Advertisement

Role of Differentiated-Size Milk Fat Globules on the Physical Functionality of Dairy-Fat Structured Products

  • Tuyen Truong
  • Bhesh BhandariEmail author
Chapter
  • 119 Downloads

Abstract

Milk fat globules (MFGs) size is known to be a pivotal functionality and processing factor in various fat-structured dairy products such as milks, butter, cheese, ice-cream, and yoghurt. The average size of milk fat globules (MFGs) is about 4 μm with a wide size distribution from 0.1 to 10 μm. This chapter discusses the importance of MFG size in processing of dairy-fat structured products with the view of potential applications to the production of innovative dairy ingredients and products. It provides a comprehensive overview of size-dependent variations in physical and chemical properties as well as methodologies to alter the size of both native and emulsified MFGs. Recent studies on utilisation of size-differentiated MFG in dairy-fat structured products is also highlighted.

Notes

Acknowledgements

This research was supported under Australian Research Council’s Industrial Transformation Research Hub (ITRH) funding scheme (IH120100005). The ARC Dairy Innovation Hub is a collaboration between the University of Melbourne, the University of Queensland and Dairy Innovation Australia Ltd.

References

  1. Abeni, F., Degano, L., Calza, F., Giangiacomo, R., & Pirlo, G. (2005). Milk quality and automatic milking: Fat globule size, natural creaming, and lipolysis. Journal of Dairy Science, 88(10), 3519–3529.PubMedCrossRefGoogle Scholar
  2. Aernoutsa, B., Beersa, R. V., Wattéa, R., Huybrechtsa, T., Jordensb, J., Vermeulenc, D., et al. (2015). Effect of ultrasonic homogenization on the Vis/NIR bulk optical properties of milk. Colloids and Surfaces B: Biointerfaces, 126, 510–519.CrossRefGoogle Scholar
  3. Ashworth, U. S. (1951). Turbidity as a means for determining the efficiency of homogenization. Journal of Dairy Science, 34(4), 317–320.CrossRefGoogle Scholar
  4. Avramis, C. A., Wang, H., McBride, B. W., Wright, T. C., & Hill, A. R. (2003). Physical and processing properties of milk, butter, and Cheddar cheese from cows fed supplemental fish meal. Journal of Dairy Science, 86(8), 2568–2576.PubMedCrossRefGoogle Scholar
  5. Banach, J. K., Żywica, R., & Kiełczewska, K. (2008). Effect of homogenization on milk conductance properties. Polish Journal of Food and Nutrition Sciences, 58(1), 107–111.Google Scholar
  6. Banks, J. M., Clapperton, J. L., Muir, D. D., & Girdler, A. K. (1986). The influence of diet and breed of cow on the efficiency of conversion of milk constituents to curd in cheese manufacture. Journal of the Science of Food and Agriculture, 37(5), 461–468.CrossRefGoogle Scholar
  7. Bauman, D. E., Corl, B. A., & Peterson, G. P. (2003). The biology of conjugated linoleic acids in ruminants. Champaign, IL: AOCS Press.Google Scholar
  8. Belury, M. A. (2002). Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annual Review of Nutrition, 22, 505–531.PubMedCrossRefGoogle Scholar
  9. Bermudez-Aguirre, D., Mawson, R., & Barbosa-Canovas, G. V. (2008). Microstructure of fat globules in whole milk after thermosonication treatment. Journal of Food Science, 73(7), E325–E332.PubMedCrossRefGoogle Scholar
  10. Borcherding, K., Hoffmann, W., Lorenzen, P. C., & Schrader, K. (2008). Effect of milk homogenisation and foaming temperature on properties and microstructure of foams from pasteurised whole milk. LWT-Food Science and Technology, 41(10), 2036–2043.CrossRefGoogle Scholar
  11. Briard, V., Leconte, N., Michel, F., & Michalski, M. C. (2003). The fatty acid composition of small and large naturally occurring milk fat globules. European Journal of Lipid Science and Technology, 105(11), 677–682.CrossRefGoogle Scholar
