Ghee, Anhydrous Milk Fat and Butteroil

  • Surendra Nath Battula
  • N. Laxmana Naik
  • Rajan Sharma
  • Bimlesh Mann


Oils and fats have been constituents of human nutrition from ancient times; they contain the highest level of energy of all components of food and supply essential elements for the body. Dietary lipids provide essential fatty acids (EFA) and facilitate the absorption of lipid-soluble vitamins (FAO-WHO, 2010). They also largely determine the texture and flavour of foods and hence, enhance their taste and acceptability. In addition, fats slow gastric emptying and intestinal motility, thereby prolonging satiety. Milk fat is the third main source of lipids for human nutrition (Aguedo et al., 2008); it has been harvested for human use for thousands of years (Gnanasambandam, Torres-Gonzalez, Burrington, & Kapoor, 2017). Historically, milk fat and milk fat-based products have found a special place in food habits of all cultures as people all over the world have consumed them. It is widely acknowledged that milk fat imparts excellent flavour and superior mouthfeel to milk products (Aguedo et al., 2008; Omar et al., 2017; Reddy, 2010). Milk fat in the form of butter or cream has limited shelf life owing to lipolysis and microbiological deterioration. Since these types of spoilage take place in the water phase or at the interface between the water and the fat phases, it is well known that removal of water from cream and butter by converting them to anhydrous milk fat, butteroil and ghee extends the keeping quality of milk fat (Illingworth, Patil, & Tamime, 2009; Mortensen, 2011). The latest is the major form of utilization of milk fat in the Indian sub-continent. In this Chapter, the product description, method of manufacturing, composition, physico-chemical properties and functionality of ghee, anhydrous milk fat and butteroil are described.


  1. Abou-Donia, S. A., & El-Agamy, S. I. (1993). Ghee. In R. Macrae, R. K. Robinson, & M. J. Sadler (Eds.), Encyclopaedia of food science, food technology and nutrition (Vol. 6, pp. 3992–3994). London, UK: Academic Press Ltd.Google Scholar
  2. Achaya, K. T. (1997). Ghee, vanaspati and special fats in India. In F. D. Gunstone & F. B. Padley (Eds.), Lipid technologies and applications (pp. 369–390). New York, NY: Marcel Dekker Inc..Google Scholar
  3. Aguedo, M., Hanon, E., Danthine, S., Paquot, M., Lognay, G., Thomas, A., et al. (2008). Enrichment of anhydrous milk fat in polyunsaturated fatty acid residues from linseed and rapeseed oils through enzymatic interesterification. Journal of Agricultural and Food Chemistry, 56(5), 1757–1765.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Anderson, A. J. C. (1962). Section 2: Neutralisation or de-acidification. In P. N. Williams (Ed.), Refining oils and fats for edible purposes (2nd ed., pp. 28–213). Oxford, UK: Pergamon Press.Google Scholar
  5. Aneja, R. P., Mathur, B. N., Chandan, R. C., & Banerjee, A. K. (2002). Fat rich products. In Technology of Indian milk products (pp. 183–198). New Delhi, India: Dairy India Publication.Google Scholar
  6. Anonymous. (2003). Anhydrous milk fat (AMF) and butteroil. In Dairy processing handbook (2nd ed., pp. 293–299). Lund, Sweden: Tetra Pak Processing Systems AB.Google Scholar
  7. Aro, A., Jauhiainen, M., Partanen, R., Salminen, I., & Mutanen, M. (1997). Stearic acid, trans fatty acids, and dairy fat: Effects on serum and lipoprotein lipids, apolipoproteins, lipoprotein (a), and lipid transfer proteins in healthy subjects. The American Journal of Clinical Nutrition, 65(5), 1419–1426.PubMedCrossRefGoogle Scholar
  8. Arpita, R. M. (2015). Modeling the antioxidant potential of pomegranate peel extract in ghee. PhD Thesis. Southern Regional Station, ICAR- National Dairy Research Institute (Deemed University), India.Google Scholar
  9. Artman, N. R. (1969). The chemical and biological properties of heated and oxidized fats. In Advances in lipid research (Vol. 7, pp. 245–330). Amsterdam, The Netherlands: Elsevier.Google Scholar
