Advertisement

Lipase Action on Milk Fat

  • Hilton C. DeethEmail author
Chapter
  • 118 Downloads

Abstract

Lipases have important functions in almost all living organisms and play a major role in the metabolism of lipids. True lipases (EC 3.1.1.1) act on triglycerides (TG), diglycerides (DG) and monoglycerides (MG) (tri-, di- and monoacylglycerols), with triglycerides being the major substrate. Other lipases act on other types of lipids, for example, phospholipases act on phospholipids. This chapter largely concerns true lipases.

References

  1. Aguedo, M., Hanon, E., Danthine, S., Paquot, M., Lognay, G., Thomas, A., et al. (2008). Enrichment of anhydrous milk fat in polyunsaturated fatty acid residues from linseed and rapeseed oils through enzymatic interesterification. Journal of Agricultural and Food Chemistry, 56, 1757–1765.PubMedCrossRefGoogle Scholar
  2. Akoh, C. C., Sellaopoan, S., Fomuso, L. B., & Yankah, V. V. (2003). Enzymatic synthesis of structured lipids. In T. M. Kuo & H. W. Gardner (Eds.), Lipid biotechnology (pp. 433–460). New York, NY: Marcel Dekker, Inc.Google Scholar
  3. Alkanhal, H. A., Frank, J. F., & Christen, G. L. (1985). Microbial protease and phospholipase C stimulate lipolysis of washed cream. Journal of Dairy Science, 68, 3162–3170.CrossRefGoogle Scholar
  4. Andrewes, P. (2018). Indirect detection of lipase in UHT milk by measuring methyl ester formation. International Dairy Journal, 79, 1–4.CrossRefGoogle Scholar
  5. Andrews, A. T., Anderson, M., & Goodenough, P. W. (1987). A study of the heat stabilities of a number of indigenous milk enzymes. The Journal of Dairy Research, 54, 237–246.CrossRefGoogle Scholar
  6. Arnold, R. G., Shahani, K. M., & Dwivedi, B. K. (1975). Application of lipolytic enzymes to flavor development in dairy products. Journal of Dairy Science, 58, 1127–1143.CrossRefGoogle Scholar
  7. Balcăo, V. M., Kemppinen, A., Malcata, F. X., & Kalo, P. J. (1998). Lipase-catalyzed acidolysis of butterfat with oleic acid: Characterization of process and product. Enzyme and Microbial Technology, 23, 118–128.CrossRefGoogle Scholar
  8. Balcăo, V. M., & Malcata, F. X. (1997). Lipase-catalyzed modification of butterfat via acidolysis with oleic acid. Journal of Molecular Catalysis B: Enzymatic, 3, 161–169.CrossRefGoogle Scholar
  9. Balcăo, V. M., & Malcata, F. X. (1998a). Interesterification and acidolysis of butterfat with oleic acid by Mucor javanicus lipase: Changes in the pool of fatty acid residues. Enzyme and Microbial Technology, 22, 511–519.CrossRefGoogle Scholar
  10. Balcăo, V. M., & Malcata, F. X. (1998b). Lipase catalyzed modification of milkfat. Biotechnology Advances, 16, 309–341.PubMedCrossRefGoogle Scholar
  11. Balcăo, V. M., & Malcata, F. X. (2002). Enzyme-mediated modification of milkfat. In T. M. Kuo & H. W. Gardner (Eds.), Lipid biotechnology (pp. 479–492). New York, NY: Marcel Dekker.Google Scholar
  12. Barach, J. T., Adams, D. M., & Speck, M. L. (1976). Low temperature inactivation in milk of heat-resistant proteases from psychrotrophic bacteria. Journal of Dairy Science, 59, 391–395.CrossRefGoogle Scholar
  13. Barber, M. C., Clegg, R. A., Travers, M. T., & Vernon, R. G. (1997). Lipid metabolism in the lactating mammary gland. Biochimica et Biophysica Acta, Lipids and Lipid Metabolism, 1347, 101–126.CrossRefGoogle Scholar
  14. Bills, D. D., & Day, E. A. (1964). Determination of the major free fatty acids in Cheddar cheese. Journal of Dairy Science, 47, 733–738.CrossRefGoogle Scholar
