Advertisement

Microstructural Engineering of Milk Fat and Related Products

  • Pere R. Ramel
  • Alejandro G. MarangoniEmail author
Chapter
  • 114 Downloads

Abstract

Milk fat is widely used as a key ingredient in many food products because of its importance in the development of the structural, mechanical, and sensory properties of food products. The functionality of milk fat is greatly dependent on its thermal properties (i.e. crystallization and melting behavior). Therefore, the characterization of the crystal structure of milk fat as affected by thermal processes, composition, and other various processing conditions has been extensively studied in order to understand structure–function relationships as well as to gain opportunities for microstructural engineering of the crystal network formed by milk fat (Campos, Narine, & Marangoni, 2002; Herrera & Hartel, 2000; Lopez, Lesieur, Bourgaux, & Ollivon, 2005; Marangoni et al., 2012; Ramel & Marangoni, 2016; Shi, Smith, & Hartel, 2001).

References

  1. Acevedo, N. C., Block, J. M., & Marangoni, A. G. (2012). Critical laminar shear-temperature effects on the nano- and mesoscale structure of a model fat and its relationship to oil binding and rheological properties. Faraday Discussions, 158, 171.  https://doi.org/10.1039/c2fd20008bCrossRefPubMedGoogle Scholar
  2. Acevedo, N. C., & Marangoni, A. G. (2010a). Characterization of the nanoscale in triacylglycerol crystal networks. Crystal Growth & Design, 10, 3327–3333.  https://doi.org/10.1021/cg100468eCrossRefGoogle Scholar
  3. Acevedo, N. C., & Marangoni, A. G. (2010b). Toward nanoscale engineering of triacylglycerol crystal networks. Crystal Growth & Design, 10, 3334–3339.  https://doi.org/10.1021/cg100469xCrossRefGoogle Scholar
  4. Acevedo, N. C., & Marangoni, A. G. (2014). Engineering the functionality of blends of fully hydrogenated and non-hydrogenated soybean oil by addition of emulsifiers. Food Biophysics, 9, 368–379.  https://doi.org/10.1007/s11483-014-9340-9CrossRefGoogle Scholar
  5. Acevedo, N. C., & Marangoni, A. G. (2015). Nanostructured fat crystal systems. Annu Rev Food Sci Technol, 6, 71–96.  https://doi.org/10.1146/annurev-food-030713-092400CrossRefPubMedGoogle Scholar
  6. Blake, A. I., Co, E. D., & Marangoni, A. G. (2014). Structure and physical properties of plant wax crystal networks and their relationship to oil binding capacity. Journal of the American Oil Chemists’ Society, 91, 885–903.  https://doi.org/10.1007/s11746-014-2435-0CrossRefGoogle Scholar
  7. Buldo, P., Andersen, U., & Wiking, L. (2013). Microstructure and material properties of milk fat systems during temperature fluctuations. Food Biophysics, 8, 262–272.  https://doi.org/10.1007/s11483-013-9299-yCrossRefGoogle Scholar
  8. Campos, R., Narine, S., & Marangoni, A. G. (2002). Effect of cooling rate on the structure and mechanical properties of milk fat and lard. Food Research International, 35, 971–981.  https://doi.org/10.1016/S0963-9969(02)00159-XCrossRefGoogle Scholar
  9. Campos, R. J., Litwinenko, J. W., & Marangoni, A. G. (2003). Fractionation of milk fat by short-path distillation. Journal of Dairy Science, 86, 735–745.  https://doi.org/10.3168/jds.S0022-0302(03)73654-6CrossRefPubMedGoogle Scholar
