Dairy Lipids in Infant Formulae to Reduce the Gap with Breast Milk Fat Globules: Nutritional and Health Benefits Associated to Opportunities

  • Christelle LopezEmail author


Dietary lipids play a major role in infant nutrition, development and health. As an alternative to breast milk, infant formulae (IF) are the manufactured products given to infants. However, many differences exist between breast milk fat globules that are naturally secreted by lactating mothers and the processed lipid droplets formed under pressure during homogenization and found in IF. The lipid composition and structure of the emulsion in IF could be improved to mimick breast milk fat globules. This book chapter i) describes breast milk fat globules covered by their biological membrane (MFGM), including their functions and digestion in the gastrointestinal tract of infants, ii) presents the technological steps involved in IF preparation and the blending of oils with other ingredients leading to the final composition and structure of processed lipid droplets, iii) highlights the health benefits for infants of adding dairy lipids (Fatty acids, TAG, MFGM rich in phospholipids, sphingolipids, cholesterol and glycoproteins) in IF, iv) explains the opportunities to produce food-grade ingredients enriched in bovine MFGM and to prepare processed lipid droplets in IF bio-inspired by breast milk fat globules. The next generation of IF will integrate the advantages provided by dairy lipids to improve the quality of IF and bring nutritional and heath benefits to infants worldwide.


  1. Ailhaud, G., Massiera, F., Weill, P., Legrand, P., Alessandri, J.-M., & Guesnet, P. (2006). Temporal changes in dietary fats: Role of n-6 polyunsaturated fatty acids in excessive adipose tissue development and relationship to obesity. Progress in Lipid Research, 45, 203–236.PubMedCrossRefGoogle Scholar
  2. Amara, S., Patin, A., Giuffrida, F., Wooster, T. J., Thakkar, S. K., Bénarouche, A., et al. (2014). In vitro digestion of citric acid esters of mono- and diglycerides (CITREM) and CITREM-containing infant formula/emulsions. Food & Function, 5, 1409–1421.CrossRefGoogle Scholar
  3. American Academy of Pediatrics (AAP). (2012). Section on breastfeeding. Breastfeeding and the use of human milk. Pediatrics, 129, e827–e841.CrossRefGoogle Scholar
  4. Anderson, R. C., MacGibbon, A. K. H., Haggarty, N., Armstrong, K. M., & Roy, N. C. (2018). Bovine dairy complex lipids improve in vitro measures of small intestinal epithelial barrier integrity. PLoS One, 13, e0190839.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Argov-Argaman, N., Smilowitz, J. T., Bricarello, D. A., Barboza, M., Lerno, L., Froehlich, J. W., et al. (2010). Lactosomes: Structural and compositional classification of unique nanometer-sized protein lipid particles of human milk. Journal of Agricultural and Food Chemistry, 58, 11234–11242.PubMedPubMedCentralCrossRefGoogle Scholar
  6. Armand, M., Hamosh, M., Mehta, N. R., Angelus, P. A., Philpott, J. R., Henderson, T. R., et al. (1996). Effect of human milk or formula on gastric function and fat digestion in the premature infant. Pediatric Research, 40, 429–437.PubMedCrossRefGoogle Scholar
  7. Armand, M., Pasquier, B., André, M., Borel, P., Senft, M., Peyrot, J., et al. (1999). Digestion and absorption of 2 fat emulsions with different droplet sizes in the human digestive tract. The American Journal of Clinical Nutrition, 70, 1096–1106.PubMedCrossRefGoogle Scholar
  8. Baars, A., Oosting, A., Engels, E., Kegler, D., Kodde, A., Schipper, L., et al. (2016). Milk fat globule membrane coating of large lipid droplets in the diet of young mice prevents body fat accumulation in adulthood. The British Journal of Nutrition, 115, 1930–1937.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bar-Yoseph, F., Lifshitz, Y., & Cohen, T. (2013). Review of sn-2 palmitate oil implications for infant health. Prostaglandins, Leukotrienes and Essential Fatty Acids, 89, 139–143.CrossRefGoogle Scholar
