology, 226(5), 1039–1046.

    Article  CAS  Google Scholar 

  • Moynihan, A. C., Govindasamy-Lucey, S., Jaeggi, J. J., Johnson, M. E., Lucey, J. A., & McSweeney, P. L. (2014). Effect of camel chymosin on the texture, functionality, and sensory properties of low-moisture, part-skim mozzarella cheese. Journal of Dairy Science, 97(1), 85–96.

    Article  CAS  PubMed  Google Scholar 

  • Nauth, K. R., & Hayashi, D. K. (1995). Method for manufacture of low fat pasta filata cheese: United States Patent, 5431931.

    Google Scholar 

  • Neocleous, M., Barbano, D. M., & Rudan, M. A. (2002a). Impact of low concentration factor microfiltration on the composition and aging of cheddar cheese. Journal of Dairy Science, 85(10), 2425–2437.

    Article  CAS  PubMed  Google Scholar 

  • Neocleous, M., Barbano, D. M., & Rudan, M. A. (2002b). Impact of low concentration factor microfiltration on milk component recovery and cheddar cheese yield. Journal of Dairy Science, 85(10), 2415–2424.

    Article  CAS  PubMed  Google Scholar 

  • Nepomuceno, R. S. A. C., Costa Junior, L. C. G., & Costa, R. G. B. (2016). Exopolysaccharide-producing culture in the manufacture of Prato cheese. LWT - Food Science and Technology, 72, 383–389.

    Article  CAS  Google Scholar 

  • O’Connor, T. P., & O’Brien, N. M. (2011). Butter and other milk fat products: Fat replacers. In J. W. Fuquay (Ed.), Encyclopedia of dairy sciences (2nd ed., pp. 528–532). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • O’Mahony, J. A., Auty, M. A., & McSweeney, P. L. (2005). The manufacture of miniature cheddar-type cheeses from milks with different fat globule size distributions. Journal of Dairy Research, 72(3), 338–348.

    Article  CAS  PubMed  Google Scholar 

  • Ohren, J. A., & Tuckey, S. (1969). Relation of flavor development in cheddar cheese to chemical changes in the fat of the cheese. Journal of Dairy Science, 52(5), 598–607.

    Article  CAS  Google Scholar 

  • Oliveira, N. M., Dourado, F. Q., Peres, A. M., Silva, M. V., Maia, J. M., & Teixeira, J. A. (2010). Effect of guar gum on the physicochemical, thermal, rheological and textural properties of green edam cheese. Food and Bioprocess Technology, 4(8), 1414–1421.

    Article  CAS  Google Scholar 

  • Oluk, A. C., Guven, M., & Hayaloglu, A. A. (2014). Proteolysis texture and microstructure of low-fat Tulum cheese affected by exopolysaccharide-producing cultures during ripening. International Journal of Food Science and Technology, 49(2), 435–443.

    Article  CAS  Google Scholar 

  • Perry, D. B., McMahon, D. J., & Oberg, C. J. (1997). Effect of exopolysaccharide-producing cultures on moisture retention in low fat mozzarella cheese. Journal of Dairy Science, 80(5), 799–805.

    Article  CAS  Google Scholar 

  • Petersen, B. L., Dave, R. I., McMahon, D. J., Oberg, C. J., & Broadbent, J. R. (2000). Influence of capsular and ropy exopolysaccharide-producing Streptococcus thermophilus on mozzarella cheese and cheese whey. Journal of Dairy Science, 83(9), 1952–1956.

    Article  CAS  PubMed  Google Scholar 

  • Plug, H., & Haring, P. (1993). The role of ingredient-flavour interactions in the development of fat-free foods. Trends in Food Science & Technology, 4(5), 150–152.

    Article  CAS  Google Scholar 

  • Poduval, V. S., & Mistry, V. V. (1999). Manufacture of reduced fat mozzarella cheese using Ultrafiltered sweet buttermilk and homogenized cream. Journal of Dairy Science, 82(1), 1–9.

    Article  CAS  Google Scholar 

  • Position of the American Dietetic Association: Fat Replacers. (2005). Journal of the American Dietetic Association, 105(2), 266–275.