  10. Cerdeira, M., Pastore, V., Vera, L. V., Martini, S., Candal, R. J., & Herrera, M. L. (2005). Nucleation behavior of blended high-melting fractions of milk fat as affected by emulsifiers. European Journal of Lipid Science and Technology, 107, 877–885.  https://doi.org/10.1002/ejlt.200500257CrossRefGoogle Scholar
  11. Danthine, S. (2012). Physicochemical and structural properties of compound dairy fat blends. Food Research International, 48, 187–195.  https://doi.org/10.1016/j.foodres.2012.03.004CrossRefGoogle Scholar
  12. deMan, J. M., & Beers, A. M. (1987). Review fat crystal networks: structure and rheological properties. Journal of Texture Studies, 18, 303–318.CrossRefGoogle Scholar
  13. Dibildox-Alvarado, E., Marangoni, A. G., & Toro-Vazquez, J. F. (2010). Pre-nucleation structuring of triacylglycerols and its effect on the activation energy of nucleation. Food Biophysics, 5, 218–226.  https://doi.org/10.1007/s11483-010-9163-2CrossRefGoogle Scholar
  14. Dimick, P. S., Reddy, S. Y., & Ziegler, G. R. (1996). Chemical and thermal characteristics of milk-fat fractions isolated by a melt crystallization. Journal of the American Oil Chemists’ Society, 73, 1647–1652.  https://doi.org/10.1007/bf02517966CrossRefGoogle Scholar
  15. Herrera, M. L., & Hartel, R. W. (2000). Effect of processing conditions on crystallization kinetics of a milk fat model system. Journal of the American Oil Chemists’ Society, 77, 1177–1188.  https://doi.org/10.1007/s11746-000-0184-4CrossRefGoogle Scholar
  16. Jensen, R. G. (2002). The composition of bovine milk lipids: January 1995 to December 2000. Journal of Dairy Science, 85, 295–350.  https://doi.org/10.3168/jds.S0022-0302(02)74079-4CrossRefPubMedGoogle Scholar
  17. Jensen, R. G., Ferris, A. M., & Lammi-Keefe, C. J. (1991). The composition of milk fat. Journal of Dairy Science, 74, 3228–3243.  https://doi.org/10.3168/jds.S0022-0302(91)78509-3CrossRefPubMedGoogle Scholar
  18. Kaufmann, N., De Graef, V., Dewettinck, K., & Wiking, L. (2012). Shear-induced crystal structure formation in milk fat and blends with rapeseed oil. Food Biophysics, 7, 308–316.  https://doi.org/10.1007/s11483-012-9269-9CrossRefGoogle Scholar
  19. Kaylegian, K. E., & Lindsay, R. C. (1995). In K. E. Kaylegian & R. C. Lindsay (Eds.), Handbook of milkfat fractionation and technology application. Champaign: AOCS Press.Google Scholar
  20. Kerr, R. M., Tombokan, X., Ghosh, S., & Martini, S. (2011). Crystallization behavior of anhydrous milk fat-sunflower oil wax blends. Journal of Agricultural and Food Chemistry, 59, 2689–2695.  https://doi.org/10.1021/jf1046046CrossRefPubMedGoogle Scholar
  21. Lopez, C., Lesieur, P., Bourgaux, C., & Ollivon, M. (2005). Thermal and structural behavior of anhydrous milk fat. 3. Influence of cooling rate. J Dairy Sci, 88, 511–526.  https://doi.org/10.3168/jds.S0022-0302(05)72713-2CrossRefPubMedGoogle Scholar
  22. Marangoni, A. G. (2002). The nature of fractality in fat crystal networks. Trends in Food Science and Technology, 13, 37–47.  https://doi.org/10.1016/S0924-2244(02)00029-8CrossRefGoogle Scholar
  23. Marangoni, A. G., Acevedo, N., Maleky, F., Co, E., Peyronel, F., Mazzanti, G., et al. (2012). Structure and functionality of edible fats. Soft Matter, 8, 1275.  https://doi.org/10.1039/c1sm06234dCrossRefGoogle Scholar
  24. Marangoni, A. G., & Lencki, R. W. (1998). Ternary phase behavior of milk fat fractions. Journal of Agricultural and Food Chemistry, 46, 3879–3884.  https://doi.org/10.1021/jf9801668CrossRefGoogle Scholar