  10. Arumughan, C., & Narayan, K. M. (1982). Triacylglycerol composition of buffalo milk fat. Journal of Dairy Research, 49, 81–85.PubMedCrossRefGoogle Scholar
  11. Asha, A., Manjunatha, M., Rekha, R. M., Surendranath, B., Heartwin, P., Rao, J., et al. (2015). Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures. Journal of Food Science and Technology, 52(12), 8220–8227.PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bahadur, B., Srinivasan, M. R., & Ray, S. C. (1950). Utilisation of induced stratification of butter melt in ghee making. Indian Journal of Dairy Science, 3(3), 94–106.Google Scholar
  13. Bitman, J., & Wood, D. L. (1990). Changes in milk fat phospholipids during lactation. Journal of Dairy Science, 73(5), 1208–1216.CrossRefPubMedGoogle Scholar
  14. Bornaz, S., Fanni, J., & Parmentier, M. (1993). Butter texture: The prevalent triglycerides. Journal of the American Oil Chemists Society, 70(11), 1075–1079.CrossRefGoogle Scholar
  15. Buss, D. H., Jackson, P. A., & Scuffam, D. (1984). Composition of butters on sale in Britain. Journal of Dairy Research, 51(4), 637–641.CrossRefGoogle Scholar
  16. Bylund, G. (2003). Dairy processing handbook. Lund, Sweden: Tetra Pak Processing Systems AB.Google Scholar
  17. Christie, W. W. (1988). Lipid Analysis: Isolation, separation, identification and structural analysis of lipids (pp. 93–96). Bridgwater, UK: Pergamon Press.Google Scholar
  18. Christie, W. W. (1995). Composition and structure of milk lipids. In P. F. Fox (Ed.), Advanced dairy chemistry-2 (pp. 1–56). London, UK: Chapman and Hall.Google Scholar
  19. Christie, W. W. (2003). Lipid Analysis: Isolation, separation, identification and structural analysis of lipids. Bridgwater, UK: Elsevier.Google Scholar
  20. Cockerell, I., Francis, B., & Halliday, D. (1971). Changes in the nutritive value of concentrate feedstuffs during storage. In Proceedings of Conference of Feed Resources and improvement of Animal feeding methods in the CENTO Region countries (pp. 181–192). London, UK: Tropical Products Institute.Google Scholar
  21. Codex Alimentarius. (2018). Milk and milk products (2nd ed.). Codex Standard for Milk fat Products Stan 280-1973.Google Scholar
  22. Crnjar, E. D., Witchwoot, A., & Nawar, W. W. (1981). Thermal oxidation of a series of saturated triacylglycerols. Journal of Agricultural and Food Chemistry, 29(1), 39–42.CrossRefGoogle Scholar
  23. De, S. (1980). Indian dairy products. In Outlines of dairy technology (pp. 433–462). New Delhi, India: Rekha Printers Pvt Ltd.Google Scholar
  24. Dimick, P. S., McCarthy, R. D., & Patton, S. (1970). Milk fat synthesis. In Physiology of digestions and metabolism in the ruminant (pp. 29–54). Newcastle-upon-Tyne, UK: Oriel Press.Google Scholar
  25. Dirar, H. A. (1993). The indigenous fermented foods of the Sudan: A study in African food and nutrition. Wallingford, UK: CAB International.Google Scholar
  26. Dolby, R. M. (1949). The properties of New Zealand butters and butterfats: II. The relation of hardness of New Zealand commercial butter to composition of the butterfat. Journal of Dairy Research, 16(3), 336–347.CrossRefGoogle Scholar
  27. Endres, J. G., Bhalerao, V. R., & Kummerow, F. A. (1962). Thermal oxidation of synthetic triglycerides. I. Composition of oxidized triglycerides. Journal of the American Oil Chemists Society, 39(2), 118–121.CrossRefGoogle Scholar
  28. FAO. (2017). Milk and milk products: Price and trade update, trade and markets division (EST) (pp. 1–7). Rome, Italy: Food and Agriculture Organization of the United Nations (FAO).Google Scholar
  29. FAO-WHO. (2010). Fat and fatty acid requirements for Adults. In FAO food and nutrition paper-91, fats and fatty acids in human nutrition: Report of an expert consultation (pp. 55–62). Rome, Italy: FAO-WHO.Google Scholar
  30. Fennema, O. R. (1985). Food chemistry (2nd ed.). New York, NY: Marcel Dekker Inc..Google Scholar
  31. FSSR. (2011). Food products standards. In Food safety and standards (Food products standards and food additives) regulations.