    Article  Google Scholar 

  • Rahimi, J., Khosrowshahi, A., Madadlou, A., & Aziznia, S. (2007). Texture of low-fat Iranian White cheese as influenced by gum tragacanth as a fat replacer. Journal of Dairy Science, 90(9), 4058–4070.

    Article  CAS  PubMed  Google Scholar 

  • Reedy, J. (2016). How the US low-fat diet recommendations of 1977 contributed to the declining health of Americans. (Honors Scholar Thesis), University of Connecticut, Storrs, CT.

    Google Scholar 

  • Rodriguez, J. (1998). Recent advances in the development of low-fat cheeses. Trends in Food Science & Technology, 9(6), 249–254.

    Article  CAS  Google Scholar 

  • Rodriguez, J., Requena, T., Fontecha, J., Goudedranche, H., & Juarez, M. (1999). Effect of different membrane separation technologies (ultrafiltration and microfiltration) on the texture and microstructure of semihard low-fat cheeses. Journal of Agriculture and Food Chemistry, 47(2), 558–565.

    Article  CAS  Google Scholar 

  • Rogers, N. R., Drake, M. A., Daubert, C. R., McMahon, D. J., Bletsch, T. K., & Foegeding, E. A. (2009). The effect of aging on low-fat, reduced-fat, and full-fat cheddar cheese texture. Journal of Dairy Science, 92(10), 4756–4772.

    Article  CAS  PubMed  Google Scholar 

  • Romeih, E. A., Michaelidou, A., Biliaderis, C. G., & Zerfiridis, G. K. (2002). Low-fat white-brined cheese made from bovine milk and two commercial fat mimetics: Chemical, physical and sensory attributes. International Dairy Journal, 12(6), 525–540.

    Article  CAS  Google Scholar 

  • Rowney, M. K., Hickey, M. W., Roupas, P., & Everett, D. W. (2003). The effect of homogenization and milk fat fractions on the functionality of mozzarella cheese. Journal of Dairy Science, 86(3), 712–718.

    Article  CAS  PubMed  Google Scholar 

  • Rudan, M. A., Barbano, D. M., Guo, M. R., & Kindstedt, P. S. (1998). Effect of the modification of fat particle size by homogenization on composition, proteolysis, functionality, and appearance of reduced fat mozzarella cheese. Journal of Dairy Science, 81(8), 2065–2076.

    Article  CAS  Google Scholar 

  • Rudan, M. A., Barbano, D. M., & Kindstedt, P. S. (1998). Effect of fat replacer (Salatrim®) on chemical composition, proteolysis, functionality, appearance, and yield of reduced fat mozzarella cheese. Journal of Dairy Science, 81(8), 2077–2088.

    Article  CAS  Google Scholar 

  • Ryhänen, E.-L., Pihlanto-Leppälä, A., & Pahkala, E. (2001). A new type of ripened, low-fat cheese with bioactive properties. International Dairy Journal, 11(4–7), 441–447.

    Article  Google Scholar 

  • Rynne, N. M., Beresford, T. P., Kelly, A. L., & Guinee, T. P. (2004). Effect of milk pasteurization temperature and in situ whey protein denaturation on the composition, texture and heat-induced functionality of half-fat Cheddar cheese. International Dairy Journal, 14(11), 989–1001.

    Article  CAS  Google Scholar 

  • Saboya, L. V., & Maubois, J.-L. (2000). Current developments of microfiltration technology, in the dairy industry. Le Lait, 80(6), 541–553.

    Article  CAS  Google Scholar 

  • Sahan, N., Yasar, K., Hayaloglu, A. A., Karaca, O. B., & Kaya, A. (2008). Influence of fat replacers on chemical composition, proteolysis, texture profiles, meltability and sensory properties of low-fat Kashar cheese. Journal of Dairy Research, 75(01), 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Salvatore, E., Pirisi, A., & Corredig, M. (2011). Gelation properties of casein micelles during combined renneting and bacterial fermentation: Effect of concentration by ultrafiltration. International Dairy Journal, 21(11), 848–856.

    Article  CAS  Google Scholar 

  • Sanli, T., Gursel, A., Sanli, E., Acar, E., & Benli, M. (2013). The effect of using an exopolysaccharide-producing culture on the physicochemical properties of low-fat and reduced-fat Kasar cheeses. International Journal of Dairy Technology, 66(4), 535–542.