  10. Baumgartner, S., van de Heijning, B. J. M., Acton, D., & Mensink, R. P. (2017). Infant milk fat droplet size and coating affect postprandial responses in healthy adult men: A proof-of-concept study. European Journal of Clinical Nutrition, 71, 1108–1113.PubMedCrossRefGoogle Scholar
  11. Benoit, B., Fauquant, C., Daira, P., Peretti, N., Guichardant, M., & Michalski, M.-C. (2010). Phospholipid species and minor sterols in French human milks. Food Chemistry, 120, 684–691.CrossRefGoogle Scholar
  12. Bernard, J. Y., Armand, M., Peyre, H., Garcia, C., Forhan, A., De Agostini, M., et al. (2017). Breastfeeding, polyunsaturated fatty acid levels in colostrum and child intelligence quotient at age 5-6 years. The Journal of Pediatrics, 183, 43–50.e3.PubMedCrossRefGoogle Scholar
  13. Bernback, S., Blackberg, L., & Hernell, O. (1990). The complete digestion of human-milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile-salt stimulated lipase. The Journal of Clinical Investigation, 85, 1221–1226.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bhinder, G., Allaire, J. M., Garcia, C., Lau, J. T., Chan, J. M., Ryz, N. R., et al. (2017). Milk fat globule membrane supplementation in formula modulates the neonatal gut microbiome and normalizes intestinal development. Scientific Reports, 7, 45274.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Billeaud, C., Puccio, G., Saliba, E., Guillois, B., Vaysse, C., Pecquet, S., et al. (2014). Safety and tolerance evaluation of milk fat globule membrane-enriched infant formulas: A randomized controlled multicenter non-inferiority trial in healthy term infants. Clinical Medicine Insights: Pediatrics, 8, CMPed.S16962.CrossRefGoogle Scholar
  16. Bourlieu, C., Cheillan, D., Blot, M., Daira, P., Trauchessec, M., Ruet, S., et al. (2018). Polar lipid composition of bioactive dairy co-products buttermilk and butterserum: Emphasis on sphingolipid and ceramide isoforms. Food Chemistry, 240, 67–74.PubMedCrossRefGoogle Scholar
  17. Cilla, A., Quintaes, K. D., Barberá, R., & Alegría, A. (2016). Phospholipids in human milk and infant formulas: Benefits and needs for correct infant nutrition. Critical Reviews in Food Science and Nutrition, 56, 1880–1892.PubMedCrossRefGoogle Scholar
  18. Claumarchirant, L., Cilla, A., Matencio, E., Sanchez-Siles, L. M., Castro-Gomez, P., Fontecha, J., et al. (2016). Addition of milk fat globule membrane as an ingredient of infant formulas for resembling the polar lipids of human milk. International Dairy Journal, 61, 228–238.CrossRefGoogle Scholar
  19. Claumarchirant, L., Matencio, E., Sanchez-Siles, L. M., Alegría, A., & Lagarda, M. J. (2015). Sterol composition in infant formulas and estimated intake. Journal of Agricultural and Food Chemistry, 63, 7245–7251.PubMedCrossRefGoogle Scholar
  20. Courage, M., Mccloy, U., Herzberg, G., Andrews, W., Simmons, B., Mcdonald, A., et al. (1998). Visual acuity development and fatty acid composition of erythrocytes in full-term infants fed breast milk, commercial formula, or evaporated milk. Journal of Developmental & Behavioral Pediatrics, 19, 9–17.CrossRefGoogle Scholar
  21. Delplanque, B., Du, Q., Martin, J.-C., & Guesnet, P. (2018). Lipids for infant formulas. OCL, 25, D305.CrossRefGoogle Scholar
  22. Delplanque, B., Gibson, R., Koletzko, B., Lapillonne, A., & Strandvik, B. (2015). Lipid quality in infant nutrition: Current knowledge and future opportunities. Journal of Pediatric Gastroenterology and Nutrition, 61, 8–17.PubMedPubMedCentralGoogle Scholar
  23. Demmelmair, H., & Koletzko, B. (2018). Lipids in human milk. Best Practice & Research Clinical Endocrinology & Metabolism, 32, 57–68.CrossRefGoogle Scholar