  32. Gaba, K. L., & Jain, M. K. (1973). Note on the flavour changes in ghee on storage: Their sensory and chemical assessment. The Indian Journal of Animal Sciences, 43(1), 67–70.Google Scholar
  33. Ganguli, N. C., & Jain, M. K. (1973). Ghee: Its chemistry, processing and technology. Journal of Dairy Science, 56(1), 19–25.CrossRefGoogle Scholar
  34. German, J. B., & Dillard, C. J. (1998). Fractionated milk fat: Composition, structure, and functional properties. Food Technology, 52(2), 38.Google Scholar
  35. Glass, R. L., & Jenness, R. (1971). Comparative biochemical studies of milk. 6. Constituent fatty acids of milk fats of additional species. Comparative Biochemistry and Physiology, 28, 353–359.Google Scholar
  36. Gnanasambandam, R., Torres-Gonzalez, M., Burrington, K. J., & Kapoor, R. (2017). Milk fat and related ingredients serving today’s marketplace (pp. 1–16).Google Scholar
  37. Gresti, J., Bugaut, M., Maniongui, C., & Bezard, J. (1993). Composition of molecular species of triacylglycerols in bovine milk fat. Journal of Dairy Science, 76(7), 1850–1869.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Grummer, R. R. (1991). Effect of feed on the composition of milk fat. Journal of Dairy Science, 74(9), 3244–3257.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gunstone, F. D., Harwood, J. L., & Padley, F. B. (1986). The lipid hand book (pp. 1–169). London, UK: Chapman and Hall.CrossRefGoogle Scholar
  40. Hawke, J. C. (1957). The fatty acids of butterfat and the volatile acids formed on oxidation. Journal of Dairy Research, 24(3), 366–371.CrossRefGoogle Scholar
  41. Hawke, J. C., & Taylor, M. W. (1983). Influence of nutritional factors on the yield, composition and physical properties of milk fat. In Developments in dairy chemistry (Vol. 2, pp. 37–81). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  42. Illingworth, D. (2002). Fractionation of fats. In A. G. Marangoni & S. S. Narine (Eds.), Physical properties of lipids (pp. 411–448). New York, NY: Marcel Dekker.Google Scholar
  43. Illingworth, D., Patil, G. R., & Tamime, A. Y. (2009). Anhydrous milk fat manufacture and fractionation. In Dairy fats and related products (pp. 108–166). Oxford, UK: Wiley-Blackwell.CrossRefGoogle Scholar
  44. Indian Standards Institution. (1966). IS 3508 (1966) reaffirmed- 2003: Method of sampling and test for ghee [FAD19: Dairy products and equipment]. New Delhi, India: Bureau of Indian Standards.Google Scholar
  45. Jensen, R. G. (1992). Fatty acids in milk and dairy products. In C. K. Chowk (Ed.), Fatty acid in foods and their health implications (pp. 95–135). New York, NY: Marcel Dekker.Google Scholar
  46. Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to december 2000. Journal of Dairy Science, 85(2), 295–350.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Jensen, R. G., Ferris, A. M., & Lammi-Keefe, C. J. (1991). The composition of milk fat. Journal of Dairy Science, 74(9), 3228–3243.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Jensen, R. G., Gander, G. W., & Sampugna, J. (1962). Fatty acid composition of the lipids from pooled, raw milk. Journal of Dairy Science, 45(3), 329–331.CrossRefGoogle Scholar
  49. Jensen, R. G., & Newburg, D. S. (1995). Milk lipids. In R. G. Jensen (Ed.), Handbook of milk composition (pp. 545–575). New York, NY: Academic Press.Google Scholar
  50. Joseph, A. M., & Appachar, S. R. (1980). Effect of ripening cream with selected lactic acid bacteria on the quality of ghee. Journal of Dairy Research, 47(3), 411–415.CrossRefGoogle Scholar
  51. Kaya, A. (2000). Properties and stability of butter oil obtained from milk and yoghurt. Food, 44(2), 126–129.PubMedGoogle Scholar
  52. Kaylegian, K. E., Hartel, R. W., & Lindsay, R. C. (1993). Applications of modified milk fat in food products. Journal of Dairy Science, 76(6), 1782–1796.CrossRefGoogle Scholar