    CAS  Google Scholar 

  • Schenkel, P., Samudrala, R., & Hinrichs, J. (2013). The effect of adding whey protein particles as inert filler on thermophysical properties of fat-reduced semihard cheese type Gouda. International Journal of Dairy Technology, 66(2), 220–230.

    Article  CAS  Google Scholar 

  • Scott, R., Robinson, R. K., & Wilbey, R. A. (1998). Introduction to cheese making. In R. Scott (Ed.), Cheesemaking practice (2nd ed., pp. 37–43). Gaithersburg, MD: Aspen Publication.

    Chapter  Google Scholar 

  • Setser, C. S., & Racette, W. L. (1992). Macromolecule replacers in food products. Critical Reviews in Food Science and Nutrition, 32(3), 275–297.

    Article  CAS  PubMed  Google Scholar 

  • Shamil, S., Wyeth, L. J., & Kilcast, D. (1991). Flavour release and perception in reduced-fat foods. Food Quality and Preference, 3(1), 51–60.

    Article  Google Scholar 

  • Sipahioglu, O., Alvarez, V., & Solano-Lopez, C. (1999). Structure, physico-chemical and sensory properties of feta cheese made with tapioca starch and lecithin as fat mimetics. International Dairy Journal, 9(11), 783–789.

    Article  CAS  Google Scholar 

  • Skeie, S., Alseth, G. M., Østlie, H., Abrahamsen, R. K., Johansen, A. G., & Øyaas, J. (2013). Improvement of the quality of low-fat cheese using a two-step strategy. International Dairy Journal, 33(2), 153–162.

    Article  CAS  Google Scholar 

  • Soltani, M., Boran, O. S., & Hayaloglu, A. A. (2016). Effect of various blends of camel chymosin and microbial rennet (Rhizomucor miehei) on microstructure and rheological properties of Iranian UF White cheese. LWT - Food Science and Technology, 68(Supplement C), 724–728.

    Article  CAS  Google Scholar 

  • Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., & Gras, S. L. (2015a). Effect of calcium chloride addition and draining pH on the microstructure and texture of full fat cheddar cheese during ripening. Food Chemistry, 181, 111–118.

    Article  CAS  PubMed  Google Scholar 

  • Soodam, K., Ong, L., Powell, I. B., Kentish, S. E., & Gras, S. L. (2015b). Effect of rennet on the composition, proteolysis and microstructure of reduced-fat cheddar cheese during ripening. Dairy Science & Technology, 95(5), 665–686.

    Article  CAS  Google Scholar 

  • Stankey, J. A., Lu, Y. J., Abdalla, A., Govindasamy-Lucey, S., Jaeggi, J. J., Mikkelsen, B. O., et al. (2017). Low-fat Cheddar cheese made using microparticulated whey proteins: Effect on yield and cheese quality. International Journal of Dairy Technology, 70(4), 481–491.

    Article  CAS  Google Scholar 

  • St-gelais, D., Piette, M., & Belanger, G. (1995). Production of cheddar cheese using milk enriched with microfluidized milk retentate - A preliminary study. Milchwissenschaft-Milk Science International, 50(11), 614–619.

    CAS  Google Scholar 

  • St-Gelais, D., Roy, D., & Audet, P. (1998). Manufacture and composition of low fat cheddar cheese from milk enriched with different protein concentrate powders. Food Research International, 31(2), 137–145.

    Article  Google Scholar 

  • St-Gelais, D., Passey, C. A., Haché, S., & Roy, P. (1997). Production of low-fat Cheddar cheese from low and high mineral retentate powders and different fractions of milkfat globules. International Dairy Journal, 7(11), 733–741.

    Article  CAS  Google Scholar 

  • Tang, W., Dong, M., Wang, W., Han, S., Rui, X., Chen, X., et al. (2017). Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1. Carbohydrate Polymers, 173, 654–664.

    Article  CAS  PubMed  Google Scholar 

  • Thomann, S., Schenkel, P., & Hinrichs, J. (2008). The impact of homogenization and microfiltration on rennet-induced gel formation. Journal of Texture Studies, 39(4), 326–344.

    Article  Google Scholar 

  • Totosaus, A., & Guemes-Vera, N. (2008). Effect of κ- and λ-Carrageenans as fat-replacers in low-fat oaxaca cheese. International Journal of Food Properties, 11(3), 656–668.