  24. Demmelmair, H., Prell, C., Timby, N., & Lönnerdal, B. (2017). Benefits of lactoferrin, osteopontin and milk fat globule membranes for infants. Nutrients, 9, 817.PubMedCentralCrossRefGoogle Scholar
  25. Dewettinck, K., Rombaut, R., Thienpont, N., Le, T. T., Messens, K., & Van Camp, J. (2008). Nutritional and technological aspects of milk fat globule membrane material. International Dairy Journal, 18, 436–457.CrossRefGoogle Scholar
  26. Dinel, A. L., Rey, C., Bonhomme, C., Le Ruyet, P., Joffre, C., & Layé, S. (2016). Dairy fat blend improves brain DHA and neuroplasticity and regulates corticosterone in mice. Prostaglandins. Leukotrienes and Essential Fatty Acids, 109, 29–38.CrossRefGoogle Scholar
  27. Drouin, G., Catheline, D., Sinquin, A., Baudry, C., Le Ruyet, P., Rioux, V., et al. (2018). Incorporation of dairy lipids in the diet increased long-chain omega-3 fatty acids status in post-weaning rats. Frontiers in Nutrition, 5, 42.PubMedPubMedCentralCrossRefGoogle Scholar
  28. EFSA. (2014). Scientific opinion on the essential composition of infant and follow-on formulae. EFSA Journal, 12, 24–32.Google Scholar
  29. Favé, G., Leveque, C., Peyrot, J., Pieroni, G., Coste, T. C., & Armand, M. (2007). Modulation of gastric lipolysis by the phospholipid specie: Link to specific lipase-phospholipid interaction at the lipid/water interface? The FASEB Journal, 21, A1010.Google Scholar
  30. Fidler, N., & Koletzko, B. (2000). The fatty acid composition of human colostrum. European Journal of Nutrition, 39, 31–37.PubMedCrossRefGoogle Scholar
  31. Fuller, K. L., Kuhlenschmidt, T. B., Kuhlenschmidt, M. S., Jimenez-Flores, R., & Donovan, S. M. (2013). Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro. Journal of Dairy Science, 96, 3488–3497.PubMedCrossRefGoogle Scholar
  32. Gallier, S., Vocking, K., Post, J. A., Van de Heijning, B., Acton, D., Van der Beek, E. M., et al. (2015). A novel infant milk formula concept: Mimicking the human milk fat globule structure. Colloids and Surfaces B: Biointerfaces, 136, 329–339.CrossRefPubMedGoogle Scholar
  33. Gassi, J. Y., Blot, M., Beaucher, E., Robert, B., Leconte, N., Camier, B., et al. (2016). Preparation and characterisation of a milk polar lipids enriched ingredient from fresh industrial liquid butter serum: Combination of physico-chemical modifications and technological treatments. International Dairy Journal, 52, 26–34.CrossRefGoogle Scholar
  34. Gianni, M. L., Roggero, P., Baudry, C., Fressange-Mazda, C., Galli, C., Agostoni, C., et al. (2018). An infant formula containing dairy lipids increased red blood cell membrane Omega 3 fatty acids in 4 month-old healthy newborns: A randomized controlled trial. BMC Pediatrics, 18, 53.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Grote, V., Verduci, E., Scaglioni, S., Vecchi, F., Contarini, G., Giovannini, M., et al. (2016). Breast milk composition and infant nutrient intakes during the first 12 months of life. European Journal of Clinical Nutrition, 70, 250–256.PubMedCrossRefGoogle Scholar
  36. Gurnida, D. A., Rowan, A. M., Idjradinata, P., Muchtadi, D., & Sekarwana, N. (2012). Association of complex lipids containing gangliosides with cognitive development of 6-month-old infants. Early Human Development, 88, 595–601.CrossRefPubMedGoogle Scholar
  37. Hageman, J. H. J., Danielsen, M., Nieuwenhuizen, A. G., Feitsma, A. L., & Dalsgaard, T. K. (2019). Comparison of bovine milk fat and vegetable fat for infant formula: Implications for infant health. International Dairy Journal, 92, 37–49.CrossRefGoogle Scholar
  38. Hageman, J. H. J., Keijer, J., Dalsgaard, T. K., Zeper, L. W., Carriere, F., Feitsma, A. L., et al. (2019). Free fatty acid release from vegetable and bovine milk fat-based infant formulas and human milk during two-phase in vitro digestion. Food & Function, 10, 2102–2113.CrossRefGoogle Scholar