  25. Marangoni, A. G., & Mcgauley, S. E. (2003). Relationship between crystallization behavior and structure in cocoa butter. Crystal Growth & Design, 3, 95–108.  https://doi.org/10.1021/cg025580lCrossRefGoogle Scholar
  26. Marangoni, A. G., Narine, S. S., Acevedo, N. C., & Tang, D. (2013). Nanostructure and microstructure of fats. In A. G. Marangoni & L. H. Wesdorp (Eds.), Structure and properties of fat crystal networks (2nd ed.). Boca Raton: CRC Press.Google Scholar
  27. Marangoni, A. G., Tang, D., & Singh, A. P. (2006). Non-isothermal nucleation of triacylglycerol melts. Chemical Physics Letters, 419, 259–264.  https://doi.org/10.1016/j.cplett.2005.11.085CrossRefGoogle Scholar
  28. Marangoni, A. G., & Wesdorp, L. H. (2013a). Crystallography and polymorphism. In A. G. Marangoni & L. H. Wesdorp (Eds.), Structure and properties of fat crystal networks (2nd ed.). Boca Raton: CRC Press.Google Scholar
  29. Marangoni, A. G., & Wesdorp, L. H. (2013b). Nucleation and crystalline growth kinetics. In A. G. Marangoni & L. Wesdorp (Eds.), Structure and properties of fat crystal networks (2nd ed.). Boca Raton: CRC Press.Google Scholar
  30. Martini, S., Carelli, A. A., & Lee, J. (2008). Effect of the addition of waxes on the crystallization behavior of anhydrous milk fat. Journal of the American Oil Chemists’ Society, 85, 1097–1104.  https://doi.org/10.1007/s11746-008-1310-2CrossRefGoogle Scholar
  31. Martini, S., Herrera, M. L., & Hartel, R. W. (2001). Effect of cooling rate on nucleation behavior of milk fat - sunflower oil blends. Journal of Agricultural and Food Chemistry, 49, 3223–3229.  https://doi.org/10.1021/jf001101jCrossRefPubMedGoogle Scholar
  32. Martini, S., & Marangoni, A. G. (2007). Microstructure of dairy fat products. In A. Tamime (Ed.), Structure of dairy products. Oxford: Blackwell Publishing.Google Scholar
  33. Martini, S., Suzuki, A. H., & Hartel, R. W. (2008). Effect of high intensity ultrasound on crystallization behavior of anhydrous milk fat. Journal of the American Oil Chemists’ Society, 85, 621–628.  https://doi.org/10.1007/s11746-008-1247-5CrossRefGoogle Scholar
  34. Mazzanti, G., Guthrie, S. E., Sirota, E. B., Marangoni, A. G., & Idziak, S. H. J. (2004). Effect of minor components and temperature profiles on polymorphism in milk fat. Crystal Growth & Design, 4, 1303–1309.  https://doi.org/10.1021/cg0497602CrossRefGoogle Scholar
  35. Narine, S. S., & Marangoni, A. G. (1999). Fractal nature of fat crystal networks. Physical Review E, 59, 1908–1920.  https://doi.org/10.1103/PhysRevE.59.1908CrossRefGoogle Scholar
  36. Ramel, P. R., Co, E. D., Acevedo, N. C., & Marangoni, A. G. (2016). Structure and functionality of nanostructured triacylglycerol crystal networks. Progress in Lipid Research, 64, 231–242.  https://doi.org/10.1016/j.plipres.2016.09.004CrossRefPubMedGoogle Scholar
  37. Ramel, P. R., & Marangoni, A. G. (2016). Engineering the microstructure of milk fat by blending binary and ternary mixtures of its fractions. RSC Advances, 6, 41189–41194.  https://doi.org/10.1039/C6RA07114GCrossRefGoogle Scholar
  38. Sangwal, K., & Sato, K. (2012). Nucleation and crystallization kinetics of milk fat. In A. G. Marangoni (Ed.), Structure‐function analysis of edible fats (1st ed.). Urbana: AOCS Press.Google Scholar