    Article  CAS  Google Scholar 

  • Tunick, M. H., Mackey, K. L., Shieh, J. J., Smith, P. W., Cooke, P., & Malin, E. L. (1993). Rheology and microstructure of low-fat mozzarella cheese. International Dairy Journal, 3(7), 649–662.

    Article  Google Scholar 

  • Tunick, M. H., Van Hekken, D. L., Cooke, P. H., Smith, P. W., & Malin, E. L. (2000). Effect of high pressure microfluidization on microstructure of mozzarella cheese. LWT - Food Science and Technology, 33(8), 538–544.

    Article  CAS  Google Scholar 

  • USDA. (2016). New Dietary guidelies to encourage healthy eating patterns to prevent chronic diseases. Washington, DC: HHS Press.

    Google Scholar 

  • Van Hekken, D. L., Tunick, M. H., Malin, E. L., & Holsinger, V. H. (2007). Rheology and melt characterization of low-fat and full fat Mozzarella cheese made from microfluidized milk. LWT - Food Science and Technology, 40(1), 89–98.

    Article  CAS  Google Scholar 

  • Vélez, M. A., Hynes, E. R., Meinardi, C. A., Wolf, V. I., & Perotti, M. C. (2017). Cheese milk low homogenization enhanced early lipolysis and volatiles compounds production in hard cooked cheeses. Food Research International, 96, 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Volikakis, P., Biliaderis, C. G., Vamvakas, C., & Zerfiridis, G. K. (2004). Effects of a commercial oat-β-glucan concentrate on the chemical, physico-chemical and sensory attributes of a low-fat white-brined cheese product. Food Research International, 37(1), 83–94.

    Article  CAS  Google Scholar 

  • Waungana, A., Singh, H., & Bennett, R. J. (1998). Rennet coagulation properties of skim milk concentrated by ultrafiltration: effects of heat treatment and pH adjustment. Food Research International, 31(9), 645–651.

    Article  CAS  Google Scholar 

  • WHO. (2015). Healthy diet. Fact sheet No. 394. Retrieved from http://www.who.int/mediacentre/factsheets/fs394/en/

  • Ye, A., Hewitt, S., & Taylor, S. (2009). Characteristics of rennet–casein-based model processed cheese containing maize starch: Rheological properties, meltabilities and microstructures. Food Hydrocolloids, 23(4), 1220–1227.

    Article  CAS  Google Scholar 

  • Zafar, S. B., Siddiqui, N. N., Shahid, F., Qader, S. A. U., & Aman, A. (2017). Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. Journal, Genetic Engineering & Biotechnology, 16(1), 17–22.

    Article  Google Scholar 

  • Zahra, S., Mohammad, H., Sahel, S., & Mohammad Ali, S. (2013). The influence of malt extraction adding to UF fresh low fat cheese on its textural properties. International Journal of Science and Engineering, 6(1), 52–55.

    Google Scholar 

  • Zalazar, C. A., Zalazar, C. S., Bernal, S., Bertola, N., Bevilacqua, A., & Zaritzky, N. (2002). Effect of moisture level and fat replacer on physicochemical, rheological and sensory properties of low fat soft cheeses. International Dairy Journal, 12(1), 45–50.

    Article  CAS  Google Scholar 

  • Zamora, A., Ferragut, V., Jaramillo, P. D., Guamis, B., & Trujillo, A. J. (2007). Effects of ultra-high pressure homogenization on the cheese-making properties of milk. Journal of Dairy Science, 90(1), 13–23.

    Article  CAS  PubMed  Google Scholar 

  • Zisu, B. (2005). Impact of pre-acidification, fat replacers and exopolysaccharide producing starter cultures on functionality of low fat mozzarella cheese. (PhD Thesis), Victoria University, Werribee Campus, VIC, Australia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nidhi Bansal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khanal, B.K.S., Bansal, N. (2020). Dairy Fat Replacement in Low-Fat Cheese (LFC): A Review of Successful Technological Interventions. In: Truong, T., Lopez, C., Bhandari, B., Prakash, S. (eds) Dairy Fat Products and Functionality. Springer, Cham. https://doi.org/10.1007/978-3-030-41661-4_23

Download citation

Publish with us

Policies and ethics