  39. Hamosh, M., Peterson, J. A., Henderson, T. R., Scallan, C. D., Kiwan, R., Ceriani, R. L., et al. (1999). Protective function of human milk: The milk fat globule. Seminars in Perinatology, 23, 242–249.PubMedCrossRefGoogle Scholar
  40. Harzer, G., Haug, M., Dieterich, I., & Gentner, P. R. (1983). Changing patterns of human milk lipids in the course of the lactation and during the day. The American Journal of Clinical Nutrition, 37, 612–621.PubMedCrossRefGoogle Scholar
  41. Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84, 245–258.CrossRefPubMedGoogle Scholar
  42. Hernell, O., Timby, N., Domellof, M., & Lonnerdal, B. (2016). Clinical benefits of milk fat globule membranes for infants and children. The Journal of Pediatrics, 173, S60–S65.PubMedCrossRefGoogle Scholar
  43. Holzmueller, W., & Kulozik, U. (2016). Isolation of milk fat globule membrane (MFGM) material by coagulation and diafiltration of buttermilk. International Dairy Journal, 63, 88–91.CrossRefGoogle Scholar
  44. Innis, S. M. (2011). Dietary triacylglycerol structure and its role in infant nutrition. Advances in Nutrition, 2, 275–283.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Jensen, R., Ferris, A., & Lammikeefe, C. (1992). Lipids in human-milk and infant formulas. Annual Review of Nutrition, 12, 417–441.PubMedCrossRefGoogle Scholar
  46. Jensen, R. G. (1999). Lipids in human milk. Lipids, 34, 1243–1271.PubMedCrossRefGoogle Scholar
  47. Jiménez-Flores, R., & Brisson, G. (2008). The milk fat globule membrane as an ingredient: Why, how, when? Dairy Science & Technology, 88, 5–18.CrossRefGoogle Scholar
  48. Kallio, H., Nylund, M., Bostrom, P., & Yang, B. (2017). Triacylglycerol regioisomers in human milk resolved with an algorithmic novel electrospray ionization tandem mass spectrometry method. Food Chemistry, 233, 351–360.PubMedCrossRefGoogle Scholar
  49. Khan, S., Hepworth, A. R., Prime, D. K., Lai, C. T., Trengove, N. J., & Hartmann, P. E. (2013). Variation in fat, lactose, and protein composition in breast milk over 24 hours: Associations with infant feeding patterns. Journal of Human Lactation, 29, 81–89.PubMedCrossRefGoogle Scholar
  50. Kim, K.-M., Park, T.-S., & Shim, S.-M. (2015). Optimization and validation of HRLC-MS method to identify and quantify triacylglycerol molecular species in human milk. Analytical Methods, 7, 4362–4370.CrossRefGoogle Scholar
  51. Kinney, H., Karthigasan, J., Borenshteyn, N., Flax, J., & Kirschner, D. (1994). Myelination in the developing human brain - Biochemical correlates. Neurochemical Research, 19, 983–996.PubMedCrossRefGoogle Scholar
  52. Koletzko, B. (2016). Human milk lipids. Annals of Nutrition & Metabolism, 69(Suppl 2), 28–40.CrossRefGoogle Scholar
  53. Koletzko, B., Baker, S., Cleghorn, G., Neto, U. F., Gopalan, S., Hernell, O., et al. (2005). Global standard for the composition of infant formula: Recommendations of an ESPGHAN coordinated international expert group. Journal of Pediatric Gastroenterology and Nutrition, 41, 584–599.PubMedCrossRefGoogle Scholar
  54. Le Huerou-Luron, I., Bouzerzour, K., Ferret-Bernard, S., Menard, O., Le Normand, L., Perrier, C., et al. (2018). A mixture of milk and vegetable lipids in infant formula changes gut digestion, mucosal immunity and microbiota composition in neonatal piglets. European Journal of Nutrition, 57, 463–476.PubMedCrossRefGoogle Scholar
  55. Lecomte, M., Bourlieu, C., Meugnier, E., Penhoat, A., Cheillan, D., Pineau, G., et al. (2015). Milk polar lipids affect in vitro digestive lipolysis and postprandial lipid metabolism in mice–3. The Journal of Nutrition, 145, 1770–1777.PubMedCrossRefGoogle Scholar