  53. Kaylegian, K. E., & Lindsay, R. C. (1995). Handbook of milk fat fractionation technology and application. Champaign, IL: American Oil Chemists’ Society Press.Google Scholar
  54. Kleyn, D. H. (1992). Textural aspects of butter. Food Technology, 46, 118–121.Google Scholar
  55. Kumar, M., Sharma, V., Lal, D., Kumar, A., & Seth, R. (2010). A comparison of the physico-chemical properties of low cholesterol ghee with standard ghee from cow and buffalo creams. International Journal of Dairy Technology, 63(2), 252–255.CrossRefGoogle Scholar
  56. Kumar, N., & Singhal, O. P. (1992). Effect of processing conditions on the oxidation of cholesterol in ghee. Journal of the Science of Food and Agriculture, 58(2), 267–273.CrossRefGoogle Scholar
  57. Kumar, R., & Negi, S. (2004). Granulation of ghee using emulsifiers. In Presentation, XXXIII dairy industry conference, New Delhi (p. 106).Google Scholar
  58. Kumar, M.A., Dastur, N. N., & Bhatt, M. V. (1985). Studies on the pigments of buffalo milk ii. identification of bilirubin ix alpha isomer in sour buffalo milk. Milchwissenschaft, 40(12), 724–726.Google Scholar
  59. Kumazawa, H., & Oyama, T. (1965). Estimation of total carbonyl content in oxidized oil by 2,4-dinitrophenylhydrazine. Journal of Japan Oil Chemists’ Society, 14(4), 167–171.CrossRefGoogle Scholar
  60. Lakshminarayana, M.(1983). Fractionation of buffalo milk fat and studies on physico-chemical properties of fractions of buffalo milk fat. Ph.D. Thesis. N.D.R.I (Deemed University), Bangalore.Google Scholar
  61. Lakshminarayana, M., & Rama Murthy, M. K. (1985). Cow and buffalo milk fat fractions. Yield physico-chemical characteristics and fatty acid composition. Indian Journal of Dairy Science, 38, 256–264.Google Scholar
  62. MacGibbon, A. K. H., & McLennan, W. D. (1987). Hardness of New Zealand patted butter: Seasonal and regional variations. New Zealand Journal of Dairy Science and Technology, 22(2), 143–156.Google Scholar
  63. MacGibbon, A. K. H., & Taylor, M. W. (2006). Composition and structure of bovine milk lipids. In Advanced dairy chemistry volume 2 lipids (pp. 1–42). Boston, MA: Springer.Google Scholar
  64. Maniongui, C., Gresti, J., Bugaut, M., Gauthier, S., & Bezard, J. (1991). Determination of bovine butterfat triacylglycerols by reversed-phase liquid chromatography and gas chromatography. Journal of Chromatography. A, 543, 81–103.CrossRefGoogle Scholar
  65. Marangoni, A. G. (2005). Crystallization kinetics in fat crystal networks. In Fat crystal networks (pp. 21–82). New York, NY: Marcel Dekker.Google Scholar
  66. Marangoni, A. G., & Lencki, R. W. (1998). Ternary phase behavior of milk fat fractions. Journal of Agricultural and Food Chemistry, 46(10), 3879–3884.CrossRefGoogle Scholar
  67. McNamara, J. P. (1991). Regulation of adipose tissue metabolism in support of lactation. Journal of Dairy Science, 74, 706–719.PubMedCrossRefGoogle Scholar
  68. Minato, A., Yano, J., Ueno, S., Smith, K., & Sato, K. (1997). FT–IR study on microscopic structures and conformations of POP–PPO and POP–OPO molecular compounds. Chemistry and Physics of Lipids, 88(1), 63–71.CrossRefGoogle Scholar
  69. Mortensen, B. K. (2011). Butter and other milk fat products. In J. W. Fuquay, P. F. Fox, & P. L. H. McSweeney (Eds.), Encyclopedia of dairy sciences (2nd ed., p. 502). Boston, MA: Elsevier/Academic Press.Google Scholar
  70. Mortensen, B. K. (2015). Anhydrous milk fat/butter oil and ghee.Google Scholar
  71. Mukai, M., Thomas, J. F., & Tebbens, B. D. (1968). Fate of airborne benzo [a] pyrene. Environmental Science & Technology, 2(1), 33–39.CrossRefGoogle Scholar
  72. Murthy R. M. K., & Narayana, K. M. (1971). Fatty acid composition of buffalo and cow milk fat by gas liquid chromatography. Milchwisenschaft., 26, 693–697.Google Scholar
  73. Nagesh, K. (1981). Studies on some physico-chemical aspects of grain formation in ghee. Msc.Thesis. University of Agricultural Sciences, Bangalore.Google Scholar