  39. Sato, K. (2001). Crystallization behaviour of fats and lipids—a review. Chemical Engineering Science, 56, 2255–2265.  https://doi.org/10.1016/S0009-2509(00)00458-9CrossRefGoogle Scholar
  40. Shi, Y., Smith, C. M., & Hartel, R. W. (2001). Compositional effects on milk fat crystallization. Journal of Dairy Science, 84, 2392–2401.  https://doi.org/10.3168/jds.S0022-0302(01)74688-7CrossRefPubMedGoogle Scholar
  41. Singh, A. P., Bertoli, C., Rousset, P. R., & Marangoni, A. G. (2004). Matching avrami indices achieves similar hardnesses in palm oil-based fats. Journal of Agricultural and Food Chemistry, 52, 1551–1557.  https://doi.org/10.1021/jf034653lCrossRefPubMedGoogle Scholar
  42. Timms, R. E. (1980). The phase behaviour and polymorphism of milk fat, milk fat fractions and fully hardened milk fat. Australian Journal of Dairy Technology, 35, 47–53.Google Scholar
  43. Timms, R. E. (1984). Phase behaviour of fats and their mixtures. Progress in Lipid Research, 23, 1–38.  https://doi.org/10.1016/0163-7827(84)90004-3CrossRefPubMedGoogle Scholar
  44. van Aken, G. A., Grotenhuis, E., Langevelde, A. J., & Schenk, H. (1999). Composition and crystallization of milk fat fractions. Journal of the American Oil Chemists’ Society, 76, 1323–1331.  https://doi.org/10.1007/s11746-999-0146-8CrossRefGoogle Scholar
  45. Wagh, A., Birkin, P., & Martini, S. (2016). High-intensity ultrasound to improve physical and functional properties of lipids. Annual Review of Food Science and Technology, 7, 23–41.  https://doi.org/10.1146/annurev-food-041715-033112CrossRefPubMedGoogle Scholar
  46. Wagh, A., Walsh, M. K., & Martini, S. (2013). Effect of lactose monolaurate and high intensity ultrasound on crystallization behavior of anhydrous milk fat. Journal of the American Oil Chemists’ Society, 90, 977–987.  https://doi.org/10.1007/s11746-013-2244-xCrossRefGoogle Scholar
  47. Wiking, L., De Graef, V., Rasmussen, M., & Dewettinck, K. (2009). Relations between crystallisation mechanisms and microstructure of milk fat. International Dairy Journal, 19, 424–430.  https://doi.org/10.1016/j.idairyj.2009.03.003CrossRefGoogle Scholar
  48. Wright, A. J., Batte, H. D., & Marangoni, A. G. (2005). Effects of canola oil dilution on anhydrous milk fat crystallization and fractionation behavior. Journal of Dairy Science, 88, 1955–1965.  https://doi.org/10.3168/jds.S0022-0302(05)72871-XCrossRefPubMedGoogle Scholar
  49. Wright, A. J., Hartel, R. W., Narine, S. S., & Marangoni, A. G. (2000). The effect of minor components on milk fat crystallization. Journal of the American Oil Chemists’ Society, 77, 463–475.  https://doi.org/10.1007/s11746-000-0075-8CrossRefGoogle Scholar
  50. Wright, A. J., & Marangoni, A. G. (2002). Effect of DAG on milk fat TAG crystallization. Journal of the American Oil Chemists’ Society, 79, 395–402.  https://doi.org/10.1007/s11746-002-0495-5CrossRefGoogle Scholar
  51. Wright, A. J., & Marangoni, A. G. (2003). The effect of minor components on milk fat microstructure and mechanical properties. Journal of Food Science, 68, 182–186.  https://doi.org/10.1111/j.1365-2621.2003.tb14137.xCrossRefGoogle Scholar
  52. Wright, A. J., Scanlon, M. G., Hartel, R. W., & Marangoni, A. G. (2001). Rheological properties of milkfat and butter. Journal of Food Science, 66, 1056–1071.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Food ScienceUniversity of GuelphGuelphCanada

Personalised recommendations