  56. Leermakers, E. T. M., Moreira, E. M., Kiefte-de Jong, J. C., Darweesh, S. K. L., Visser, T., Voortman, T., et al. (2015). Effects of choline on health across the life course: A systematic review. Nutrition Reviews, 73, 500–522.PubMedCrossRefGoogle Scholar
  57. Lemaire, M., Dou, S., Cahu, A., Formal, M., Le Normand, L., Rome, V., et al. (2018). Addition of dairy lipids and probiotic Lactobacillus fermentum in infant formula programs gut microbiota and entero-insular axis in adult minipigs. Scientific Reports, 8, 11656.PubMedPubMedCentralCrossRefGoogle Scholar
  58. Lien, E. L., Richard, C., & Hoffman, D. R. (2018). DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins, Leukotrienes and Essential Fatty Acids, 128, 26–40.CrossRefGoogle Scholar
  59. Linderborg, K. M., Kalpio, M., Makela, J., Niinikoski, H., Kallio, H. P., & Lagstrom, H. (2014). Tandem mass spectrometric analysis of human milk triacylglycerols from normal weight and overweight mothers on different diets. Food Chemistry, 146, 583–590.PubMedCrossRefGoogle Scholar
  60. Lindquist, S., & Hernell, O. (2010). Lipid digestion and absorption in early life: An update. Current Opinion in Clinical Nutrition and Metabolic Care, 13, 314–320.PubMedCrossRefGoogle Scholar
  61. Lopez, C., Blot, M., Briard-Bion, V., Cirié, C., & Graulet, B. (2017). Butter serums and buttermilks as sources of bioactive lipids from the milk fat globule membrane: Differences in their lipid composition and potentialities of cow diet to increase n-3 PUFA. Food Research International, 100, 864–872.PubMedCrossRefGoogle Scholar
  62. Lopez, C., Briard-Bion, V., Bourgaux, C., & Pérez, J. (2013). Solid triacylglycerols within human fat globules: β crystals with a melting point above in-body temperature of infants, formed upon storage of breast milk at low temperature. Food Research International, 54, 1541–1552.CrossRefGoogle Scholar
  63. Lopez, C., Cauty, C., & Guyomarc’h, F. (2015). Organization of lipids in milks, infant milk formulas and various dairy products: Role of technological processes and potential impacts. Dairy Science & Technology, 95, 863–893.CrossRefGoogle Scholar
  64. Lopez, C., Cauty, C., & Guyomarc’h, F. (2019). Unraveling the complexity of milk fat globules to tailor bioinspired emulsions providing health benefits: The key role played by the biological membrane. European Journal of Lipid Science and Technology, 121, 1800201.Google Scholar
  65. Lopez, C., Cauty, C., Rousseau, F., Blot, M., Margolis, A., & Famelart, M.-H. (2017). Lipid droplets coated with milk fat globule membrane fragments: Microstructure and functional properties as a function of pH. Food Research International, 91, 26–37.CrossRefPubMedGoogle Scholar
  66. Lopez, C., Cheng, K., & Perez, J. (2018). Thermotropic phase behavior of milk sphingomyelin and role of cholesterol in the formation of the liquid ordered phase examined using SR-XRD and DSC. Chemistry and Physics of Lipids, 215, 46–55.CrossRefPubMedGoogle Scholar
  67. Lopez, C., Madec, M.-N., & Jiménez-Flores, R. (2010). Lipid rafts in the bovine milk fat globule membrane revealed by the lateral segregation of phospholipids and heterogeneous distribution of glycoproteins. Food Chemistry, 120, 22–33.CrossRefGoogle Scholar
  68. Lopez, C., & Ménard, O. (2011). Human milk fat globules: Polar lipid composition and in situ structural investigations revealing the heterogeneous distribution of proteins and the lateral segregation of sphingomyelin in the biological membrane. Colloids and Surfaces B: Biointerfaces, 83, 29–41.CrossRefPubMedGoogle Scholar
  69. Mathiassen, J. H., Nejrup, R. G., Frøkiær, H., Nilsson, Å., Ohlsson, L., & Hellgren, L. I. (2015). Emulsifying triglycerides with dairy phospholipids instead of soy lecithin modulates gut lipase activity. European Journal of Lipid Science and Technology, 117, 1522–1539.CrossRefGoogle Scholar