  12. Briard-Bion, V., Juaneda, P., Richoux, R., Guichard, E., & Lopez, C. (2008). trans-C18: 1 isomers in cheeses enriched in unsaturated fatty acids and manufactured with different milk fat globule sizes. Journal of Agricultural and Food Chemistry, 56(20), 9374–9382.PubMedCrossRefGoogle Scholar
  13. Bucci, A. J., Van Hekken, D. L., Tunick, M. H., Renye, J. A., & Tomasula, P. M. (2018). The effects of microfluidization on the physical, microbial, chemical, and coagulation properties of milk. Journal of Dairy Science, 101, 6990–7001.PubMedCrossRefGoogle Scholar
  14. Bugeat, S., Briard-Bion, V., Perez, J., Pradel, P., Martin, B., Lesieur, S., et al. (2011). Enrichment in unsaturated fatty acids and emulsion droplet size affect the crystallization behaviour of milk triacylglycerols upon storage at 4 degrees C. Food Research International, 44(5), 1314–1330.CrossRefGoogle Scholar
  15. Carroll, S. M., DePeters, E. J., Taylor, S. J., Rosenberg, M., Perez-Monti, H., & Capps, V. (2006). Milk composition of Holstein, Jersey, and Brown Swiss cows in response to increasing levels of dietary fat. Animal Feed Science and Technology, 131(3-4), 451–473.CrossRefGoogle Scholar
  16. Chandrapala, J., Ong, L., Zisu, B., Gras, S. L., Ashokkumar, M., & Kentish, S. E. (2016). The effect of sonication and high pressure homogenisation on the properties of pure cream. Innovative Food Science & Emerging Technologies, 33, 298–307.CrossRefGoogle Scholar
  17. Cho, Y. H., Lucey, J. A., & Singh, H. (1999). Rheological properties of acid milk gels as affected by the nature of the fat globule surface material and heat treatment of milk. International Dairy Journal, 9(8), 537–545.CrossRefGoogle Scholar
  18. Ciron, C. I. E., Gee, V. L., Kelly, A. L., & Auty, M. A. E. (2010). Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. International Dairy Journal, 20(5), 314–320.CrossRefGoogle Scholar
  19. Cornell, D. G., & Pallansch, M. J. (1966). Counting and sizing fat globules electronically. Journal of Dairy Science, 49(11), 1371.CrossRefGoogle Scholar
  20. Couvreur, S., Hurtaud, C., Marnet, P. G., Faverdin, P., & Peyraud, J. L. (2007). Composition of milk fat from cows selected for milk fat globule size and offered either fresh pasture or a corn silage-based diet. Journal of Dairy Science, 90(1), 392–403.PubMedPubMedCentralCrossRefGoogle Scholar
  21. Dalgleish, D. G., Tosh, S. M., & West, S. (1996). Beyond homogenization: The formation of very small emulsion droplets during the processing of milk by a Microfluidizer. Netherlands Milk and Dairy Journal, 50(2), 135–148.Google Scholar
  22. Dhungana, P., Truong, T., Bansal, N., & Bhandari, B. (2019). Thermal and UHT stability of native, homogenized and recombined creams with different average fat globule sizes. Food Research International, 123, 153–165.PubMedCrossRefGoogle Scholar
  23. Dhungana, P., Truong, T., Palmer, M., Bansal, N., & Bhandari, B. (2017). Size-based fractionation of native milk fat globules by two-stage centrifugal separation. Innovative Food Science & Emerging Technologies, 41, 235–243.CrossRefGoogle Scholar
  24. Eden, J., Dejmek, P., Lofgren, R., Paulsson, M., & Glantz, M. (2016). Native milk fat globule size and its influence on whipping properties. International Dairy Journal, 61, 176–181.CrossRefGoogle Scholar
  25. Ertugay, M. F., Sengul, M., & Sengul, M. (2004). Effect of ultrasound treatment on milk homogenisation and particle size distribution of fat. Turkish Journal of Veterinary & Animal Sciences, 28(2), 303–308.Google Scholar