  15. Bourlieu, C., Bouhallab, S., & Lopez, C. (2009). Biocatalyzed modifications of milk lipids: Applications and potentialities. Trends in Food Science and Technology, 20, 458–469.CrossRefGoogle Scholar
  16. Bourlieu, C., Rousseau, F., Briard-Bion, V., Madec, M. N., & Bouhallab, S. (2012). Hydrolysis of native milk fat globules by microbial lipases: Mechanisms and modulation of interfacial quality. Food Research International, 49, 533–544.CrossRefGoogle Scholar
  17. Buchanan, R. A. (1965). Lipolysis and the frothing of milk. Australian Journal of Dairy Technology, 20, 62–66.Google Scholar
  18. Bucky, A. R., Hayes, P. R., & Robinson, D. S. (1987). A modified ultra-high temperature treatment for reducing microbial lipolysis in stored milk. The Journal of Dairy Research, 54, 275–282.PubMedCrossRefGoogle Scholar
  19. Buffa, M., Guamis, B., Pavia, M., & Trujillo, A. J. (2001). Lipolysis in cheese made from raw, pasteurized or high-pressure-treated goats’ milk. International Dairy Journal, 11, 175–179.CrossRefGoogle Scholar
  20. Cartier, P., & Chilliard, Y. (1990). Spontaneous lipolysis in bovine milk: Combined effects of nine characteristics in native milk. Journal of Dairy Science, 73, 1178–1186.CrossRefGoogle Scholar
  21. Chmura, M., Staniewski, B., Panfil-Kuncewicz, H., Szpendowski, J., & Zawadzka, J. (2008). The effects of enzymatic interesterification on selected physicochemical characteristics of milk fat. Milchwissenschaft, 63, 37–40.Google Scholar
  22. Christen, G. L., Wang, W.-C., & Ren, T.-J. (1986). Comparison of the heat resistance of bacterial lipases and proteases and the effect on ultra-high temperature milk quality. Journal of Dairy Science, 69, 2769–2778.PubMedCrossRefGoogle Scholar
  23. Christensen, T. C., & Holmer, G. (1993). Lipase-catalyzed acyl-exchange reactions of butter oil - synthesis of a human-milk fat substitute for infant formulas. Milchwissenschaft, 48, 543–548.Google Scholar
  24. Chung, G. H., Lee, Y. P., Jeohn, G. H., Yoo, O. J., & Rhee, J. S. (1991). Cloning and nucleotide sequence of thermostable lipase gene from Pseudomonas fluorescens SIK W1. Agricultural and Biological Chemistry, 55, 2359–2365.PubMedGoogle Scholar
  25. Corrandini, C., & Innocente, N. (1994). Influence of proteose peptone fraction on milk foaming capacity. Scienza Technica Lattiero-Caseria, 45, 107–113.Google Scholar
  26. Danthine, S., Blecker, C., Paquot, M., Innocente, N., & Deroanne, C. (2000). Progress in milk fat globule membrane research: A review. Le Lait, 80, 209–222.CrossRefGoogle Scholar
  27. De, B. K., Hakimji, M., Patel, A., Sharma, D., Desai, H., & Kumar, T. (2007). Plastic fats and margarines through fractionation, blending and interesterification of milk fat. European Journal of Lipid Science and Technology, 109, 32–37.CrossRefGoogle Scholar
  28. Deeth, H. C. (1978). Fluorimetric detection of carboxyl-esterase activity in milk. In Proceedings of 20th International Dairy Congress E (pp. 364–365). Brussels, Belgium: International Dairy Federation.Google Scholar
  29. Deeth, H. C. (1997). The role of phospholipids in the stability of the milk fat globule membrane. Australian Journal of Dairy Technology, 52, 44–46.Google Scholar
  30. Deeth, H. C. (2006). Lipoprotein lipase and lipolysis in milk. International Dairy Journal, 16, 555–562.CrossRefGoogle Scholar
  31. Deeth, H. C., & Fitz-Gerald, C. H. (1975a). Factors governing the susceptibility of milk to spontaneous lipolysis. In IDF document 86 (pp. 24–34). Brussels, Belgium: International Dairy Federation.Google Scholar
