Advertisement

Ultrasound-Assisted Cream Separation

  • Thomas S. H. LeongEmail author
Chapter
  • 112 Downloads

Abstract

Ultrasonic standing waves can be applied to milks to promote the separation of cream. The mechanism for this separation arises from the acoustic forces generated in an acoustic standing wave that drives individual milk fat globules towards regions of high pressure, known as pressure anti-nodes, such that they may collect and flocculate together with increased probability. These flocculated collections of cream, may then separate from the milk rapidly due to natural buoyancy. By tuning the operating conditions and protocols employed, recent research has shown that it is possible to use these mechanisms to initiate fractionation of creams by the size of the individual milk fat globules. Ultrasonic separation technology offers an alternative methodology for cream separation that can be highly complementary to existing separation technologies currently available to the dairy industry.

References

  1. Ashokkumar, M., & Mason, T. J. (2000). Sonochemistry. In Kirk-Othmer encyclopedia of chemical technology. New York, NY: John Wiley & Sons, Inc..Google Scholar
  2. Bruus, H. (2012). Acoustofluidics 7: The acoustic radiation force on small particles. Lab on a Chip, 12, 1014–1021.PubMedCrossRefGoogle Scholar
  3. Caplan, Z., Melilli, C., & Barbano, D. (2013). Gravity separation of fat, somatic cells, and bacteria in raw and pasteurized milks. Journal of Dairy Science, 96(4), 2011–2019.PubMedCrossRefGoogle Scholar
  4. Cervato, R. C., & Giovanna, B. C. (1999). Studies on the antioxidant activity of milk caseins. International Journal of Food Sciences and Nutrition, 50, 291–296.PubMedCrossRefGoogle Scholar
  5. Dhungana, P., Truong, T., Palmer, M., Bansal, N., Bhandari, B., & Hub, A. D. I. (2017). Size-based fractionation of native milk fat globules by two-stage centrifugal separation. Innovative Food Science and Emerging Technologies, 41, 235–243.CrossRefGoogle Scholar
  6. Gor’kov, L. P. (1962). On the forces acting on a small particle in an acoustical field in an ideal fluid. Soviet Physics Doklady, 6, 773.Google Scholar
  7. Goudédranche, H., Fauquant, J., & Maubois, J.-L. (2000). Fractionation of globular milk fat by membrane microfiltration. Le Lait, 80, 93–98.CrossRefGoogle Scholar
  8. Grenvall, C., Augustsson, P., Folkenberg, J. R., & Laurell, T. (2009). Harmonic microchip acoustophoresis: A route to online raw milk sample precondition in protein and lipid content quality control. Analytical Chemistry, 81, 6195–6200.  https://doi.org/10.1021/Ac900723qCrossRefPubMedGoogle Scholar
  9. Grenvall, C., Folkenberg, J. R., Augustsson, P., & Laurell, T. (2012). Label-free somatic cell cytometry in raw milk using acoustophoresis. Cytometry Part A, 81, 1076–1083.CrossRefGoogle Scholar
  10. Johansson, L., Singh, T., Leong, T., Mawson, R., McArthur, S., Manasseh, R., et al. (2016). Cavitation and non-cavitation regime for large-scale ultrasonic standing wave particle separation systems–In situ gentle cavitation threshold determination and free radical related oxidation. Ultrasonics Sonochemistry, 28, 346–356.PubMedCrossRefGoogle Scholar
  11. Jonsson, H., Holm, C., Nilsson, A., Petersson, F., Johnsson, P., & Laurell, T. (2004). Particle separation using ultrasound can radically reduce embolic load to brain after cardiac surgery. The Annals of Thoracic Surgery, 78, 1572–1578.  https://doi.org/10.1016/j.athoracsur.2004.04.071CrossRefPubMedGoogle Scholar
