Dairy Creams and Related Products

  • Pramesh Dhungana
  • Bhesh BhandariEmail author


Milk fat globules, which are the building blocks of cream, are naturally secreted in the bovine mammary gland. The secretion process involves accumulation of small triacylglycerol (TAG) microdroplets followed by covering up from three-layered membrane and eventual release as fat globules in bulk milk. Since the fat globule contains a larger proportion of TAG at their core and a membrane with numerous health-promoting substances, it is considered as a food ingredient with a source of both energy and functional compounds.


  1. Banks, W., & Muir, D. (1988). Stability of alcohol-containing emulsions. In Advances in food emulsions and foams (pp. 257–283). London, UK: Elsevier.Google Scholar
  2. Banks, W., & Muir, D. D. (1985). Effect of alcohol content on emulsion stability of cream liqueurs. Food Chemistry, 18(2), 139–152. Scholar
  3. Berton, A., Rouvellac, S., Robert, B., Rousseau, F., Lopez, C., & Crenon, I. (2012). Effect of the size and interface composition of milk fat globules on their in vitro digestion by the human pancreatic lipase: Native versus homogenized milk fat globules. Food Hydrocolloids, 29(1), 123–134.CrossRefGoogle Scholar
  4. Born, B. (2013). Cultured/sour cream. In Manufacturing yogurt and fermented milks (pp. 381–391). New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
  5. Camacho, M. M., Martı́nez-Navarrete, N., & Chiralt, A. (1998). Influence of locust bean gum/λ-carrageenan mixtures on whipping and mechanical properties and stability of dairy creams. Food Research International, 31(9), 653–658. Scholar
  6. Chen, L. (2015). Emulsifiers as food texture modifiers. In J. Chen & A. Rosenthal (Eds.), Modifying food texture: Novel ingredients and processing techniques (Vol. 1, pp. 27–49). Cambridge, UK: Woodhead Publishing.CrossRefGoogle Scholar
  7. Codex. (2014). Codex standard for milk powders and cream powder. In Standard for cream powder, half cream powder and high fat milk powder (Vol. A-10-1971) (pp. 1–6). Geneva: FAO/WHO.Google Scholar
  8. Coupland, J. N. (2018). Crystallization of lipids in oil-in-water emulsion states. In Crystallization of lipids: Fundamentals and applications in food, cosmetics, and pharmaceuticals (p. 431). Hoboken, NJ: John Wiley & Sons Ltd.CrossRefGoogle Scholar
  9. Dalgleish, D. (1989). Protein-stabilized emulsions and their properties (pp. 211–250). London, UK: Elsevier Applied Science.Google Scholar
  10. Dalgleish, D., Tosh, S., & West, S. (1996). Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a microfluidizer. Nederlands melk en Zuiveltijdschrift, 50(2), 135–148.Google Scholar
  11. Deeth, H. (1997). The role of phospholipids in the stability of milk fat globules. Australian Journal of Dairy Technology, 52(1), 44.Google Scholar
  12. Dhungana, P., Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2017). Size-based fractionation of native milk fat globules by two-stage centrifugal separation. Innovative Food Science & Emerging Technologies, 41, 235–243.CrossRefGoogle Scholar
  13. Early, R. (1998). Technology of dairy products. Cham, Switzerland: Springer Science & Business Media.Google Scholar
  14. Edén, J., Dejmek, P., Löfgren, R., Paulsson, M., & Glantz, M. (2016). Native milk fat globule size and its influence on whipping properties. International Dairy Journal, 61, 176–181. Scholar
  15. Ertugay, M. F., Sengul, M., & Sengul, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkish Journal of Veterinary and Animal Sciences, 28(2), 303–308.Google Scholar
  16. Everett, D. W. (2007). Cream products. In Y. H. Hui (Ed.), Handbook of food products manufacturing (pp. 723–747). New York, NY: John Wiley & Sons.Google Scholar
  17. Fäldt, P., & Bergenståhl, B. (1995). Fat encapsulation in spray-dried food powders. Journal of the American Oil Chemists’ Society, 72(2), 171–176. Scholar
  18. Fäldt, P., & Bergenståhl, B. (1996a). Spray-dried whey protein/lactose/soybean oil emulsions. 1. Surface composition and particle structure. Food Hydrocolloids, 10(4), 421–429.CrossRefGoogle Scholar