  70. Mendonça, M. A., Araújo, W. M. C., Borgo, L. A., & de Rodrigues Alencar, E. (2017). Lipid profile of different infant formulas for infants. PLoS One, 12, e0177812.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Michalski, M. C., Briard, V., Michel, F., Tasson, F., & Poulain, P. (2005). Size distribution of fat globules in human colostrum, breast milk, and infant formula. Journal of Dairy Science, 88, 1927–1940.PubMedCrossRefGoogle Scholar
  72. Miklavcic, J. J., Schnabl, K. L., Mazurak, V. C., Thomson, A. B. R., & Clandinin, M. T. (2012). Dietary ganglioside reduces proinflammatory signaling in the intestine. Journal of Nutrition and Metabolism, 2012, 1.CrossRefGoogle Scholar
  73. Miles, E. A., & Calder, P. C. (2017). The influence of the position of palmitate in infant formula triacylglycerols on health outcomes. Nutrition Research, 44, 1–8.PubMedCrossRefGoogle Scholar
  74. Motouri, M., Matsuyama, H., Yamamura, J., Tanaka, M., Aoe, S., Iwanaga, T., et al. (2003). Milk sphingomyelin accelerates enzymatic and morphological maturation of the intestine in artificially reared rats. Journal of Pediatric Gastroenterology and Nutrition, 36, 241.PubMedCrossRefGoogle Scholar
  75. Mu, H. L., & Hoy, C. E. (2004). The digestion of dietary triacylglycerols. Progress in Lipid Research, 43, 105–133.PubMedCrossRefGoogle Scholar
  76. Nilsson, A. (2016). Role of sphingolipids in infant gut health and immunity. The Journal of Pediatrics, 173, S53–S59.CrossRefPubMedGoogle Scholar
  77. Nilsson, Å., & Duan, R.-D. (2006). Absorption and lipoprotein transport of sphingomyelin. Journal of Lipid Research, 47, 154–171.PubMedCrossRefGoogle Scholar
  78. Norris, G. H., Jiang, C., Ryan, J., Porter, C. M., & Blesso, C. N. (2016). Milk sphingomyelin improves lipid metabolism and alters gut microbiota in high fat diet-fed mice. The Journal of Nutritional Biochemistry, 30, 93–101.PubMedCrossRefGoogle Scholar
  79. Ohlsson, L., Hertervig, E., Jönsson, B. A., Duan, R.-D., Nyberg, L., Svernlöv, R., et al. (2010). Sphingolipids in human ileostomy content after meals containing milk sphingomyelin. The American Journal of Clinical Nutrition, 91, 672–678.PubMedCrossRefGoogle Scholar
  80. Oosting, A., Kegler, D., Wopereis, H. J., Teller, I. C., van de Heijning, B. J. M., Verkade, H. J., et al. (2012). Size and phospholipid coating of lipid droplets in the diet of young mice modify body fat accumulation in adulthood. Pediatric Research, 72, 362–369.PubMedCrossRefGoogle Scholar
  81. Oosting, A., van Vlies, N., Kegler, D., Schipper, L., Abrahamse-Berkeveld, M., Ringler, S., et al. (2014). Effect of dietary lipid structure in early postnatal life on mouse adipose tissue development and function in adulthood. British Journal of Nutrition, 111, 215–226.CrossRefPubMedGoogle Scholar
  82. Oshida, K., Shimizu, T., Takase, M., Tamura, Y., Shimizu, T., & Yamashiro, Y. (2003). Effects of dietary sphingomyelin on central nervous system myelination in developing rats. Pediatric Research, 53, 589–593.CrossRefPubMedGoogle Scholar
  83. Owen, C. G., Whincup, P. H., Kaye, S. J., Martin, R. M., Davey Smith, G., Cook, D. G., et al. (2008). Does initial breastfeeding lead to lower blood cholesterol in adult life? A quantitative review of the evidence. The American Journal of Clinical Nutrition, 88, 305–314.PubMedCrossRefGoogle Scholar
  84. Palmano, K., Rowan, A., Guillermo, R., Guan, J., & Mc Jarrow, P. (2015). The role of gangliosides in neurodevelopment. Nutrients, 7, 3891–3913.PubMedPubMedCentralCrossRefGoogle Scholar
  85. Park, E. J., Thomson, A. B., & Clandinin, M. T. (2010). Protection of intestinal occludin tight junction protein by dietary gangliosides in lipopolysaccharide-induced acute inflammation. Journal of Pediatric Gastroenterology and Nutrition, 50, 321–328.PubMedCrossRefGoogle Scholar