  26. Everett, D. W., & Olson, N. F. (2000). Dynamic rheology of renneted milk gels containing fat globules stabilized with different surfactants. Journal of Dairy Science, 83(6), 1203–1209.PubMedCrossRefGoogle Scholar
  27. Fauquant, C., Briard, V., Leconte, N., & Michalski, M. C. (2005). Differently sized native milk fat globules separated by microfiltration: Fatty acid composition of the milk fat globule membrane and triglyceride core. European Journal of Lipid Science and Technology, 107(2), 80–86.CrossRefGoogle Scholar
  28. Fibrianto, K. (2013). Contribution of anhydrous milk fat to oral processing and sensory perception of liquid milks. PhD Thesis, The University of Queensland.Google Scholar
  29. Fox, P. F., & McSweeney, P. L. (1998). Dairy chemistry and biochemistry. London: Blackie Academic & Professional.Google Scholar
  30. Goff, H. D. (1997). Instability and partial coalescence in whippable dairy emulsions. Journal of Dairy Science, 80(10), 2620–2630.CrossRefGoogle Scholar
  31. Goudedranche, H., Fauquant, J., & Maubois, J. L. (2000). Fractionation of globular milk fat by membrane microfiltration. Le Lait, 80(1), 93–98.CrossRefGoogle Scholar
  32. Goulden, J. D. S. (1958). Some factors affecting turbimetric methods for the determination of fat in milk. Journal of Dairy Research, 25(2), 228–235.CrossRefGoogle Scholar
  33. Green, M. L., Marshall, R. J., & Glover, F. A. (1983). Influence of homogenization of concentrated milks on the structure and properties of rennet curds. Journal of Dairy Research, 50(3), 341–348.CrossRefGoogle Scholar
  34. Gresti, J., Bugaut, M., Maniongui, C., & Bezard, J. (1993). Composition of molecular-species of triacylglycerols in bovine-milk fat. Journal of Dairy Science, 76(7), 1850–1869.PubMedCrossRefGoogle Scholar
  35. Hardham, J. F., Imison, B. W., & French, H. M. (2000). Effect of homogenisation and microfluidisation on the extent of fat separation during storage of UHT milk. Australian Journal of Dairy Technology, 55(1), 16–22.Google Scholar
  36. Hayes, M. G., Fox, P. F., & Kelly, A. L. (2005). Potential applications of high pressure homogenisation in processing of liquid milk. Journal of Dairy Research, 72(1), 25–33.PubMedCrossRefGoogle Scholar
  37. Hayes, M. G., & Kelly, A. L. (2003). High pressure homogenisation of raw whole bovine milk (a) effects on fat globule size and other properties. Journal of Dairy Research, 70(3), 297–305.PubMedCrossRefGoogle Scholar
  38. Heid, H. W., & Keenan, T. W. (2005). Intracellular origin and secretion of milk fat globules. European Journal of Cell Biology, 84(2-3), 245–258.CrossRefPubMedGoogle Scholar
  39. Huppertz, T., & Kelly, A. L. (2006). Physical chemistry of milk fat globules. In P. F. Fox & P. L. H. McSweeney (Eds.), Advanced dairy chemistry volume 2: Lipids. New York: Springer.Google Scholar
  40. Hurtaud, C., Faucon, F., Couvreur, S., & Peyraud, J. L. (2010). Linear relationship between increasing amounts of extruded linseed in dairy cow diet and milk fatty acid composition and butter properties. Journal of Dairy Science, 93(4), 1429–1443.CrossRefPubMedGoogle Scholar
  41. Hussain, H., Truong, T., Bansal, N., & Bhandari, B. (2017). The effect of manipulating fat globule size on the stability and rheological properties of dairy creams. Food Biophysics, 12(1), 1–10.CrossRefGoogle Scholar
  42. Jana, A. H., & Upadhyay, K. G. (1992). Homogenisation of milk for cheesemaking. Australian Journal of Dairy Technology, 47, 72–79.Google Scholar
  43. Ji, Y. R., Lee, S. K., & Anema, S. G. (2011). Effect of heat treatments and homogenisation pressure on the acid gelation properties of recombined whole milk. Food Chemistry, 129(2), 463–471.PubMedCrossRefGoogle Scholar