  12. Juliano, P., Kutter, A., Cheng, L. J., Swiergon, P., Mawson, R., & Augustin, M. A. (2011). Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrasonics Sonochemistry, 18, 963–973.  https://doi.org/10.1016/j.ultsonch.2011.03.003CrossRefPubMedGoogle Scholar
  13. Juliano, P., Swiergon, P., Lee, K. H., Gee, P. T., Clarke, P. T., & Augustin, M. A. (2013). Effects of pilot plant-scale ultrasound on palm oil separation and oil quality. Journal of the American Oil Chemists’ Society, 90, 1253–1260.  https://doi.org/10.1007/s11746-013-2259-3CrossRefGoogle Scholar
  14. Juliano, P., Swiergon, P., Mawson, R., Knoerzer, K., & Augustin, M. A. (2013). Application of ultrasound for oil separation and recovery of palm oil. Journal of the American Oil Chemists’ Society, 90, 579–588.  https://doi.org/10.1007/s11746-012-2191-yCrossRefGoogle Scholar
  15. Juliano, P., Temmel, S., Rout, M., Swiergon, P., Mawson, R., & Knoerzer, K. (2013). Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies. Ultrasonics Sonochemistry, 20, 52–62.  https://doi.org/10.1016/j.ultsonch.2012.07.018CrossRefPubMedGoogle Scholar
  16. Juliano, P., Torkamani, A. E., Leong, T., Kolb, V., Watkins, P., Ajlouni, S., et al. (2014). Lipid oxidation volatiles absent in milk after selected ultrasound processing. Ultrasonics Sonochemistry, 21, 2165–2175.PubMedCrossRefGoogle Scholar
  17. King, L. V. (1934). On the acoustic radiation pressure on spheres. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 147, 212–240.  https://doi.org/10.1098/rspa.1934.0215CrossRefGoogle Scholar
  18. Koda, S., Kimura, T., Kondo, T., & Mitome, H. (2003). A standard method to calibrate sonochemical efficiency of an individual reaction system. Ultrasonics Sonochemistry, 10, 149–156.PubMedCrossRefGoogle Scholar
  19. Lenshof, A., & Laurell, T. (2011). Emerging clinical applications of microchip-based acoustophoresis. Journal of the Association for Laboratory Automation, 16, 443–449.  https://doi.org/10.1016/j.jala.2011.07.004CrossRefGoogle Scholar
  20. Leong, T., Ashokkumar, M., & Kentish, S. (2011). The fundamentals of power ultrasound–a review. Acoustics Australia, 39, 54–63.Google Scholar
  21. Leong, T., Coventry, M., Swiergon, P., Knoerzer, K., & Juliano, P. (2015). Ultrasound pressure distributions generated by high frequency transducers in large reactors. Ultrasonics Sonochemistry, 27, 22–29.PubMedCrossRefGoogle Scholar
  22. Leong, T., Johansson, L., Juliano, P., Mawson, R., McArthur, S., & Manasseh, R. (2014). Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrasonics Sonochemistry, 21, 1289–1298.PubMedCrossRefGoogle Scholar
  23. Leong, T., Johansson, L., Juliano, P., McArthur, S. L., & Manasseh, R. (2013a). Ultrasonic separation of particulate fluids in small and large scale systems: A review. Industrial and Engineering Chemistry Research, 52, 16555–16576.CrossRefGoogle Scholar
  24. Leong, T., Johansson, L., Juliano, P., McArthur, S. L., & Manasseh, R. (2013b). Ultrasonic separation of particulate fluids in small and large scale systems: A review. Industrial and Engineering Chemistry Research, 52, 16555–16576.  https://doi.org/10.1021/ie402295rCrossRefGoogle Scholar