  74. Nath, B. S., & Murthy, M. R. (1988). Cholesterol in Indian ghee. The Lancet, 332(8601), 39.CrossRefGoogle Scholar
  75. Nath, B. S., Usha, M. A., & Rama Murthy, M. K. (1996). Effect of deep-frying on cholesterol oxidation in ghee. Journal of Food Science and Technology, 33(5), 425–426.Google Scholar
  76. Nielsen, V. H. (1971). Curing texture defects in butter. American Dairy Review, 33, 28–29.Google Scholar
  77. Ollivon, M., & Perron, R. (1992). Chapter 5, physical properties of fats. In A. Karleskind & J. P. Wolff (Eds.), Oils and fats manual (Vol. 1, pp. 433–529). Paris, France: Lavoisier.Google Scholar
  78. Omar, K. A., Gounga, M. E., Liu, R., Mwinyi, W., Aboshora, W., Ramadhan, A. H., et al. (2017). Triacylglycerol composition, melting and crystallization profiles of lipase catalysed anhydrous milk fats hydrolysed. International Journal of Food Properties, 20(suppl 2), 1230–1245.Google Scholar
  79. Patton, S., Evans, L., & McCarthy, R. D. (1960). The action of pancreatic lipase on milk fat. Journal of Dairy Science, 43(1), 95–96.CrossRefGoogle Scholar
  80. Pawar, N., Gandhi, K., Purohit, A., Arora, S., & Singh, R. R. B. (2014). Effect of added herb extracts on oxidative stability of ghee (butter oil) during accelerated oxidation condition. Journal of Food Science and Technology, 51(10), 2727–2733.PubMedCrossRefGoogle Scholar
  81. Prentice, J. H. (1972). Rheology and texture of dairy products. Journal of Texture Studies, 3(4), 415–458.CrossRefGoogle Scholar
  82. Pukalskas, A., van Beek, T. A., & de Waard, P. (2005). Development of a triple hyphenated HPLC–radical scavenging detection–DAD–SPE–NMR system for the rapid identification of antioxidants in complex plant extracts. Journal of Chromatography A, 1074(1-2), 81–88.PubMedCrossRefGoogle Scholar
  83. Rachana, C. R., Nath, B. S., Reshma, M. V., & Armughan, C. (2013). Variation in grainy texture of commercial ghee in relation to laboratory ghee and its blends. International Journal of Dairy Technology, 66(1), 90–97.CrossRefGoogle Scholar
  84. Rahila, M. P. (2016). Effect of natural antioxidants on the autoxidative and thermal stability of ghee (clarified butterfat). PhD Thesis. Southern Regional Station, ICAR-National Dairy Research Institute (Deemed University), India.Google Scholar
  85. Rahila, M. P., Surendra Nath, B., Laxmana Naik, N., Pushpadass, H. A., Manjunatha, M., & Franklin, M. E. E. (2018). Rosemary (Rosmarinus officinalis Linn.) extract: A source of natural antioxidants for imparting autoxidative and thermal stability to ghee. Journal of Food Processing and Preservation, 42(2), e13443.CrossRefGoogle Scholar
  86. Rai, T., & Narayanan, K. M. (1984). Development of carbonyls in ghee and refined groundnut oil during intermittent frying. Indian Journal of Dairy Science, 37(3), 230–233.Google Scholar
  87. Rajorhia, G. S. (1993). Ghee. In R. Macrae, R. K. Robinson, & M. J. Sadler (Eds.), Encyclopaedia of food science, food technology and nutrition (Vol. 4, pp. 2186–2192). London, UK: Academic Press Ltd.Google Scholar
  88. Rangappa, K. S., & Achaya, K. T. (1974). Indian dairy products. Bombay, India: Asia Publishing House.Google Scholar
  89. Rao, D. V., & Ramamurthy, M. K. (1984). Polar carbonyls in cow and buffalo ghee. Indian Journal of Dairy Science, 37, 98–102.Google Scholar
  90. Rao, D. V., & Singh, H. (1990). Use of antioxidants in ghee-a review. Indian Journal of Dairy Science, 43(3), 359–363.Google Scholar
  91. Reddy, Y. S. (2010). Improving plasticity of milk fat for use in baking by fractionation. Journal of the American Oil Chemists’ Society, 87(5), 493–497.CrossRefGoogle Scholar
  92. Sharma, R. S. (1981). Ghee: A resume of recent researches. Journal of Food Science and Technology, 18, 70–77.Google Scholar
  93. Small, D. M. (1986). The physical chemistry of lipids. Handbook of Lipid Research, 4, 285–343.Google Scholar