  44. Juliano, P., Kutter, A., Cheng, L. J., Swiergon, P., Mawson, R., & Augustin, M. A. (2011). Enhanced creaming of milk fat globules in milk emulsions by the application of ultrasound and detection by means of optical methods. Ultrasonics Sonochemistry, 18(5), 963–973.CrossRefPubMedGoogle Scholar
  45. Kaylegian, K. E., & Lindsay, R. C. (1995). Handbook of milkfat fractionation technology and applications. Champaign: AOCS Press.Google Scholar
  46. Kietczewska, K., Kruk, A., Czerniewicz, M., Warminska, M., & Haponiuk, E. (2003). The effect of high-pressure homogenization on changes in milk colloidal and emulsifying systems. Polish Journal of Food and Nutrition Sciences, 12(1), 43–46.Google Scholar
  47. Konokhova, A. I., Rodionov, A. A., Gilev, K. V., Mikhaelis, I. M., Strokotov, D. I., Moskalensky, A. E., et al. (2014). Enhanced characterisation of milk fat globules by their size, shape and refractive index with scanning flow cytometry. International Dairy Journal, 39(2), 316–323.CrossRefGoogle Scholar
  48. Koxholt, M. M. R., Eisenmann, B., & Hinrichs, J. (2001). Effect of the fat globule sizes on the meltdown of ice cream. Journal of Dairy Science, 84(1), 31–37.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Le Calve, B., Saint-Leger, C., Babas, R., Gelin, J. L., Parker, A., Erni, P., et al. (2015). Fat perception: How sensitive are we? J Texture Stud, 46(3), 200–211.CrossRefGoogle Scholar
  50. Lee, S.-H., Lefèvre, T., Subirade, M., & Paquin, P. (2009). Effects of ultra-high pressure homogenization on the properties and structure of interfacial protein layer in whey protein-stabilized emulsion. Food Chemistry, 113(1), 191–195.CrossRefGoogle Scholar
  51. Lemay, A., Paquin, P., & Lacroix, C. (1994). Influence of microfluidization of milk on cheddar cheese composition, color, texture, and yield. Journal of Dairy Science, 77(10), 2870–2879.CrossRefGoogle Scholar
  52. Leong, T., Johansson, L., Juliano, P., Mawson, R., McArthur, S., & Manasseh, R. (2014). Design parameters for the separation of fat from natural whole milk in an ultrasonic litre-scale vessel. Ultrasonics Sonochemistry, 21(4), 1289–1298.CrossRefPubMedGoogle Scholar
  53. Leong, T., Johansson, L., Mawson, R., McArthur, S. L., Manasseh, R., & Juliano, P. (2016). Ultrasonically enhanced fractionation of milk fat in a litre-scale prototype vessel. Ultrasonics Sonochemistry, 28, 118–129.CrossRefPubMedGoogle Scholar
  54. Leong, T., Juliano, P., Johansson, L., Mawson, R., McArthur, S. L., & Manasseh, R. (2014). Temperature effects on the ultrasonic separation of fat from natural whole milk. Ultrasonics Sonochemistry, 21(6), 2092–2098.CrossRefPubMedGoogle Scholar
  55. Logan, A., Auldist, M., Greenwood, J., & Day, L. (2014). Natural variation of bovine milk fat globule size within a herd. Journal of Dairy Science, 97(7), 4072–4082.PubMedCrossRefGoogle Scholar
  56. Logan, A., Day, L., Pin, A., Auldist, M., Leis, A., Puvanenthiran, A., et al. (2014). Interactive effects of milk fat globule and casein micelle size on the renneting properties of milk. Food and Bioprocess Technology, 7(3), 3175–3185.CrossRefGoogle Scholar
  57. Logan, A., Leis, A., Day, L., Øiseth, S. K., Puvanenthiran, A., & Augustin, M. A. (2015). Rennet gelation properties of milk: Influence of natural variation in milk fat globule size and casein micelle size. International Dairy Journal, 46, 71–77.CrossRefGoogle Scholar
  58. Long, Z., Zhao, M. M., Zhao, Q. Z., Yang, B., & Liu, L. Y. (2012). Effect of homogenisation and storage time on surface and rheology properties of whipping cream. Food Chemistry, 131(3), 748–753.CrossRefGoogle Scholar