  32. Deeth, H. C., & Fitz-Gerald, C. H. (1975b). The relevance of milk lipase activation to rancidity in Cheddar cheese. Australian Journal of Dairy Technology, 30, 74–76.Google Scholar
  33. Deeth, H. C., & Fitz-Gerald, C. H. (2006). Lipolytic enzymes and hydrolytic rancidity. In P. F. Fox & P. McSweeney (Eds.), Advanced dairy chemistry, volume: Lipids (pp. 481–556). New York, NY: Springer.CrossRefGoogle Scholar
  34. Deeth, H. C., & Smith, R. A. D. (1983). Lipolysis and other factors affecting the steam frothing capacity of milk. Australian Journal of Dairy Technology, 38, 14–19.Google Scholar
  35. Dickow, J. A., Larsen, L. B., Hammershoj, M., & Wiking, L. (2011). Cooling causes changes in the distribution of lipoprotein lipase and milk fat globule membrane proteins between the skim milk and cream phase. Journal of Dairy Science, 94, 646–656.PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dieckelmann, M., Johnson, L. A., & Beacham, I. R. (1998). The diversity of lipases from psychrotrophic strains of Pseudomonas: A novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. Journal of Applied Microbiology, 85, 527–536.PubMedCrossRefGoogle Scholar
  37. Dring, R., & Fox, P. F. (1983). Purification and characterization of a heat-stable lipase from Pseudomonas fluorescens AFT 29. Irish Journal of Food Science and Technology, 7, 157–171.Google Scholar
  38. Fitz-Gerald, C. H., & Deeth, H. C. (1983). Factors influencing lipolysis by skim milk cultures of some psychrotrophic microorganisms. Australian Journal of Dairy Technology, 38, 97–103.Google Scholar
  39. Fitz-Gerald, C. H., Deeth, H. C., & Coghill, D. M. (1982). Low-temperature inactivation of lipases from psychrotrophic bacteria. Australian Journal of Dairy Technology, 37, 51–54.Google Scholar
  40. Fitz-Gerald, C. H., Deeth, H. C., & Kitchen, B. J. (1981). The relationship between the levels of free fatty acids, lipoprotein lipase, carboxylesterase, N-acetyl-β-D-glucosaminidase, somatic cell count and other mastitis indices in bovine milk. The Journal of Dairy Research, 48, 253–265.PubMedCrossRefGoogle Scholar
  41. Fox, P. F. (1980). Enzymes other than rennets in dairy technology. Journal of the Society of Dairy Technology, 33, 118–128.Google Scholar
  42. Fox, P. F., & Guinee, T. P. (1987). Italian cheeses. In P. F. Fox (Ed.), Cheese: Chemistry, physics and microbiology (Vol. 2, pp. 221–255). London, UK: Elsevier Applied Science.Google Scholar
  43. Fox, P. F., & Law, B. A. (1991). Enzymology of cheese ripening. Food Biotechnology, 5, 239–262.CrossRefGoogle Scholar
  44. Gambini, G., Castagnetti, G. B., & Losi, G. (1995). Influence of somatic cell count and heat treatments on milk foam formation and stability. Industrie Alimentari, 34, 247–252.Google Scholar
  45. Garcia, H. S., Keough, K. J., Arcos, J. A., & Hill, C. G. (2000). Interesterification (acidolysis) of butterfat with conjugated linoleic acid in a batch reactor. Journal of Dairy Science, 83(3), 371–377.PubMedCrossRefGoogle Scholar
  46. Giet, J.-M., Aguedo, M., Danthine, S., Paquot, M., Thomas, A., Vandenbol, M., et al. (2009). Enzymatic interesterification of anhydrous milk fat with rapeseed and/or linseed oil: Oxidative stability. Journal of Agricultural and Food Chemistry, 57, 6787–6794.PubMedCrossRefGoogle Scholar