  19. Fäldt, P., & Bergenståhl, B. (1996b). Spray-dried whey protein/lactose/soybean oil emulsions. 2. Redispersability, wettability and particle structure. Food Hydrocolloids, 10(4), 431–439.CrossRefGoogle Scholar
  20. FDA. (2015). Milk and Cream. Maryland, USA: Department of Health and Human Services, USA Retrieved from
  21. Fredrick, E., Heyman, B., Moens, K., Fischer, S., Verwijlen, T., Moldenaers, P., et al. (2013). Monoacylglycerols in dairy recombined cream: II. The effect on partial coalescence and whipping properties. Food Research International, 51(2), 936–945.CrossRefGoogle Scholar
  22. FSANZ. (2016). Australia New Zealand Food Standards code- Standard- 2.5.2-Cream. Australia: The Board of Food Standards Australia New Zealand Retrieved from
  23. Getz, C., Smith, G. F., Tracy, P., & Prucha, M. (1937). Instant whipping of cream by aeration. Journal of Food Science, 2(5), 409–428.CrossRefGoogle Scholar
  24. Goudédranche, H., Fauquant, J., & Maubois, J.-L. (2000). Fractionation of globular milk fat by membrane microfiltration. Le Lait, 80(1), 93–98.CrossRefGoogle Scholar
  25. Hardam, J. F., Imison, B. W., & French, H. M. (2000). Effect of homogenisation and microfluidisation on the extent of fat separation during storage of UHT milk. Australian Journal of Dairy Technology, 55(1), 16–22.Google Scholar
  26. Hayes, M. G., & Kelly, A. L. (2003). High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. Journal of Dairy Research, 70(03), 297–305.CrossRefPubMedGoogle Scholar
  27. Heffernan, S. P., Kelly, A. L., & Mulvihill, D. M. (2009). High-pressure-homogenised cream liqueurs: Emulsification and stabilization efficiency. Journal of Food Engineering, 95(3), 525–531. Scholar
  28. Hoffmann, W., & Buchheim, W. (2006). Significance of milk fat in cream products. In Advanced dairy chemistry volume 2: Lipids (pp. 365–375). New York, NY: Springer.CrossRefGoogle Scholar
  29. Hogan, S. A., McNamee, B. F., O’Riordan, E. D., & O’Sullivan, M. (2001). Microencapsulating properties of sodium caseinate. Journal of Agricultural and Food Chemistry, 49(4), 1934–1938.PubMedCrossRefGoogle Scholar
  30. Hotrum, N. E., Stuart, M. A. C., van Vliet, T., Avino, S. F., & van Aken, G. A. (2005). Elucidating the relationship between the spreading coefficient, surface-mediated partial coalescence and the whipping time of artificial cream. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 260(1-3), 71–78.CrossRefGoogle Scholar
  31. Hu, B., Zhang, L., Liang, R., Chen, F., He, L., Hu, B., et al. (2015). Cross-linking of interfacial casein layer with genipin prevented pH-induced structural instability and lipase digestibility of the fat droplets. Journal of Agricultural and Food Chemistry, 63(7), 2033–2040. Scholar
  32. Hussain, H., Truong, T., Bansal, N., & Bhandari, B. (2017). The effect of manipulating fat globule size on the stability and rheological properties of dairy creams. Food Biophysics, 12(1), 1–10. Scholar
  33. IDFA. (2018). Sour cream. Definitions. Retrieved from
  34. Keogh, M. K. (2004). Spray-dried microencapsulated fat powders. In O. Charles (Ed.), Encapsulated and powdered foods (pp. 477–482). New York, NY: Taylor and Francis.Google Scholar
  35. Lampert, L. M. (1965). Modern dairy products: Composition, food value, processing, chemistry, bacteriology, testing. New York, NY: Chemical Publishing Company.Google Scholar
  36. Leong, T., Johansson, L., Juliano, P., McArthur, S. L., & Manasseh, R. (2013). Ultrasonic separation of particulate fluids in small and large scale systems: A review. Industrial & Engineering Chemistry Research, 52(47), 16555–16576. Scholar
  37. Leong, T., Johansson, L., Mawson, R., McArthur, S. L., Manasseh, R., & Juliano, P. (2016). Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel. Ultrasonics Sonochemistry, 28, 118–129. Scholar
  38. Lopez, C. (2005). Focus on the supramolecular structure of milk fat in dairy products. Reproduction Nutrition Development, 45(4), 497–511.CrossRefGoogle Scholar
  39. Lopez, C., Briard-Bion, V., Ménard, O., Beaucher, E., Rousseau, F., Fauquant, J., et al. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125(2), 355–368.CrossRefGoogle Scholar