  59. Lopez, C. (2005). Focus on the supramolecular structure of milk fat in dairy products. Reproduction Nutrition Development, 45(4), 497–511.CrossRefGoogle Scholar
  60. Lopez, C. (2011). Milk fat globules enveloped by their biological membrane: Unique colloidal assemblies with a specific composition and structure. Current Opinion in Colloid & Interface Science, 16(5), 391–404.CrossRefGoogle Scholar
  61. Lopez, C., Bourgaux, C., Lesieur, P., Bernadou, S., Keller, G., & Ollivon, M. (2002). Thermal and structural behavior of milk fat - 3. Influence of cooling rate and droplet size on cream crystallization. Journal of Colloid and Interface Science, 254(1), 64–78.PubMedGoogle Scholar
  62. Lopez, C., Briard-Bion, V., Menard, O., Beaucher, E., Rousseau, F., Fauquant, J., et al. (2011). Fat globules selected from whole milk according to their size: Different compositions and structure of the biomembrane, revealing sphingomyelin-rich domains. Food Chemistry, 125(2), 355–368.CrossRefGoogle Scholar
  63. Lopez, C., Briard-Bion, V., Menard, O., Rousseau, F., Pradel, P., & Besle, J. M. (2008). Phospholipid, sphingolipid, and fatty acid compositions of the milk fat globule membrane are modified by diet. Journal of Agricultural and Food Chemistry, 56(13), 5226–5236.CrossRefPubMedGoogle Scholar
  64. Lucey, J. A., Johnson, M. E., & Horne, D. S. (2003). Invited review: Perspectives on the basis of the rheology and texture properties of cheese. Journal of Dairy Science, 86(9), 2725–2743.PubMedCrossRefGoogle Scholar
  65. Ma, Y., & Barbano, D. M. (2000). Gravity separation of raw bovine milk: Fat globule size distribution and fat content of milk fractions. Journal of Dairy Science, 83(8), 1719–1727.CrossRefPubMedGoogle Scholar
  66. Mabrook, M. F., & Petty, M. C. (2003). Effect of composition on the electrical conductance of milk. Journal of Food Engineering, 60(3), 321–325.CrossRefGoogle Scholar
  67. MacGibbon, A. K. H., & Taylor, M. W. (2006). Composition and structure of bovine milk lipids. In P. F. Fox & P. L. McSweeney (Eds.), Advanced dairy chemistry 2: Lipids. New York: Springer.Google Scholar
  68. Martini, M., Altomonte, I., Pesi, R., Tozzi, M. G., & Salari, F. (2013). Fat globule membranes in ewes’ milk: The main enzyme activities during lactation. International Dairy Journal, 28(1), 36–39.CrossRefGoogle Scholar
  69. Martini, M., Cecchi, F., & Scolozzi, C. (2006). Relationship between fat globule size and chemical and fatty acid composition of cow’s milk in mid lactation. Italian Journal of Animal Science, 5(4), 349–358.Google Scholar
  70. Martini, M., Cecchi, F., Scolozzi, C., Leotta, R., & Verita, P. (2003). Milk fat globules in different dairy cattle breeds part I: Morphometric analysis. Italian Journal of Animal Science, 2, 272–274.Google Scholar
  71. Mason, T. G., Wilking, J. N., Meleson, K., Chang, C. B., & Graves, S. M. (2006). Nanoemulsions: Formation, structure, and physical properties. Journal of Physics: Condensed Matter, 18(41), R635–R666.Google Scholar
  72. Mattes, R. D. (2009). Is there a fatty acid taste? Annual Review of Nutrition, 29, 305–327.PubMedPubMedCentralCrossRefGoogle Scholar
  73. McCrae, C. H., & Lepoetre, A. (1996). Characterization of dairy emulsions by forward lobe laser light scattering - Application to milk and cream. International Dairy Journal, 6(3), 247–256.CrossRefGoogle Scholar
  74. Mellema, M., Heesakkers, J. W. M., van Opheusden, J. H. J., & van Vliet, T. (2000). Structure and scaling behavior of aging rennet-induced casein gels examined by confocal microscopy and permeametry. Langmuir, 16(17), 6847–6854.CrossRefGoogle Scholar