  94. Smith, L. M., & Ronning, M. (1961). Comparison of fatty acid composition of milk fats produced by cows fed alfalfa, oat, or ground, pelleted alfalfa hay. Journal of Dairy Science, 44, 1170–1174.CrossRefGoogle Scholar
  95. Sserunjogi, M. L., Abrahamsen, R. K., & Narvhus, J. (1998). A review paper: Current knowledge of ghee and related products. International Dairy Journal, 8(8), 677–688.CrossRefGoogle Scholar
  96. Stevenson, S. G., & Mand Esjin, N. M. (1984). Quality control in the use of deep frying oils. Journal of the American Oil Chemists’ Society, 61, 1102–1108.CrossRefGoogle Scholar
  97. Sujatha, K., & Sarashetti, R. S. (2015). Vision and ghee. Journal of Biological and Scientific Opinion, 3, 143–146.CrossRefGoogle Scholar
  98. Swaisgood, H. E. (1996). Characteristics of milk. In O. W. Fennema (Ed.), Food chemistry (3rd ed., pp. 841–878). New York, NY: Marcel Dekker. Inc..Google Scholar
  99. Tarrago-Trani, M. T., Phillips, K. M., Lemar, L. E., & Holden, J. M. (2006). New and existing oils and fats used in products with reduced trans-fatty acid content. Journal of the American Dietetic Association, 106(6), 867–880.PubMedCrossRefGoogle Scholar
  100. Thompson, M. P., Brunner, J. R., & Stine, C. M. (1959). Characteristics of high-melting triglyceride fractions from the fat-globule membrane and butter oil of bovine milk. Journal of Dairy Science, 42(10), 1651–1658.CrossRefGoogle Scholar
  101. Timms, R. E. (1980). The phase behaviour and polymorphism of milk fat, milk fat fractions and fully hardened milk fat. Australian Journal of Dairy Technology, 35(2), 47–53.Google Scholar
  102. Urbach, G., & Gordon, M. H. (1994). Flavours derived from fats. In D. P. J. Moran & K. K. Rajah (Eds.), Fats in food products (pp. 347–405). London, UK: Blackie Academic and Professional.CrossRefGoogle Scholar
  103. USDA National Nutrient Database for Standard Reference; National Agricultural Library; United States Department of Agriculture (USDA). (2015). Basic report: 01003, butter oil, anhydrous.Google Scholar
  104. Wadhwa, B. K., & Jain, M. K. (1990). Chemistry of ghee flavour-a review. Indian Journal of Dairy Science, 43(4), 601–607.Google Scholar
  105. Wadodkar, U. R., Murthi, T. N., & Punjrath, J. S. (1996). Isolation of ghee volatiles by vacuum degassing, their separation and identification using gas chromatography/mass spectrometry. Indian Journal of Dairy Science, 49(3), 185–198.Google Scholar
  106. Walstra, P., Geurts, T. J., Noomen, A., Jellema, A., & van Boekel, M. A. J. S. (1999). Dairy technology: Principles of milk properties and processes (Vol. 50-70, pp. 501–510). New York, NY: Marcel Dekker/CRC Press.CrossRefGoogle Scholar
  107. Warner, J. N. (1976). Principles of dairy processing. Chaos, 13, 253–259.Google Scholar
  108. Wearne, S. (1999). Nutrient analysis of other milks and creams. Food Surveillance Information Sheet (United Kingdom). Number 178.Google Scholar
  109. Wolff, R. L., Bayard, C. C., & Fabien, R. J. (1995). Evaluation of sequential methods for the determination of butterfat fatty acid composition with emphasis ontrans-18: 1 acids. Application to the study of seasonal variations in french butters. Journal of the American Oil Chemists’ Society, 72(12), 1471–1483.CrossRefGoogle Scholar
  110. Woodside, J. V., & Kromhout, D. (2005). Fatty acids and CHD. Proceedings of the Nutrition Society, 64(4), 554–564.PubMedCrossRefGoogle Scholar
  111. Yadav, J. S., & Srinivasan, R. A. (1987). Role of starter culture in enhancing ghee flavour: A review. IJDS, 40(2), 153–157.Google Scholar
  112. Yadav, J. S., & Srinivasan, R. A. (1992). Advances in ghee flavour research. Indian Journal of Dairy Science, 45, 338–338.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Surendra Nath Battula
    • 1
  • N. Laxmana Naik
    • 1
  • Rajan Sharma
    • 2
  • Bimlesh Mann
    • 2
  1. 1.Southern Regional Station, ICAR-National Dairy Research InstituteBengaluruIndia
  2. 2.ICAR-National Dairy Research InstituteKarnalIndia

Personalised recommendations