  47. Griffith, M. W., Phillips, J. D., & Muir, D. D. (1981). Thermostability of proteases and lipases number of species of psychrotrophic bacteria of dairy origin. The Journal of Applied Bacteriology, 50, 289–303.CrossRefGoogle Scholar
  48. Griffiths, M. W. (1983). Synergistic effects of various lipases and phospholipase C on milk fat. Journal of Food Technology, 18, 495–505.CrossRefGoogle Scholar
  49. Gripon, J. C. (1987). Mould-ripened cheeses. In P. F. Fox (Ed.), Cheese: Chemistry, physics and microbiology (Vol. 2, pp. 121–149). London, UK: Elsevier Applied Science.Google Scholar
  50. Hayati, I. N., Aminah, A., Mamot, S., Aini, I. N., Lida, H. M. N., & Sabariah, S. (2000). Melting characteristic and solid fat content of milk fat and palm stearin blends before and after enzymatic interesterification. Journal of Food Lipids, 7, 175–193.CrossRefGoogle Scholar
  51. Hernell, O., & Bläckberg, L. (1991). Digestion and absorption of human milk lipids. In R. Dulbecco (Ed.), Encyclopedia of human biology (Vol. 3, pp. 47–56). New York, NY: Academic Press.Google Scholar
  52. Hernell, O., & Bläckberg, L. (1994). Human milk bile salt-stimulated lipase: Functional and molecular aspects. The Journal of Pediatrics, 125(Suppl), S56–S61.PubMedCrossRefGoogle Scholar
  53. Hickey, D. K., Kilcawley, K. N., Beresford, T. P., & Wilkinson, M. G. (2007). Lipolysis in cheddar cheese made from raw, thermized, and pasteurized milks. Journal of Dairy Science, 90, 47–56.PubMedCrossRefGoogle Scholar
  54. Hohe, K. A., Dimick, P. S., & Kilara, A. (1985). Milk lipoprotein-lipase distribution in the major fractions of bovine-milk. Journal of Dairy Science, 68, 1067–1073.PubMedCrossRefGoogle Scholar
  55. Horwood, J. F., Lloyd, G. T., & Stark, W. (1981). Some flavour components of Feta cheese. Australian Journal of Dairy Technology, 36, 34–37.Google Scholar
  56. Huppertz, T. (2010). Foaming properties of milk: A review of the influence of composition and processing. International Journal of Dairy Technology, 63, 477–488.CrossRefGoogle Scholar
  57. Iverius, P. H., Olivecrona, T., Egelrud, T., & Lindahl, U. (1972). Effects of heparin on lipoprotein-lipase from bovine milk. The Journal of Biological Chemistry, 247, 6610.PubMedGoogle Scholar
  58. Javed, S., Azeem, F., Hussain, S., Rasul, I., Siddique, M. H., Riaz, M., et al. (2018). Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132, 23–34.PubMedCrossRefGoogle Scholar
  59. Jolly, R. C., & Kosikowski, F. V. (1975a). Flavor development in pasteurized milk blue cheese by animal and microbial lipase preparations. Journal of Dairy Science, 58, 846–852.CrossRefGoogle Scholar
  60. Jolly, R. C., & Kosikowski, F. V. (1975b). A new blue cheese food material from ultrafiltrated skim milk and microbial enzyme - Mold spore reacted fat. Journal of Dairy Science, 58, 272–1275.CrossRefGoogle Scholar
  61. Jooyandeh, H., Kaur, A., & Minhas, K. S. (2009). Lipases in dairy industry: A review. Journal of Food Science and Technology, 46, 181–189.Google Scholar
  62. Kalo, P., Kemppinen, A., & Antila, M. (1987). Candida cylindracae lipase-catalyzed interesterification of butterfat and butterfat solid fraction rapeseed oil mixtures. Journal of the American Oil Chemists’ Society, 64, 1263–1263.Google Scholar
  63. Kalogridou-Vassiliadou, D. (1984). Lipolytic activity and heat resistance of extracellular lipases of some Gram-negative bacteria. Milchwissenschaft, 39, 601–603.Google Scholar