  75. Mesilati-Stahy, R., & Argov-Argaman, N. (2014). The relationship between size and lipid composition of the bovine milk fat globule is modulated by lactation stage. Food Chemistry, 145, 562–570.CrossRefPubMedGoogle Scholar
  76. Mesilati-Stahy, R., Mida, K., & Argov-Argaman, N. (2011). Size-dependent lipid content of bovine milk fat globule and membrane phospholipids. Journal of Agricultural and Food Chemistry, 59(13), 7427–7435.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Michalski, M. C., Briard, V., & Juaneda, P. (2005). CLA profile in native fat globules of different sizes selected from raw milk. International Dairy Journal, 15(11), 1089–1094.CrossRefGoogle Scholar
  78. Michalski, M. C., Briard, V., & Michel, F. (2001). Optical parameters of milk fat globules for laser light scattering measurements. Le Lait, 81(6), 787–796.CrossRefGoogle Scholar
  79. Michalski, M. C., Camier, B., Briard, V., Leconte, N., Gassi, J. Y., Goudedranche, H., et al. (2004). The size of native milk fat globules affects physico-chemical and functional properties of Emmental cheese. Le Lait, 84(4), 343–358.CrossRefGoogle Scholar
  80. Michalski, M. C., Camier, B., Gassi, J. Y., Briard-Bion, V., Leconte, N., Famelart, M. H., et al. (2007). Functionality of smaller vs control native milkfat globules in emmental cheeses manufactured with adapted technologies. Food Research International, 40(1), 191–202.CrossRefGoogle Scholar
  81. Michalski, M. C., Cariou, R., Michel, F., & Garnier, C. (2002). Native vs. damaged milk fat globules: Membrane properties affect the viscoelasticity of milk gels. Journal of Dairy Science, 85(10), 2451–2461.PubMedCrossRefGoogle Scholar
  82. Michalski, M. C., Gassi, J. Y., Famelart, M. H., Leconte, N., Camier, B., Michel, F., et al. (2003). The size of native milk fat globules affects physico-chemical and sensory properties of Camembert cheese. Le Lait, 83(2), 131–143.CrossRefGoogle Scholar
  83. Michalski, M. C., Leconte, N., Briard-Bion, V., Fauquant, J., Maubois, J. L., & Goudedranche, H. (2006). Microfiltration of raw whole milk to select fractions with different fat globule size distributions: Process optimization and analysis. Journal of Dairy Science, 89(10), 3778–3790.CrossRefPubMedGoogle Scholar
  84. Michalski, M. C., Michel, F., Sainmont, D., & Briard, V. (2002). Apparent zeta-potential as a tool to assess mechanical damages to the milk fat globule membrane. Colloids and Surfaces B: Biointerfaces, 23(1), 23–30.CrossRefGoogle Scholar
  85. Michalski, M. C., Ollivon, M., Briard, V., Leconte, N., & Lopez, C. (2004). Native fat globules of different sizes selected from raw milk: Thermal and structural behavior. Chemistry and Physics of Lipids, 132(2), 247–261.CrossRefPubMedGoogle Scholar
  86. Miles, C. A., Shore, D., & Langley, K. R. (1990). Attenuation of ultrasound in milks and Creams. Ultrasonics, 28(6), 394–400.CrossRefGoogle Scholar
  87. Mulder, H., & Walstra, P. (1974). The fat dispersion. In H. Mulder & P. Walstra (Eds.), The milk fat globule. Emulsion science as applied to milk products and comparable foods (pp. 54–66). Wageningen: The Netherlands Center for Agricultural Publishing and Documentation.Google Scholar
  88. O’Mahony, J. A., Auty, M. A. E., & McSweeney, P. L. H. (2005). The manufacture of miniature Cheddar-type cheeses from milks with different fat globule size distributions. Journal of Dairy Research, 72(3), 338–348.CrossRefPubMedGoogle Scholar
  89. Olson, D. W., White, C. H., & Richter, R. L. (2004). Effect of pressure and fat content on particle sizes in microfluidized milk. Journal of Dairy Science, 87(10), 3217–3223.PubMedCrossRefGoogle Scholar
  90. Ong, L., Dagastine, R. R., Kentish, S. E., & Gras, S. L. (2010). The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy. Journal of Food Science, 75(3), E135–E145.PubMedCrossRefGoogle Scholar