  86. Peterson, J. A., Patton, S., & Hamosh, M. (1998). Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Neonatology, 74, 143–162.CrossRefGoogle Scholar
  87. Petit, V., Sandoz, L., & Garcia-Rodenas, C. L. (2017). Importance of the regiospecific distribution of long-chain saturated fatty acids on gut comfort, fat and calcium absorption in infants. Prostaglandins, Leukotrienes and Essential Fatty Acids, 121, 40–51.CrossRefGoogle Scholar
  88. Rueda, R. (2007). The role of dietary gangliosides on immunity and the prevention of infection. British Journal of Nutrition, 98, S68–S73.PubMedCrossRefGoogle Scholar
  89. Saarela, T., Kokkonen, J., & Koivisto, M. (2005). Macronutrient and energy contents of human milk fractions during the first six months of lactation. Acta Paediatrica, 94, 1176–1181.PubMedCrossRefGoogle Scholar
  90. Shek, D. T. L., Yu, L., Wu, F. K. Y., Zhu, X., & Chan, K. H. Y. (2017). A 4-year longitudinal study of well-being of Chinese university students in Hong Kong. Applied Research in Quality of Life, 12, 867–884.PubMedCrossRefGoogle Scholar
  91. Simons, K., & Ikonen, E. (1997). Functional rafts in cell membranes. Nature, 387, 569–572.CrossRefPubMedGoogle Scholar
  92. Sinanoglou, V. J., Cavouras, D., Boutsikou, T., Briana, D. D., Lantzouraki, D. Z., Paliatsiou, S., et al. (2017). Factors affecting human colostrum fatty acid profile: A case study. PLoS One, 12, e0175817.PubMedPubMedCentralCrossRefGoogle Scholar
  93. Singh, H. (2006). The milk fat globule membrane—A biophysical system for food applications. Current Opinion in Colloid & Interface Science, 11, 154–163.CrossRefGoogle Scholar
  94. Snow, D. R., Ward, R. E., Olsen, A., Jimenez-Flores, R., & Hintze, K. J. (2011). Membrane-rich milk fat diet provides protection against gastrointestinal leakiness in mice treated with lipopolysaccharide. Journal of Dairy Science, 94, 2201–2212.PubMedCrossRefGoogle Scholar
  95. Spitsberg, V. L. (2005). Invited review: Bovine milk fat globule membrane as a potential nutraceutical. Journal of Dairy Science, 88, 2289–2294.PubMedCrossRefGoogle Scholar
  96. Sprong, R. C., Hulstein, M. F. E., Lambers, T. T., & van der Meer, R. (2012). Sweet buttermilk intake reduces colonisation and translocation of Listeria monocytogenes in rats by inhibiting mucosal pathogen adherence. British Journal of Nutrition, 108, 2026–2033.CrossRefPubMedGoogle Scholar
  97. Straarup, E. M., Lauritzen, L., Faerk, J., Hoy, C. E., & Michaelsen, K. F. (2006). The stereospecific triacylglycerol structures and fatty acid profiles of human milk and infant formulas. Journal of Pediatric Gastroenterology and Nutrition, 42, 293–299.PubMedCrossRefGoogle Scholar
  98. Sun, C., Wei, W., Su, H., Zou, X., & Wang, X. (2018). Evaluation of sn-2 fatty acid composition in commercial infant formulas on the Chinese market: A comparative study based on fat source and stage. Food Chemistry, 242, 29–36.PubMedCrossRefGoogle Scholar
  99. Tanaka, K., Hosozawa, M., Kudo, N., Yoshikawa, N., Hisata, K., Shoji, H., et al. (2013). The pilot study: Sphingomyelin-fortified milk has a positive association with the neurobehavioural development of very low birth weight infants during infancy, randomized control trial. Brain and Development, 35, 45–52.PubMedCrossRefGoogle Scholar
  100. Timby, N., Domellof, E., Hernell, O., Loennerdal, B., & Domellof, M. (2014). Neurodevelopment, nutrition, and growth until 12 mo of age in infants fed a low-energy, low-protein formula supplemented with bovine milk fat globule membranes: A randomized controlled trial. The American Journal of Clinical Nutrition, 99, 860–868.CrossRefPubMedGoogle Scholar