  64. Kamath, S., Wulandewi, A., & Deeth, H. C. (2008). Relationship between surface tension, free fatty acid concentration and foaming properties of milk. Food Research International, 41, 623–929.CrossRefGoogle Scholar
  65. Karabulut, I., Turan, S., Vural, H., & Kayahan, M. (2007). Human milk fat substitute produced by enzymatic interesterification of vegetable oil blend. Food Technology and Biotechnology, 45, 434–438.Google Scholar
  66. Kilara, A. (1985). Enzyme-modified lipid food ingredients. Process Biochemistry, 20, 35–45.Google Scholar
  67. Kim, J. S., Maeng, I. K., Lee, B. O., Kim, C. K., Kwon, Y. H., & Kim, Y. J. (2002). Lipase-catalyzed acidolysis of butterfat with α-linolenic acid from perilla oil. Food Science and Biotechnology, 11, 66–70.Google Scholar
  68. Kinnunen, P. K. J., Huttunen, J. K., & Ehnholm, C. (1976). Properties of purified bovine milk lipoprotein lipase. Biochimica et Biophysica Acta, 450, 342–351.PubMedCrossRefGoogle Scholar
  69. Kinsella, J. E., & Hwang, D. (1976). Biosynthesis of flavours by Penicillium roqueforti. Biotechnology and Bioengineering, 18, 927–938.CrossRefGoogle Scholar
  70. Kishonti, E. (1975). Influence of heat resistant lipases and proteases in psychrotrophic bacteria on product quality. In IDF document 86 (pp. 121–124). Brussels, Belgium: International Dairy Federation.Google Scholar
  71. Kontkanen, H., Rokka, S., Kemppinen, A., Miettinen, H., Hellstrom, J., Kruus, K., et al. (2011). Enzymatic and physical modification of milk fat: A review. International Dairy Journal, 21, 3–13.CrossRefGoogle Scholar
  72. Landaas, A., & Solberg, P. (1978). Production and characterization of lipase from a fluorescent pseudomonad. In Proceedings of 20th International Dairy Congress (Paris) E (pp. 304–305). Brussels, Belgium: International Dairy Federation.Google Scholar
  73. Law, B. A. (1984). Flavour development in cheeses. In F. L. Davies & B. A. Law (Eds.), Advances in the microbiology and biochemistry of cheese and fermented milk (pp. 187–208). London, UK: Elsevier Applied Science.Google Scholar
  74. Law, B. A., Sharpe, M. E., & Chapman, H. R. (1976). The effect of lipolytic Gram-negative psychrotrophs in stored milk on the development of rancidity in Cheddar cheese. The Journal of Dairy Research, 43, 459–468.CrossRefGoogle Scholar
  75. Law, B. A., & Wigmore, A. S. (1985). Effect of commercial lipolytic enzymes on flavor development in cheddar cheese. Journal of the Society of Dairy Technology, 38, 86–88.CrossRefGoogle Scholar
  76. Lerin, L. A., Loss, R. A., Remonatto, D., Zenevicz, M. C., Balen, M., Oenning Netto, V., et al. (2014). A review on lipase-catalyzed reactions in ultrasound-assisted systems. Bioprocess and Biosystems Engineering, 37, 2381–2394.PubMedCrossRefGoogle Scholar
  77. Lubary, M., Hofland, G. W., & ter Horst, J. H. (2011). A process for the production of a diacylglycerol-based milk fat analogue. European Journal of Lipid Science and Technology, 113, 459–468.CrossRefGoogle Scholar
  78. Marin, A., Mawhinney, T. P., & Marshall, R. T. (1984). Glycosidic activities of Pseudomonas fluorescens on fat-extracted skim milk, buttermilk and milk fat globule membranes. Journal of Dairy Science, 67, 52–59.CrossRefGoogle Scholar
  79. Marquardt, R. R., & Forster, T. L. (1962). Arylesterase activity of bovine milk as related to incidence of mastitis. Journal of Dairy Science, 45, 653.Google Scholar
  80. Marquardt, R. R., & Forster, T. L. (1965). Milk A-esterase levels as influenced by stage of lactation. Journal of Dairy Science, 48, 1526–1528.PubMedCrossRefGoogle Scholar