  91. Pal, R. (1996). Effect of droplet size on the rheology of emulsions. AICHE J, 42(11), 3181–3190.CrossRefGoogle Scholar
  92. Panchal, B. R., Truong, T., Prakash, S., Bansal, N., & Bhandari, B. (2017). Effect of fat globule size on the churnability of dairy cream. Food Research International, 99(Pt 1), 229–238.PubMedCrossRefGoogle Scholar
  93. Precht, D. (1988). In N. Garti & K. Sato (Eds.), Fat crystal structure in cream and butter. Crystallllization and polymorphism of fats and fatty acids (pp. 305–361). New York: Marcel Dekker.Google Scholar
  94. Richardson, N. J., & Booth, D. A. (1993). Effect of homogenization and fat content on oral perception of low and high viscosity model creams. Journal of Sensory Studies, 8, 133–143.CrossRefGoogle Scholar
  95. Riener, J., Noci, F., Cronin, D. A., Morgan, D. J., & Lyng, J. G. (2009). The effect of thermosonication of milk on selected physicochemical and microstructural properties of yoghurt gels during fermentation. Food Chemistry, 114(3), 905–911.CrossRefGoogle Scholar
  96. Robin, O., & Paquin, P. (1991). Evaluation of the particle-size of fat globules in a milk model emulsion by photon-correlation spectroscopy. Journal of Dairy Science, 74(8), 2440–2447.CrossRefGoogle Scholar
  97. Rodarte, D., Zamora, A., Trujillo, A.-J., & Juan, B. (2018). Effect of ultra-high pressure homogenization on cream: Shelf life and physicochemical characteristics. LWT-Food Science and Technology, 92, 108–115.CrossRefGoogle Scholar
  98. Rowney, M. K., Hickey, M. W., Roupas, P., & Everett, D. W. (2003). The effect of homogenization and milk fat fractions on the functionality of Mozzarella cheese. Journal of Dairy Science, 86(3), 712–718.PubMedCrossRefGoogle Scholar
  99. Rudan, M. A., Barbano, D. M., Gu, M. R., & Kindstedt, P. S. (1998). Effect of the modification of fat particle size by homogenization on composition, proteolysis, functionality, and appearance of reduced fat Mozzarella cheese. Journal of Dairy Science, 81(8), 2065–2076.CrossRefGoogle Scholar
  100. Schenkel, P., Samudrala, R., & Hinrichs, J. (2013). Thermo-physical properties of semi-hard cheese made with different fat fractions: Influence of melting point and fat globule size. International Dairy Journal, 30(2), 79–87.CrossRefGoogle Scholar
  101. Schoumacker, R., Martin, C., Thomas-Danguin, T., Guichard, E., Le Quéré, J. L., & Labouré, H. (2017). Fat perception in cottage cheese: The contribution of aroma and tasting temperature. Food Quality and Preference, 56, 241–246.CrossRefGoogle Scholar
  102. Serra, M., Trujillo, A. J., Quevedo, J. M., Guamis, B., & Ferragut, V. (2007). Acid coagulation properties and suitability for yogurt production of cows’ milk treated by high-pressure homogenisation. International Dairy Journal, 17(7), 782–790.CrossRefGoogle Scholar
  103. St-Gelais, D., Passey, C. A., Hache, S., & Roy, P. (1997). Production of low-fat cheddar cheese from low and high mineral retentate powders and different fractions of milkfat globules. International Dairy Journal, 7(11), 733–741.CrossRefGoogle Scholar
  104. TetraPak. (2009). Centrifugal separators and milk fat standardisation. In Dairy processing handbook (pp. 91–113). Lund: TetraPak Processing Systems AB.Google Scholar
  105. Thiebaud, M., Dumay, E., Picart, L., Guiraud, J. P., & Cheftel, J. C. (2003). High-pressure homogenisation of raw bovine milk. Effects on fat globule size distribution and microbial inactivation. International Dairy Journal, 13(6), 427–439.CrossRefGoogle Scholar
  106. Timmen, H., & Patton, S. (1988). Milk-fat globules - Fatty-acid composition, size and invivo regulation of fat liquidity. Lipids, 23(7), 685–689.PubMedCrossRefGoogle Scholar