  25. Leong, T., Johansson, L., Mawson, R., McArthur, S. L., Manasseh, R., & Juliano, P. (2016). Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel. Ultrasonics Sonochemistry, 28, 118–129.PubMedCrossRefGoogle Scholar
  26. Leong, T., Juliano, P., Johansson, L., Mawson, R., McArthur, S., & Manasseh, R. (2015). Continuous flow ultrasonic skimming of whole milk in a liter-scale vessel. Industrial and Engineering Chemistry Research, 54, 12671–12681.CrossRefGoogle Scholar
  27. Leong, T., Juliano, P., Johansson, L., Mawson, R., McArthur, S. L., & Manasseh, R. (2014). Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrasonics Sonochemistry, 21, 2092–2098.PubMedCrossRefGoogle Scholar
  28. Leong, T., Knoerzer, K., Trujillo, F. J., Johansson, L., Manasseh, R., Barbosa-Cánovas, G. V., et al. (2015). Megasonic separation of food droplets and particles: Design considerations. Food Engineering Reviews, 7, 298–320.CrossRefGoogle Scholar
  29. Leong, T., Yasui, K., Kato, K., Harvie, D., Ashokkumar, M., & Kentish, S. (2014). Effect of surfactants on single bubble sonoluminescence behavior and bubble surface stability. Physical Review E, 89, 043007.CrossRefGoogle Scholar
  30. Leong, T. S., Martin, G. J., & Ashokkumar, M. (2016). Ultrasonic encapsulation–A review. Ultrasonics Sonochemistry, 35(Pt B), 605–614.PubMedGoogle Scholar
  31. Lighthill, J. (1978). Acoustic streaming. Journal of Sound and Vibration, 61, 391–418.CrossRefGoogle Scholar
  32. Lindmark-Månsson, H., & Åkesson, B. (2000). Antioxidative factors in milk. British Journal of Nutrition, 84, 103–110.CrossRefGoogle Scholar
  33. Logan, A., Day, L., Pin, A., Auldist, M., Leis, A., Puvanenthiran, A., et al. (2014). Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food and Bioprocess Technology, 7, 3175–3185.CrossRefGoogle Scholar
  34. Ma, Y., & Barbano, D. (2000). Gravity separation of raw bovine milk: Fat globule size distribution and fat content of milk fractions. Journal of Dairy Science, 83, 1719–1727.PubMedCrossRefGoogle Scholar
  35. Mason, T. J., Cobley, A. J., Graves, J. E., & Morgan, D. (2011). New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrasonics Sonochemistry, 18, 226–230.  https://doi.org/10.1016/j.ultsonch.2010.05.008CrossRefPubMedGoogle Scholar
  36. Mettin, R., Akhatov, I., Parlitz, U., Ohl, C. D., & Lauterborn, W. (1997). Bjerknes forces between small cavitation bubbles in a strong acoustic field. Physical Review E, 56, 2924–2931.CrossRefGoogle Scholar
  37. Michalski, M., Leconte, N., Briard-Bion, V., Fauquant, J., Maubois, J., & Goudédranche, H. (2006). Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. Journal of Dairy Science, 89, 3778–3790.PubMedCrossRefGoogle Scholar
  38. Michalski, M.-C., Michel, F., Sainmont, D., & Briard, V. (2002). Apparent ζ-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids and Surfaces B: Biointerfaces, 23, 23–30.CrossRefGoogle Scholar
  39. Michaud, M., Leong, T., Swiergon, P., Juliano, P., & Knoerzer, K. (2015). Design parameters of stainless steel plates for maximizing high frequency ultrasound wave transmission. Ultrasonics Sonochemistry, 26, 56–63.PubMedCrossRefGoogle Scholar
  40. Miles, C. A., Morley, M. J., Hudson, W. R., & Mackey, B. M. (1995). Principles of separating micro-organisms from suspensions using ultrasound. Journal of Applied Microbiology, 78, 47–54.  https://doi.org/10.1111/j.1365-2672.1995.tb01672.xCrossRefGoogle Scholar