  81. McKellar, R. C. (Ed.). (1989). Enzymes of psychrotrophs in raw food. Boca Raton, FL: CRC Press.Google Scholar
  82. Morais Nunes, G. F., de Paula, A. V., de Castro, H. F., & dos Santos, J. C. (2011). Optimization of the enzymatic interesterification of milk fat and canola oil blends using immobilized Rhizopus oryzae lipase by response surface methodology. Food Technology and Biotechnology, 49, 385–390.Google Scholar
  83. Morley, N., & Kuksis, A. (1977). Lack of fatty-acid specificity in lipolysis of oligo-saturated and polyunsaturated triacylglycerols by milk lipoprotein-lipase. Biochimica et Biophysica Acta, 487, 332–342.PubMedCrossRefGoogle Scholar
  84. Mottar, J. (1981). Heat resistant enzymes in UHT milk and their influence on sensoric changes during uncooled storage. Milchwissenschaft, 36, 87–91.Google Scholar
  85. Muir, D. D., Phillips, J. D., & Dalgleish, D. G. (1979). The lipolytic and proteolytic activity of bacteria isolated from blended raw milk. Journal of the Society of Dairy Technology, 32, 19–23.CrossRefGoogle Scholar
  86. Nilsson-Ehle, P., Egelrud, T., Belfrage, P., Olivecrona, T., & Borgstrom, B. (1973). Positional specificity of purified milk lipoprotein-lipase. The Journal of Biological Chemistry, 248, 6734–6737.PubMedGoogle Scholar
  87. Noronha, N., Cronin, D., O’Riordan, D., & O’Sullivan, M. (2008). Flavouring reduced fat high fibre cheese products with enzyme modified cheeses (EMCs). Food Chemistry, 110, 973–978.PubMedCrossRefGoogle Scholar
  88. Olivecrona, T., Vilaró, S., & Olivecrona, G. (2003). Lipases in milk. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry: Proteins (Vol. 1, 3rd ed., pp. 473–494). New York, NY: Kluwer Academic.CrossRefGoogle Scholar
  89. Oterholm, A., Ordal, Z. J., & Witter, L. D. (1970). Glycerol ester hydrolase activity of Propionibacterium shermanii. Journal of Dairy Science, 53, 592–593.CrossRefGoogle Scholar
  90. Parodi, P. W. (1999). Conjugated linoleic acid and other anticarcinogenic agents of bovine milk fat. Journal of Dairy Science, 82, 1339–1349.PubMedCrossRefGoogle Scholar
  91. Riaublanc, A., Ratomahenina, R., Galzy, P., & Nicolas, M. (1993). Peculiar properties of lipase from Candida-parapsilosis (Ashford) Langeron and Talice. Journal of the American Oil Chemists’ Society, 70, 497–500.CrossRefGoogle Scholar
  92. Rønne, T. H., Yang, T. K., Mu, H. L., Jacobsen, C., & Xu, X. B. (2005). Enzymatic interesterification of butterfat with rapeseed oil in a continuous packed bed reactor. Journal of Agricultural and Food Chemistry, 53, 5617–5624.PubMedCrossRefGoogle Scholar
  93. Rousseau, D., Forestiere, K., Hill, A. R., & Marangoni, A. G. (1996). Restructuring butterfat through blending and chemical interesterification. 1. Melting behavior and triacylglycerol modifications. Journal of the American Oil Chemists’ Society, 73, 963–972.CrossRefGoogle Scholar
  94. Rousseau, D., Hill, A. R., & Marangoni, A. G. (1996). Restructuring butterfat through blending and chemical interesterification. 3. Rheology. Journal of the American Oil Chemists’ Society, 73, 983–989.CrossRefGoogle Scholar
  95. Rowe, M. T., Johnston, D. E., Kilpatrick, D. J., Dunstall, G., & Murphy, R. J. (1990). Growth and extracellular enzyme production by psychrotrophic bacteria in raw milk stored at a low temperature. Milchwissenschaft, 45, 495–499.Google Scholar