  101. Timby, N., Domellöf, M., Lönnerdal, B., & Hernell, O. (2017). Supplementation of infant formula with bovine milk fat globule membranes. Advances in Nutrition, 8, 351–355.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Timby, N., Hernell, O., Vaarala, O., Melin, M., Lönnerdal, B., & Domellöf, M. (2015). Infections in infants fed formula supplemented with bovine milk fat globule membranes. Journal of Pediatric Gastroenterology and Nutrition, 60, 384.PubMedCrossRefGoogle Scholar
  103. Timby, N., Loennerdal, B., Hernell, O., & Domellof, M. (2014). Cardiovascular risk markers until 12 mo of age in infants fed a formula supplemented with bovine milk fat globule membranes. Pediatric Research, 76, 394–400.PubMedCrossRefGoogle Scholar
  104. Tu, A., Ma, Q., Bai, H., & Du, Z. (2017). A comparative study of triacylglycerol composition in Chinese human milk within different lactation stages and imported infant formula by SFC coupled with Q-TOF-MS. Food Chemistry, 221, 555–567.PubMedCrossRefGoogle Scholar
  105. Vanderghem, C., Bodson, P., Danthine, S., Paquot, M., Deroanne, C., & Blecker, C. (2010). Milk fat globule membrane and buttermilks: From composition to valorization. Biotechnologie, Agronomie, Société et Environnement, 14, 485–500.Google Scholar
  106. Veereman-Wauters, G., Staelens, S., Rombaut, R., Dewettinck, K., Deboutte, D., Brummer, R.-J., et al. (2012). Milk fat globule membrane (INPULSE) enriched formula milk decreases febrile episodes and may improve behavioral regulation in young children. Nutrition, 28, 749–752.PubMedCrossRefGoogle Scholar
  107. Wang, B. (2012). Molecular mechanism underlying sialic acid as an essential nutrient for brain development and cognition. Advances in Nutrition, 3, 465S–472S.PubMedPubMedCentralCrossRefGoogle Scholar
  108. Wang, B., Yu, B., Karim, M., Hu, H., Sun, Y., McGreevy, P., et al. (2007). Dietary sialic acid supplementation improves learning and memory in piglets. The American Journal of Clinical Nutrition, 85, 561–569.PubMedCrossRefGoogle Scholar
  109. Wang, L., Shimizu, Y., Kaneko, S., Hanaka, S., Abe, T., Shimasaki, H., et al. (2000). Comparison of the fatty acid composition of total lipids and phospholipids in breast milk from Japanese women. Pediatrics International, 42, 14–20.PubMedCrossRefGoogle Scholar
  110. WHO. (2011). Exclusive breastfeeding for six months best for babies everywhere. WHO: World Health Organization. Retrieved from
  111. Ya, B., Liu, W., Ge, F., Zhang, Y., Zhu, B., & Bai, B. (2013). Dietary cholesterol alters memory and synaptic structural plasticity in young rat brain. Neurological Sciences, 34, 1355–1365.PubMedCrossRefGoogle Scholar
  112. Yao, Y., Zhao, G., Xiang, J., Zou, X., Jin, Q., & Wang, X. (2016). Lipid composition and structural characteristics of bovine, caprine and human milk fat globules. International Dairy Journal, 56, 64–73.CrossRefGoogle Scholar
  113. Zavaleta, N., Kvistgaard, A. S., Graverholt, G., Respicio, G., Guija, H., Valencia, N., et al. (2011). Efficacy of an MFGM-enriched complementary food in diarrhea, anemia, and micronutrient status in infants. Journal of Pediatric Gastroenterology and Nutrition, 53, 561–568.PubMedGoogle Scholar
  114. Zhang, X., Qi, C., Zhang, Y., Wei, W., Jin, Q., Xu, Z., et al. (2019). Identification and quantification of triacylglycerols in human milk fat using ultra-performance convergence chromatography and quadrupole time-of-flight mass spectrometery with supercritical carbon dioxide as a mobile phase. Food Chemistry, 275, 712–720.PubMedCrossRefGoogle Scholar
  115. Zou, X.-Q., Guo, Z., Huang, J.-H., Jin, Q.-Z., Cheong, L.-Z., Wang, X.-G., et al. (2012). Human milk fat globules from different stages of lactation: A lipid composition analysis and microstructure characterization. Journal of Agricultural and Food Chemistry, 60, 7158–7167.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.INRAE, UMR STLORennesFrance
  2. 2.INRAE, UR BIANantesFrance

Personalised recommendations