  41. Mulder, H., & Walstra, P. (1974). The milk fat globule: Emulsion science as applied to milk products and comparable foods. Belfast, Ireland: Commonwealth Agricultural Bureaux.Google Scholar
  42. Nilsson, A., Petersson, F., Jönsson, H., & Laurell, T. (2004). Acoustic control of suspended particles in micro fluidic chips. Lab on a Chip, 4, 131–135.PubMedCrossRefGoogle Scholar
  43. O’Mahony, J. A., Auty, M. A., & McSweeney, P. L. (2005). The manufacture of miniature Cheddar-type cheeses from milks with different fat globule size distributions. Journal of Dairy Research, 72, 338–348.PubMedCrossRefGoogle Scholar
  44. Petersson, F., Nilsson, A., Holm, C., Jonsson, H., & Laurell, T. (2004). Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels. Analyst, 129, 938–943.  https://doi.org/10.1039/B409139fCrossRefPubMedGoogle Scholar
  45. Petersson, F., Nilsson, A., Holm, C., Jonsson, H., & Laurell, T. (2005). Continuous separation of lipid particles from erythrocytes by means of laminar flow and acoustic standing wave forces. Lab on a Chip, 5, 20–22.  https://doi.org/10.1039/B405748cCrossRefPubMedGoogle Scholar
  46. Shanmugam, A., Chandrapala, J., & Ashokkumar, M. (2012). The effect of ultrasound on the physical and functional properties of skim milk. Innovative Food Science and Emerging Technologies, 16, 251–258.CrossRefGoogle Scholar
  47. Sieber, R. (2005). Oxidised cholesterol in milk and dairy products. International Dairy Journal, 15, 191–206.CrossRefGoogle Scholar
  48. Spengler, J., & Jekel, M. (2000). Ultrasound conditioning of suspensions - Studies of streaming influence on particle aggregation on a lab- and pilot-plant scale. Ultrasonics, 38, 624–628.PubMedCrossRefGoogle Scholar
  49. Spengler, J. F., Coakley, W. T., & Christensen, K. T. (2003). Microstreaming effects on particle concentration in an ultrasonic standing wave. AIChE Journal, 49, 2773–2782.CrossRefGoogle Scholar
  50. Stokes, G. G. (1848). On a difficulty in the theory of sound. Philosophical Magazine, 33, 349–356.  https://doi.org/10.1080/14786444808646119CrossRefGoogle Scholar
  51. Taylor, M., & Richardson, T. (1980). Antioxidant activity of skim milk: Effect of sonication. Journal of Dairy Science, 63, 1938–1942.PubMedCrossRefGoogle Scholar
  52. Temmel, S. (2012). Enhanced separation of creaming in a megasonic cubic reactor. Erlangen, Germany: Friedrich-Alexander-Universitat Erlangen-Nurnberg.Google Scholar
  53. Torkamani, A. E., Juliano, P., Fagan, P., Jiménez-Flores, R., Ajlouni, S., & Singh, T. K. (2016). Effect of ultrasound-enhanced fat separation on whey powder phospholipid composition and stability. Journal of Dairy Science, 99, 4169–4177.PubMedCrossRefGoogle Scholar
  54. Weiser, M., Apfel, R., & Neppiras, E. (1984). Interparticle forces on red cells in a standing wave field. Acta Acustica united with Acustica, 56, 114–119.Google Scholar
  55. Weissler, A. (1959). Formation of hydrogen peroxide by ultrasonic waves: Free radicals. Journal of the American Chemical Society, 81, 1077–1081.CrossRefGoogle Scholar
  56. Yosioka, K., & Kawasima, Y. (1955). Acoustic radiation pressure on a compressible sphere. Acustica, 5, 167.Google Scholar
  57. Zarembo, L. K. (1971). Acoustic streaming. In L. D. Rozenberg (Ed.), High-intensity ultrasonic fields (Vol. 85, p. 137). New York, NY: Plenum Press.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ARC Dairy Innovation HubUniversity of MelbourneParkvilleAustralia

Personalised recommendations