  96. Schmid, U., Bornscheuer, U. T., Soumanou, M. M., McNeill, G. P., & Schmid, R. D. (1998). Optimization of the reaction conditions in the lipase-catalyzed synthesis of structured triglycerides. Journal of the American Oil Chemists’ Society, 75, 1527–1531.CrossRefGoogle Scholar
  97. Sehanputri, P. S., & Hill, C. G. (2003). Lipase-mediated acidolysis of butteroil with free conjugated linoleic acid in a packed bed reactor. Biotechnology and Bioengineering, 83, 608–617.PubMedCrossRefGoogle Scholar
  98. Seitz, E. W. (1974). Industrial application of microbial lipases - Review. Journal of the American Oil Chemists’ Society, 51, 12–16.PubMedCrossRefGoogle Scholar
  99. Shelley, A. W., Deeth, H. C., & MacRae, I. C. (1986). Growth of lipolytic pschrotrophic pseudomonads in raw and ultra-heat-treated milk. The Journal of Applied Bacteriology, 61, 395–400.PubMedCrossRefGoogle Scholar
  100. Shin, J.-A., Akoh, C. C., & Lee, K.-T. (2010). Enzymatic interesterification of anhydrous butterfat with flaxseed oil and palm stearin to produce low-trans spreadable fat. Food Chemistry, 120, 1–9.CrossRefGoogle Scholar
  101. Sørensen, A. D. M., Xu, X., Zhang, L., Kristensen, J. B., Jacobsen C. (2010) Human Milk Fat Substitute from Butterfat: Production by Enzymatic Interesterification and Evaluation of Oxidative Stability. Journal of the American Oil Chemists’ Society, 87, (2):185–194.CrossRefGoogle Scholar
  102. Sørhaug, T., & Stepaniak, L. (1997). Psychrotrophs and their enzymes in milk and dairy products: Quality aspects. Trends in Food Science and Technology, 8, 35–41.CrossRefGoogle Scholar
  103. Soumanou, M. M., Perignon, M., & Villeneuve, P. (2013). Lipase-catalyzed interesterification reactions for human milk fat substitutes production: A review. European Journal of Lipid Science and Technology, 115, 270–285.CrossRefGoogle Scholar
  104. Stepaniak, L., Birkeland, S.-E., Sørhaug, T., & Vagias, G. (1987). Isolation and partial characterization of heat stable proteinase, lipase and phospholipase C from Pseudomonas fluorescens P1. Milchwissenschaft, 42, 75–79.Google Scholar
  105. Stewart, D. B., Murray, J. G., & Neill, S. D. (1975). Lipolytic activity of organisms isolated from refrigerated bulk milk. In IDF document 86 (pp. 38–50). Brussels, Belgium: International Dairy Federation.Google Scholar
  106. Sugiura, M., Oikawa, T., Hirano, K., & Inukai, T. (1977). Purification, crystallization and properties of triacylglycerol lipase from Pseudomonas fluorescens. Biochimica et Biophysica Acta, 488, 353–358.PubMedCrossRefGoogle Scholar
  107. Sundheim, G. (1988). Spontaneous lipolysis in bovine milk: Combined effects of cream, skim milk, and lipoprotein lipase activity. Journal of Dairy Science, 71, 620–626.CrossRefGoogle Scholar
  108. Te Whaiti, I. E., & Fryer, T. F. (1978). Production and heat stability in milk of proteinases and lipases of psychrotrophic pseudomonads. In Proceedings of 20th International Dairy Congress (Paris) E (pp. 303–304). Brussels, Belgium: International Dairy Federation.Google Scholar
  109. Woo, A. H., & Lindsay, R. C. (1984). Concentration of major free fatty acids and flavor development in Italian cheese varieties. Journal of Dairy Science, 67, 960–968.CrossRefGoogle Scholar
  110. Yang, B., Harper, W. J., Parkin, K. L., & Chen, J. (1994). Screening of commercial lipases for production of mono- and diacylglycerols from butteroil by enzymic glycerolysis. International Dairy Journal, 4, 1–13.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Agriculture and Food SciencesUniversity of QueenslandSt LuciaAustralia

Personalised recommendations