  40. Luo, J., Wang, Y., Guo, H., & Ren, F. (2017). Effects of size and stability of native fat globules on the formation of milk gel induced by rennet. Journal of Food Science, 82(3), 670–678.PubMedCrossRefGoogle Scholar
  41. Ma, Y., & Barbano, D. M. (2000). Gravity separation of raw bovine milk: Fat globule size distribution and fat content of milk fractions. Journal of Dairy Science, 83(8), 1719–1727. Scholar
  42. Mahdi, J. S., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization—A comparison. International Journal of Food Properties, 9(3), 475–485. Scholar
  43. Mason, T. G., Wilking, J., Meleson, K., Chang, C., & Graves, S. (2006). Nanoemulsions: Formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635.Google Scholar
  44. Mesilati-Stahy, R., Mida, K., & Argov-Argaman, N. (2011). Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. Journal of Agricultural and Food Chemistry, 59(13), 7427–7435.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Michalski, M.-C., Briard, V., & Juaneda, P. (2005). CLA profile in native fat globules of different sizes selected from raw milk. International Dairy Journal, 15(11), 1089–1094.CrossRefGoogle Scholar
  46. Michalski, M.-C., Leconte, N., Briard-Bion, V., Fauquant, J., Maubois, J., & Goudédranche, H. (2006). Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. Journal of Dairy Science, 89(10), 3778–3790.CrossRefPubMedGoogle Scholar
  47. Mitchell, P. C. (2016). Modernization of the traditional Irish cream liqueur production process. In A. McElhatton & M. M. El Idrissi (Eds.), Modernization of traditional food processes and products (pp. 31–44). Boston, MA: Springer US.CrossRefGoogle Scholar
  48. Mudgil, D., Barak, S., & Khatkar, B. S. (2014). Guar gum: Processing, properties and food applications—A review. Journal of Food Science and Technology, 51(3), 409–418. Scholar
  49. Muir, D. D., & Banks, W. (1986). Technical note: Multiple homogenization of cream liqueurs. International Journal of Food Science & Technology, 21(2), 229–232. Scholar
  50. Muthupandian, A., Bhaskaracharya, R., Kentish, S., Lee, J., Palmer, M., & Zisu, B. (2010). The ultrasonic processing of dairy products – An overview. Dairy Science & Technology, 90(2-3), 147–168.CrossRefGoogle Scholar
  51. Olsson, A., & Mamic, A. (2015). Method development for fractionation of milk fat globules-for improvement of cream functionality.Google Scholar
  52. Ozturk, B., & McClements, D. J. (2016). Progress in natural emulsifiers for utilization in food emulsions. Current Opinion in Food Science, 7, 1–6.CrossRefGoogle Scholar
  53. Panchal, B. R., Truong, T., Prakash, S., Bansal, N., Bhandari, B., & Hub, A. D. I. (2017). Effect of fat globule size on the churnability of dairy cream. Food Research International, 99, 229–238.CrossRefPubMedGoogle Scholar
  54. Precht, D., Peters, K. H., & Petersen, J. (1988). Improvement of storage stability and foaming properties of cream by addition of carrageenan and milk constituents. Food Hydrocolloids, 2(6), 491–506. Scholar
  55. Relkin, P., Sourdet, S., & Fosseux, P.-Y. (2003). Fat crystallization in complex food emulsions: Effects of adsorbed milk proteins and of a whipping process. Journal of Thermal Analysis and Calorimetry, 71(1), 187–195. Scholar
  56. Saito, Z. (1985). Particle structure in spray-dried whole milk and in instant skim milk powder as related to lactose crystallization. Food Structure, 4(2), 16.Google Scholar
  57. Saravacos, G., & Kostaropoulos, A. E. (2016). Mechanical separation equipment. In Handbook of food processing equipment (pp. 233–292). New York, NY: Springer.CrossRefGoogle Scholar
  58. Serra, M., Trujillo, A., Quevedo, J., Guamis, B., & Ferragut, V. (2007). Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. International Dairy Journal, 17(7), 782–790.CrossRefGoogle Scholar
  59. Soottitantawat, A., Bigeard, F., Yoshii, H., Furuta, T., Ohkawara, M., & Linko, P. (2005). Influence of emulsion and powder size on the stability of encapsulated d-limonene by spray drying. Innovative Food Science & Emerging Technologies, 6(1), 107–114. Scholar
  60. Spreer, E. (1998). Milk and dairy product technology (Vol. 83). Raton, FL: CRC Press.Google Scholar