  107. Truong, T., Bansal, N., & Bhandari, B. (2014). Effect of emulsion droplet size on foaming properties of milk fat emulsions. Food and Bioprocess Technology, 7(12), 3416–3428.CrossRefGoogle Scholar
  108. Truong, T., Bansal, N., Sharma, R., Palmer, M., & Bhandari, B. (2014). Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chemistry, 145, 725–735.PubMedCrossRefGoogle Scholar
  109. Truong, T., Morgan, G. P., Bansal, N., Palmer, M., & Bhandari, B. (2015). Crystal structures and morphologies of fractionated milk fat in nanoemulsions. Food Chemistry, 171, 157–167.PubMedCrossRefGoogle Scholar
  110. Valivullah, H. M., Bevan, D. R., Peat, A., & Keenan, T. W. (1988). Milk lipid globules - control of their size distribution. Proc Natl Acad Sci U S A, 85(23), 8775–8779.PubMedPubMedCentralCrossRefGoogle Scholar
  111. Villamiel, M., & de Jong, P. (2000). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry, 48(7), 3068–3068.PubMedCrossRefGoogle Scholar
  112. Wade, T., & Beattie, J. K. (1997). Electroacoustic determination of size and zeta potential of fat globules in milk and cream emulsions. Colloids and Surf B:Biointerfaces, 10(2), 73–85.CrossRefGoogle Scholar
  113. Walstra, P. (1967). On the crystallization habit in fat globules. Netherlands Milk and Dairy Journal, 21(3/4), 166–191.Google Scholar
  114. Walstra, P. (1995). Physical chemistry of milk fat globules. In P. F. Fox (Ed.), Advanced dairy chemistry vol. 2: Lipids (pp. 131–178). London: Chapman & Hall.Google Scholar
  115. Walstra, P., Geurts, T. J., Noomen, A., Jellama, A., & Van Boekel, M. A. J. S. (1999). Dairy technology: Principles of milk properties and processes. New York: Marcel Dekker, Inc..CrossRefGoogle Scholar
  116. Walstra, P., & Oortwijn, H. (1969). Estimating globule-size distribution of oil-in-water emulsions by coulter counter. J Colloid Interface Sci, 29(3), 424.CrossRefGoogle Scholar
  117. Walstra, P., Wouters, J. T. M., & Geurts, T. J. (2005). Dairy Science and Technology. CRC: Press.CrossRefGoogle Scholar
  118. Whiteley, A. J., & Muir, D. D. (1996). Heat stability of homogenised concentrated milk. 1. Comparison of microfluidiser with a valve homogeniser. Milchwissenschaft-Milk Science International, 51(6), 320–323.Google Scholar
  119. Wiking, L., Bjorck, L., & Nielsen, J. H. (2003). Influence of feed composition on stability of fat globules during pumping of raw milk. International Dairy Journal, 13(10), 797–803.CrossRefGoogle Scholar
  120. Wiking, L., Nielsen, J. H., Bavius, A. K., Edvardsson, A., & Svennersten-Sjaunja, K. (2006). Impact of milking frequencies on the level of free fatty acids in milk, fat globule size, and fatty acid composition. Journal of Dairy Science, 89(3), 1004–1009.PubMedPubMedCentralCrossRefGoogle Scholar
  121. Wiking, L., Stagsted, J., Lennart, B., & Nielsen, J. H. (2004). Milk fat globule size is affected by fat production in dairy cows. International Dairy Journal, 14(10), 909–913.CrossRefGoogle Scholar
  122. Wright, A. J., & Marangoni, A. G. (2002). The effect of minor components on milkfat crystallization, microstructure, and rheological properties. In A. G. Marangoni & S. S. Narine (Eds.), Physical properties of lipids (p. 589). New York: Marcel Dekker.Google Scholar
  123. Wu, H., Hulbert, G. J., & Mount, J. R. (2000). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science & Emerging Technologies, 1(3), 211–218.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.ARC Dairy Innovation HubThe University of QueenslandSt LuciaAustralia
  2. 2.School of ScienceRMIT UniversityMelbourneAustralia

Personalised recommendations