  61. St-Gelais, D., Passey, C. A., Haché, S., & Roy, P. (1997). Production of low-fat Cheddar cheese from low and high mineral retentate powders and different fractions of milkfat globules. International Dairy Journal, 7(11), 733–741. Scholar
  62. Sung, K. K., & Goff, H. D. (2010). Effect of solid fat content on structure in ice creams containing palm kernel oil and high-oleic sunflower oil. Journal of Food Science, 75(3), C274–C279.PubMedCrossRefGoogle Scholar
  63. Tamime, A. Y. (2009). Dairy fats and related products. New York, NY: John Wiley & Sons.CrossRefGoogle Scholar
  64. Thiebaud, M., Dumay, E., Picart, L., Guiraud, J., & Cheftel, J. (2003). High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. International Dairy Journal, 13(6), 427–439.CrossRefGoogle Scholar
  65. Towler, C. (1994). Developments in cream separation and processing. In R. K. Robinson (Ed.), Modern dairy technology: Volume 1. Advances in milk processing (pp. 61–105). Boston, MA: Springer US.CrossRefGoogle Scholar
  66. Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2013). Physical properties of milk fat in nanoemulsions. Cham, Switzerland: Springer.CrossRefGoogle Scholar
  67. Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2016a). Effect of milk fat globule size on physical properties of milk. In Effect of milk fat globule size on the physical functionality of dairy products (pp. 35–45). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  68. Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2016b). Methodologies to vary milk fat globule size. In Effect of milk fat globule size on the physical functionality of dairy products (pp. 15–30). Cham, Switzerland: Springer.CrossRefGoogle Scholar
  69. UOG. (2018). Milk solids-not-fat. Food Science Department, University of Guelph. Retrieved 27 July, 2018, from
  70. van Lent, K., Le, C. T., Vanlerberghe, B., & Van der Meeren, P. (2008). Effect of formulation on the emulsion and whipping properties of recombined dairy cream. International Dairy Journal, 18(10–11), 1003–1010. Scholar
  71. Varnam, A., & Sutherland, J. P. (2001). Milk and milk products: Technology, chemistry and microbiology (Vol. 1). Heidelberg, Germany: Springer Science & Business Media.Google Scholar
  72. Vignolles, M.-L., Lopez, C., Le Floch-Fouéré, C., Ehrhardt, J.-J., Méjean, S., Jeantet, R., et al. (2010). Fat supramolecular structure in fat-filled dairy powders: A tool to adjust spray-drying temperatures. Dairy Science & Technology, 90(2-3), 287–300.CrossRefGoogle Scholar
  73. Villamiel, M., & de Jong, P. (2000). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry, 48(2), 472–478. Scholar
  74. Vliet, T. v., & Dentener-Kikkert, A. (1982). Influence of the composition of the milk fat globule membrane in the rheological properties of acid milk gels. Netherlands Milk and Dairy Journal, 36, 261–265.Google Scholar
  75. Walstra, P. (1999). Dairy technology: Principles of milk properties and processes. New York, NY: CRC Press.CrossRefGoogle Scholar
  76. Walstra, P., Walstra, P., Wouters, J. T., & Geurts, T. J. (2005). Cream products. In Dairy science and technology (2nd ed., pp. 447–466). New York, NY: CRC Press.CrossRefGoogle Scholar
  77. Walstra, P., Wouters, J. T., & Geurts, T. J. (2005). Dairy science and technology. New York, NY: CRC Press.CrossRefGoogle Scholar
  78. Wilbey, R. A. (1996). Estimating the degree of heat treatment given to milk. International Journal of Dairy Technology, 49(4), 109–112.CrossRefGoogle Scholar
  79. Williams, P., Phillips, G., & de Vries, J. (2004). Hydrocolloid gelling agents and their applications. In Gums and stabilisers for the food industry (Vol. 12, pp. 23–31). Cambridge, UK: Royal Society of Chemistry.Google Scholar
  80. Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 1(3), 211–218. Scholar
  81. Zannoni, M. (1981). [Survey of natural creaming of milk fat in the Parmigiano-Reggiano cheese production area [in Italy]].[Italian]. Scienza e Tecnica Lattiero Casearia.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ARC Dairy Innovation Hub, School of Agriculture and Food SciencesThe University of QueenslandSt LuciaAustralia

Personalised recommendations